JPS6113102B2 - - Google Patents

Info

Publication number
JPS6113102B2
JPS6113102B2 JP53047849A JP4784978A JPS6113102B2 JP S6113102 B2 JPS6113102 B2 JP S6113102B2 JP 53047849 A JP53047849 A JP 53047849A JP 4784978 A JP4784978 A JP 4784978A JP S6113102 B2 JPS6113102 B2 JP S6113102B2
Authority
JP
Japan
Prior art keywords
negative pressure
valve
control valve
engine
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53047849A
Other languages
Japanese (ja)
Other versions
JPS54140022A (en
Inventor
Kenji Masaki
Kenji Ikeura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4784978A priority Critical patent/JPS54140022A/en
Publication of JPS54140022A publication Critical patent/JPS54140022A/en
Publication of JPS6113102B2 publication Critical patent/JPS6113102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【発明の詳細な説明】 本発明は排気の一部を吸気系に還流する排気還
流制御弁と、機関吸気通路の略全閉時のスロツト
ル弁をバイパスして吸入空気を補助供給し機関ア
イドリング時等の回転速度を最適値に制御する吸
入空気量補助制御弁とを備え、この2つの弁を電
磁弁を用いて制御する構成の内燃機関に関する。
Detailed Description of the Invention The present invention bypasses an exhaust gas recirculation control valve that recirculates a portion of exhaust gas to the intake system and a throttle valve when the engine intake passage is substantially fully closed to supply intake air auxiliaryly when the engine is idling. The present invention relates to an internal combustion engine configured to include an intake air amount auxiliary control valve that controls the rotational speed of the engine to an optimum value, and to control these two valves using a solenoid valve.

排気還流制御手段としては、従来からダイヤフ
ラムを用いた圧力制御式排気還流制御弁を排気還
流通路に介装し通路面積を制御する方法が知られ
る。その排気還流制御弁の信号圧力は、機関吸入
負圧等機関運転状態に関連ある圧力を利用してい
るが、これらは夫々の信号圧力特性に左右され必
ずしも機関の要求する最適排気還流率を得るまで
に至らない。特に近時開発された電子制御式燃料
噴射弁を用いてその時の運転条件にみあつた燃料
噴射量を得、排気還流制御を行うものにあつては
上記不備が機関全体の精密な制御を阻害するおそ
れがある。
As an exhaust gas recirculation control means, a method is conventionally known in which a pressure-controlled exhaust gas recirculation control valve using a diaphragm is interposed in an exhaust gas recirculation passage to control the area of the passage. The signal pressure of the exhaust recirculation control valve uses pressure related to engine operating conditions, such as engine suction negative pressure, but these are affected by the characteristics of each signal pressure and do not necessarily provide the optimum exhaust recirculation rate required by the engine. It doesn't reach that point. In particular, the above deficiencies hinder precise control of the entire engine, especially in those that use recently developed electronically controlled fuel injection valves to obtain a fuel injection amount that matches the operating conditions at the time and control exhaust gas recirculation. There is a risk of

一方、例えば機関アイドリング運転においては
近年複数段のアイドル回転制御特性を行いアイド
ル時の排気浄化を図ることが要求されている。
On the other hand, in recent years, for example, during engine idling, it has become necessary to perform idle rotation control characteristics in multiple stages to purify exhaust gas during idling.

即ち、暖機時間を短くして有害排気成分の排出
を少なくするために冷却水温度0℃付近では冷却
水温度に対するアイドル回転数の変化を小さくし
或いは暖機終了後の排気対策で機関の発熱量が増
えてオーバーヒートする危険があるのでアイドル
回転数を高めて冷却性能を向上させる等の制御を
行う。
In other words, in order to shorten the warm-up time and reduce the emission of harmful exhaust components, when the coolant temperature is around 0°C, the change in the idle speed relative to the coolant temperature is reduced, or after warm-up is completed, exhaust measures are taken to reduce engine heat generation. Since the amount increases and there is a risk of overheating, control is performed such as increasing the idle speed to improve cooling performance.

そこで排気還流制御も機関回転制御も電磁弁を
用いてこれをマイクロコンピユータを使用するこ
とにより機関運転状態に応じて精密に制御するこ
とが望ましい。かかる制御は排気還流及び補助吸
入空気量共に夫々要求特性に従つて精密に行うに
こしたことはないのであるが、コンピユータの出
力ビツト数を低減してコンピユータを他の用途に
広げて使用すること、及び制御の簡易化、並びに
両制御の構成部品の共通化ひいては構成の合併化
等から考慮すると、必ずしも上記精密制御に捉わ
れることは得策でない。即ち例えば特開昭52−
143313号公報のものは、マイクロコンピユータを
用いることなく、異なつた特性の負圧を用いて排
気還流及び補助吸入空気量の制御を行つていて負
圧特性に大きく影響を受け、然もこれら両制御は
相互に独立して制御されるから両制御が平行して
進められる領域も生じて制御が複雑になる。
Therefore, it is desirable to precisely control both the exhaust gas recirculation control and the engine rotation control using electromagnetic valves and using a microcomputer in accordance with the engine operating state. Although such control cannot be carried out precisely according to the required characteristics of both the exhaust gas recirculation and the auxiliary intake air amount, it is possible to reduce the number of output bits of the computer and use the computer for other purposes. , and simplification of control, commonality of component parts of both controls, and merging of configurations, etc., it is not necessarily a good idea to rely on the above-mentioned precise control. That is, for example, JP-A-52-
The one in Publication No. 143313 uses negative pressures with different characteristics to control the exhaust gas recirculation and auxiliary intake air amount without using a microcomputer, and is greatly affected by the negative pressure characteristics. Since the controls are controlled independently of each other, there are regions where both controls are performed in parallel, making the control complex.

そこで本発明では排気還流制御と補助空気導入
量制御とが機関に及ぼす影響について詳細に検討
を加え、夫々が停止しても良い領域を求めて、一
方の停止可能領域と他方の停止可能領域との境界
をみつけ、もつて排気還流と吸入空気量制御とを
併用することなく最適条件下でいずれか一方のみ
の制御を行うようにすることを目的とする。
Therefore, in the present invention, we conducted a detailed study on the effects of exhaust gas recirculation control and auxiliary air introduction amount control on the engine, and determined the range in which each of them can be stopped. The purpose is to find the boundary between exhaust recirculation and intake air volume control, and to control only one of them under optimal conditions without using them together.

そして更には、上記排気還流制御と吸入空気量
制御を単一の電磁弁と切換手段とからなる極めて
簡単な構成により、双方共に行えるようにするこ
とも目的とする。
A further object of the present invention is to enable both the exhaust gas recirculation control and the intake air amount control to be performed using an extremely simple configuration consisting of a single electromagnetic valve and switching means.

即ち、アイドリング時及び低速低負荷走行時に
は機関が不安定になり易く燃費が不経済になりエ
ミツシヨンも悪化しがちであつてこの傾向は特に
機関温度が低い場合に著しい。このようなときに
機関を更に不安定にする要因ともなる排気還流を
行うことは好ましくない。
That is, when the engine is idling or running at low speed and under low load, the engine tends to become unstable, fuel consumption becomes uneconomical, and emissions tend to deteriorate, and this tendency is particularly noticeable when the engine temperature is low. In such a case, it is not desirable to carry out exhaust gas recirculation, which can cause further instability of the engine.

そこで機関温度が所定値以下の低温時並びに低
速低負荷時には吸入空気量補助制御のみを行つて
機関安定及び排気対策並びに燃費の向上を同時に
なし、それ以外の機関安定領域では吸入空気量補
助制御を行うことなく排気還流によつて排気浄化
を図るものである。このとき単一の電磁弁マイク
ロコンピユータで制御すればよいから、電磁弁制
御の出力処理手段が極めて簡単化され、この分マ
イクロコンピユータ内におけるIC基盤上のレイ
アウトに余裕が出て、近年複雑になる傾向にある
他の制御の出力処理手段へのスペースを確保でき
る。
Therefore, when the engine temperature is below a predetermined value and at low speeds and low loads, only the intake air amount auxiliary control is performed to stabilize the engine, take measures against exhaust emissions, and improve fuel efficiency, and in other engine stability regions, the intake air amount auxiliary control is performed. The purpose is to purify the exhaust gas by recirculating the exhaust gas without having to do so. At this time, the solenoid valve only needs to be controlled by a single microcomputer, which greatly simplifies the output processing means for solenoid valve control, and this frees up the layout on the IC board within the microcomputer, which has become more complex in recent years. Space can be secured for other control output processing means that tend to be used.

そのために本発明では、負圧応動型の吸入空気
量補助制御弁及び排気還流制御弁と、負圧源から
前記2つの制御弁に導入する負圧信号の大きさを
制御する単一の電磁弁と、該単一の電磁弁により
制御された負圧を前記吸入空気量補助制御弁若し
くは前記排気還流制御弁に選択的に導く切換手段
と、機関の温度を含む機関運転状態を検出する手
段と、該検出手段からの検出信号に基づいて、機
関温度が所定値以下であつてかつ低速低負荷の第
1運転状態では吸入空気量補助制御弁を作動しそ
れ以外の第2運転状態では排気還流制御弁を作動
する負圧制御信号を前記電磁弁に出力するととも
に前記第1運転状態では負圧を吸入空気量補助制
御弁に導き第2運転状態では負圧を排気還流制御
弁に導くべく前記切換手段を選択的に作動する信
号を出力するマイクロコンピユータと、を備える
構成とした。
To this end, the present invention includes a negative pressure-responsive intake air amount auxiliary control valve and an exhaust recirculation control valve, and a single solenoid valve that controls the magnitude of the negative pressure signal introduced from the negative pressure source to the two control valves. a switching means for selectively guiding the negative pressure controlled by the single solenoid valve to the intake air amount auxiliary control valve or the exhaust recirculation control valve; and means for detecting engine operating conditions including engine temperature. Based on the detection signal from the detection means, the intake air amount auxiliary control valve is operated in the first operating state where the engine temperature is below a predetermined value and at low speed and low load, and the exhaust gas recirculation is operated in the other second operating state. A negative pressure control signal for operating a control valve is output to the electromagnetic valve, and the negative pressure is guided to the intake air amount auxiliary control valve in the first operating state, and the negative pressure is guided to the exhaust recirculation control valve in the second operating state. The configuration includes a microcomputer that outputs a signal for selectively operating the switching means.

以下に本発明の実施例を第1図以下の図面に基
づいて説明する。
Embodiments of the present invention will be described below based on the drawings from FIG. 1 onwards.

第1図に示す内燃機関1において、吸入空気は
エアクリーナ2よりエアフローメータ3、スロツ
トルチヤンバ4を経てインテークマニホールド5
の各ブランチより各シリンダに供給され、燃料は
フユエールインジエクタ6により噴射される。こ
こで、吸入空気の流れはアクセルに連動するスロ
ツトルチヤンバ4内のスロツトル弁7により制御
され、アイドル時スロツトル弁7はほとんど閉じ
ている。アイドル時の空気の流れはバイパスポー
ト8を通り、そこに装着されているアイドルアジ
ヤストスクリユー9により調節されると共に、ス
ロツトル弁7の上流と下流とを連通するバイパス
通路10を通り、そこに介装した吸入空気量補助
制御弁11により適宜必要な空気が確保される。
In an internal combustion engine 1 shown in FIG.
The fuel is supplied to each cylinder from each branch, and fuel is injected by a fuel injector 6. Here, the flow of intake air is controlled by a throttle valve 7 in the throttle chamber 4 which is interlocked with the accelerator, and the throttle valve 7 is almost closed during idling. The flow of air during idling passes through the bypass port 8 and is regulated by the idle adjuster screw 9 installed therein, and also passes through the bypass passage 10 that communicates the upstream and downstream sides of the throttle valve 7, and the air flows there. The interposed intake air amount auxiliary control valve 11 ensures the appropriate amount of air.

吸入空気量補助制御弁11は、バイパス通路1
0に介装した弁体12と、該弁体12が連結され
たダイヤフラム13と、該ダイヤフラム13を付
勢するスプリング14を備えた負圧作動室15
と、から構成され、負圧作動室15に導入される
負圧の増減に応じてダイヤフラム13による弁体
12のリフト量を変えその開度を減増する。この
負圧作動室15は負圧導入通路16により定圧弁
(プレツシヤレギユレータバルブ)17を介して
スロツトル弁7下流の吸気通路に連通すると共
に、大気導入通路18によりパルス電磁弁19を
介してスロツトル弁7上流の吸気通路と連通して
いる。かくして、パルス電磁弁19を開閉作動さ
せることにより、前記負圧作動室15に導入され
る負圧の大気による希釈割合を変化させて吸入空
気量補助制御弁11の開閉の時間的割合を制御す
るわけである。
The intake air amount auxiliary control valve 11 is connected to the bypass passage 1
0, a diaphragm 13 connected to the valve body 12, and a negative pressure working chamber 15 equipped with a spring 14 that biases the diaphragm 13.
The amount of lift of the valve body 12 by the diaphragm 13 is changed to decrease or increase the opening degree according to the increase or decrease of the negative pressure introduced into the negative pressure working chamber 15. This negative pressure working chamber 15 communicates with the intake passage downstream of the throttle valve 7 via a constant pressure valve (pressure regulator valve) 17 through a negative pressure introduction passage 16, and a pulse solenoid valve 19 through an atmosphere introduction passage 18. It communicates with the intake passage upstream of the throttle valve 7 through the throttle valve 7. Thus, by opening and closing the pulse solenoid valve 19, the dilution ratio of the negative pressure introduced into the negative pressure working chamber 15 with the atmosphere is changed, and the time ratio of opening and closing of the intake air amount auxiliary control valve 11 is controlled. That's why.

一方、内燃機関1から排出される排気は排気通
路37を通りその間、機関吸入混合気の空燃比と
密接な関係にある排気中のO2濃度をO2センサ3
8により検出されて触媒39に至り、ここで未燃
成分が酸化及び又は還元処理される。
On the other hand, the exhaust gas discharged from the internal combustion engine 1 passes through an exhaust passage 37, during which time an O 2 sensor 3 measures the O 2 concentration in the exhaust gas, which is closely related to the air-fuel ratio of the engine intake air-fuel mixture.
8 and reaches the catalyst 39, where the unburned components are oxidized and/or reduced.

排気の一部は排気還流通路40を介してスロツ
トル弁7下流の吸気通路に還流され、その還流量
は上記通路40に介装した負圧応動型ダイヤフラ
ム式排気還流制御弁41の通路開口面積の増減に
応じて制御される。該制御弁41は排気還流通路
40に介装した弁体42とこれが連結されたダイ
ヤフラム43と、スプリング44を備えた負圧作
動室45とから構成され負圧作動室45に負圧通
路46を通じて負圧信号が導入される。
A part of the exhaust gas is recirculated to the intake passage downstream of the throttle valve 7 via the exhaust gas recirculation passage 40, and the recirculation amount is equal to the passage opening area of the negative pressure responsive diaphragm exhaust recirculation control valve 41 installed in the passage 40. Controlled according to increase/decrease. The control valve 41 is composed of a valve body 42 interposed in an exhaust gas recirculation passage 40, a diaphragm 43 connected to the valve body 42, and a negative pressure working chamber 45 equipped with a spring 44. A negative pressure signal is introduced.

負圧通路46は定圧弁47を介してスロツトル
弁7下流の吸気通路に接続され機関吸入負圧が定
圧弁47により所定の負圧に定圧制御される。こ
の定圧化された負圧はパルス電磁弁49を介して
大気が導入され機関運転状態に応じた負圧値に希
釈されるようになつている。
The negative pressure passage 46 is connected to the intake passage downstream of the throttle valve 7 via a constant pressure valve 47, and the engine suction negative pressure is controlled to a predetermined negative pressure by the constant pressure valve 47. This constant negative pressure is diluted to a negative pressure value depending on the engine operating condition by introducing atmospheric air through the pulse solenoid valve 49.

上記2つのパルス電磁弁19,49は常閉の弁
体19a,49aをソレノイドに給電することに
よりスプリング力に抗して図で上方に吸引して大
気導入通路18,48を開くように構成してあ
り、後述するマイクロコンピユータ20からの出
力パルスの有無でパルス電磁弁19,49を開閉
作動させることにより、前記負圧作動室15,4
5内に導入される負圧の大気による希釈割合を変
化させて制御弁11,41の開度を制御する。
The above two pulse solenoid valves 19, 49 are configured so that normally closed valve bodies 19a, 49a are sucked upward as shown in the figure against spring force by supplying power to the solenoid, thereby opening the atmospheric air introduction passages 18, 48. By opening and closing the pulse solenoid valves 19, 49 depending on the presence or absence of an output pulse from the microcomputer 20, which will be described later, the negative pressure working chambers 15, 4 are opened and closed.
The degree of opening of the control valves 11 and 41 is controlled by changing the dilution ratio of the negative pressure introduced into the control valve 5 with the atmosphere.

マイクロコンピユータ20は主としてマイクロ
プロセツサ(中央処理装置)21と、メモリ(記
憶装置)22と、インターフエース(入出力信号
処理回路)23とから構成されている。インター
フエース23にはエアフローメータ3が検出した
吸入空気量信号或いは、内燃機関のクランクギア
の回転を電磁ピツクアツプ式の回転数検出素子2
4で検出した機関回転速度信号等の機関運転状態
を表わす信号が入力され、これをマイクロプロセ
ツサ21が演算して機関運転状態を知り、予めメ
モリ22に記憶させておいたこのときの最適排気
還流率及び最適吸入空気量を検策(Table look
up)してこれらに応じたパルス巾を有する電磁
パルスを夫々吸入空気量補助制御装置のパルス電
磁弁19又は排気還流制御装置のパルス電磁弁4
9のソレノイドに出力し、電磁弁19又は電磁弁
49による負圧信号の大気希釈割合を制御するの
である。
The microcomputer 20 mainly includes a microprocessor (central processing unit) 21, a memory (storage device) 22, and an interface (input/output signal processing circuit) 23. The interface 23 includes an electromagnetic pick-up type rotation speed detection element 2 that detects the intake air amount signal detected by the air flow meter 3 or the rotation of the crank gear of the internal combustion engine.
A signal representing the engine operating state, such as the engine rotational speed signal detected in step 4, is input, and the microprocessor 21 calculates this to know the engine operating state and determines the optimal exhaust at this time, which has been stored in the memory 22 in advance. Check the reflux rate and optimal intake air amount (Table look
up) and then apply an electromagnetic pulse having a pulse width corresponding to these to the pulse solenoid valve 19 of the intake air amount auxiliary control device or the pulse solenoid valve 4 of the exhaust recirculation control device.
9 and controls the atmospheric dilution rate of the negative pressure signal by the solenoid valve 19 or 49.

マイクロコンピユータ20のインターフエス2
3には特に内燃機関1に付設されて冷却水の温度
が所定値例えば40℃以下であることを検出する水
温センサ25と、スロツトル弁7の開度が所定値
例えば5゜以下であることを検出するスロツトル
スイツチ27と、車速が所定値例えば5Km/h以
下であることを検出する車速スイツチ29と、か
ら夫々ON、OFF信号が入力される。
Interface 2 of microcomputer 20
3 includes a water temperature sensor 25 that is attached to the internal combustion engine 1 and detects that the temperature of the cooling water is below a predetermined value, for example 40°C, and a water temperature sensor 25 that is attached to the internal combustion engine 1 and detects that the opening degree of the throttle valve 7 is below a predetermined value, for example 5°. ON and OFF signals are respectively input from a throttle switch 27 for detection and a vehicle speed switch 29 for detecting that the vehicle speed is below a predetermined value, for example 5 km/h.

これら検出信号により上記した構成は次のよう
に作動される。
These detection signals operate the above-mentioned configuration as follows.

内燃機関冷間時(例えば冷却水温40℃以下のと
き) このときの機関状態は暖機中であつて機関が不
安定であり混合気も濃く設定されている。従つて
機関回転変動を冷却水温度変化に対して小さく
し、HC、CO等の排気有害成分の排出量を少くす
ると共に暖機時間を短かくする等の対策を構じる
必要があるから吸入空気量を精密に制御して上記
対策に不都合な排気還流は行なわず燃費を向上さ
せるのが適当である。
When the internal combustion engine is cold (for example, when the cooling water temperature is below 40° C.) At this time, the engine is warming up, the engine is unstable, and the air-fuel mixture is set to be rich. Therefore, it is necessary to take measures such as reducing engine speed fluctuations in response to changes in cooling water temperature, reducing the amount of harmful exhaust gas components such as HC and CO, and shortening the warm-up time. It is appropriate to precisely control the amount of air to avoid exhaust gas recirculation, which is inconvenient to the above measures, and to improve fuel efficiency.

この要求に応じて本実施例では水温センサ25
が冷却水温40℃以下を検出してマイクロコンピユ
ータ20に入力し、吸入空気量補助制御装置のパ
ルス電磁弁19に冷却水温度或いは機関回転数等
機関運転状態に応じたON−OFFの時間的割合
(デユーテイ比)でパルス信号を出力すると同時
に排気還流制御装置のパルス電磁弁49に全開の
信号を送る。その結果吸入空気量補助制御装置に
おいてはパルス電磁弁19の開閉により吸入空気
量補助制御弁11の負圧作動室15内の負圧に対
する希釈割合を制御し、機関運転状態に最適の吸
入空気量をスロツトル弁7(全閉状態)をバイパ
スして機関に供給する。そして排気還流制御装置
においてはパルス電磁弁49が全開となつて排気
還流制御弁41の負圧信号を大気圧にするため当
該弁41の弁開度は全開となつて排気還流を停止
する。
In response to this request, in this embodiment, the water temperature sensor 25
detects a cooling water temperature of 40°C or less, inputs it to the microcomputer 20, and sends the pulse solenoid valve 19 of the intake air amount auxiliary control device an ON-OFF time ratio according to engine operating conditions such as cooling water temperature or engine speed. (duty ratio) and at the same time sends a fully open signal to the pulse solenoid valve 49 of the exhaust recirculation control device. As a result, the intake air amount auxiliary control device controls the dilution ratio of the intake air amount auxiliary control valve 11 to the negative pressure in the negative pressure working chamber 15 by opening and closing the pulse solenoid valve 19, thereby optimizing the intake air amount for the engine operating condition. is supplied to the engine by bypassing the throttle valve 7 (fully closed state). In the exhaust gas recirculation control device, the pulse electromagnetic valve 49 is fully opened and the negative pressure signal of the exhaust gas recirculation control valve 41 becomes atmospheric pressure, so that the valve opening of the valve 41 is fully opened and exhaust gas recirculation is stopped.

内燃機関低車速低負荷時(例えばスロツトル開
度5゜以下でかつ車速5Km/hであり従つてアイ
ドリング状態をも含む状態においても機関が不安
定でありスロツトル弁開度による吸入空気量制御
の粗さを補つて混合気の空燃比を正確に制御し、
燃焼を良好にして出力を向上させ燃費をかせぐ必
要がある。
The internal combustion engine is unstable even when the vehicle is running at low speed and under low load (for example, when the throttle opening is less than 5 degrees and the vehicle speed is 5 km/h, including idling), and the intake air amount control by the throttle valve opening is rough. The air-fuel ratio of the mixture is accurately controlled by compensating for the
It is necessary to improve combustion to improve output and fuel efficiency.

この場合においても上記と同様スロツトルスイ
ツチ27、車速スイツチ29の検出信号を入力し
たマイクロコンピユータ20の作用により吸入空
気量補助制御装置を作動し排気還流制御装置の作
動を停止する。
In this case as well, the microcomputer 20 inputting the detection signals of the throttle switch 27 and the vehicle speed switch 29 operates the intake air amount auxiliary control device and stops the operation of the exhaust gas recirculation control device, as described above.

内燃機関が冷間を脱しかつ高速高負荷運転状態
のとき(例えば冷却水温度40℃以上でかつ車速5
Km/hより大又はスロツトル開度5゜より大のと
き) この場合には吸入空気量が大きいため補助制御
が与える吸入空気量全体への影響も少くなるから
補助制御をする必要もなく又燃焼が良好となつて
機関も安定する為排気還流を行つて燃焼温度を下
げNOx発生量を低減する等の制御が適当であ
る。
When the internal combustion engine has come out of a cold state and is operating at high speed and high load (for example, when the cooling water temperature is 40°C or higher and the vehicle speed is 50°C).
Km/h or the throttle opening is greater than 5°) In this case, since the intake air amount is large, the effect of auxiliary control on the overall intake air amount is small, so there is no need for auxiliary control, and combustion Since the engine is stable and the engine is stable, it is appropriate to perform exhaust gas recirculation to lower the combustion temperature and reduce the amount of NOx generated.

従つて本例では水温センサ25、スロツトルス
イツチ27、車速スイツチ29の機関運転状態検
出手段から入力したマイクロコンピユータ20の
作動により今度は吸入空気量補助制御装置のパル
ス電磁弁19を全開として大気を導入し吸入空気
量補助制御弁11を全閉にすると共に、排気還流
制御装置のパルス電磁弁49を作動させるべく機
関運転状態にみあつたデユーテイ比のパルス信号
を出力し、最適な率の排気還流を行う。
Therefore, in this example, the pulse solenoid valve 19 of the intake air amount auxiliary control device is fully opened by the operation of the microcomputer 20 that receives input from the engine operating state detection means such as the water temperature sensor 25, the throttle switch 27, and the vehicle speed switch 29. At the same time as fully closing the intake air amount auxiliary control valve 11, a pulse signal with a duty ratio suitable for the engine operating condition is output in order to operate the pulse solenoid valve 49 of the exhaust recirculation control device, and the exhaust is at the optimum rate. Perform reflux.

このように排気還流と補助吸入空気導入とを平
行することなくいずれか一方のみを行うから、マ
イクロコンピユータ20の制御信号は両制御で重
なることがなく単一信号で可能となり制御手段が
簡略化されると共に、ひいては出力処理装置も単
一出力用に簡略化されることとなる。この場合電
磁弁19,49は共通化を図ることもでき、本発
明はこの電磁弁19,49を共通化して単一にす
る。
Since only one of the exhaust gas recirculation and the auxiliary intake air introduction is performed in parallel, the control signal of the microcomputer 20 can be a single signal without overlapping both controls, and the control means can be simplified. At the same time, the output processing device is also simplified for single output. In this case, the solenoid valves 19 and 49 can be made common, and in the present invention, the solenoid valves 19 and 49 are made common and unified.

尚上記例において、パルス電磁弁19,49を
ON、OFFのデユーテイ比を変える他に弁開度を
アナログ制御するようにしてもよいことはいうま
でもない。
In the above example, the pulse solenoid valves 19 and 49 are
It goes without saying that in addition to changing the ON/OFF duty ratio, the valve opening degree may be controlled analogously.

第2図は第1図の定圧弁17,47を1つのも
の17で共用した例であり、第3図は第2図に加
え第1図の2つの電磁弁19,49を単一のもの
19で共用した例である。第3図は本発明の実施
例を示す。電磁弁19により制御された負圧は負
圧通路16から分岐し切換電磁弁(切換手段)5
1により選択された負圧通路16aを介して吸入
空気量補助制御弁11か或いは負圧通路46aを
介して排気還流制御弁41かのいずれかに制御信
号負圧として供給される。従つて切換電磁弁51
の切換作動とパルス電磁弁19に与える吸入空気
量制御用のパルス信号出力又は排気還流量制御の
パルス信号出力の切換制御はマイクロコンピユー
タ20によりタイミングをとつて行われる。
Fig. 2 shows an example in which the constant pressure valves 17 and 47 in Fig. 1 are shared by one valve 17, and Fig. 3 shows an example in which the two solenoid valves 19 and 49 in Fig. 1 are used in a single unit in addition to Fig. 2. This is an example shared by 19. FIG. 3 shows an embodiment of the invention. The negative pressure controlled by the solenoid valve 19 is branched from the negative pressure passage 16 and transferred to a switching solenoid valve (switching means) 5.
The control signal is supplied as a negative pressure to either the intake air amount auxiliary control valve 11 via the negative pressure passage 16a selected by No. 1 or the exhaust recirculation control valve 41 via the negative pressure passage 46a. Therefore, the switching solenoid valve 51
The microcomputer 20 performs the switching operation and the switching control of the pulse signal output for controlling the amount of intake air given to the pulse solenoid valve 19 or the output of the pulse signal for controlling the amount of exhaust recirculation.

第4図に示した実施例は第3図における定圧弁
17とパルス電磁弁19とを一体構成したもので
ある。
The embodiment shown in FIG. 4 is one in which the constant pressure valve 17 and the pulse solenoid valve 19 shown in FIG. 3 are integrated.

尚上記実施例において車速センサとして車速ス
イツチを用いたがこれに限ることなく機関回転数
と変速位置との組合わせにより車速を検出する等
他の方法を用いてもよいことはいうまでもない。
又9′は暖機運転に必要な空気をスロツトル弁7
をバイパスさせて機関燃焼室へ供給するエアレギ
ユレータである。
Although a vehicle speed switch is used as the vehicle speed sensor in the above embodiment, the present invention is not limited to this, and it goes without saying that other methods may be used, such as detecting the vehicle speed based on a combination of engine speed and shift position.
Also, 9' is a throttle valve 7 that supplies the air necessary for warm-up operation.
This is an air regulator that bypasses the air and supplies it to the engine combustion chamber.

以上述べたように本発明によると機関冷間時及
び機関低速低負荷時には吸入空気量をスロツトル
弁による制御の他に補助的に吸入空気量を精密制
御して機関安定、出力増大、特にHC、COに関す
る排気浄化及び燃費の向上を同時に図り、それ以
外の領域では排気還流により特にNOxに関する
排気浄化を図ることができる。
As described above, according to the present invention, when the engine is cold and the engine is running at low speed and under low load, the amount of intake air is accurately controlled in addition to the control by the throttle valve, thereby stabilizing the engine, increasing output, and in particular, improving HC. It is possible to simultaneously purify the exhaust gas with respect to CO and improve fuel efficiency, and in other areas, purify the exhaust gas with respect to NOx in particular by recirculating the exhaust gas.

又上記制御はマイクロコンピユータを用いて電
磁弁を作動することにより行うことができるから
負荷信号等の特性に影響を受けることなく機関運
転状態に適応した最適の制御を行うことができ
る。
Furthermore, since the above control can be performed by operating a solenoid valve using a microcomputer, optimal control can be performed that is suitable for the engine operating state without being affected by characteristics such as load signals.

更に排気還流と補助空気導入とを確実にいずれ
か一方のみを制御すればよいから、電磁弁を単一
に構成して全体構成を単純共通化が可能となると
共に該電磁弁の制御を単一信号で行うことがで
き、このため制御が極めて簡単となり、マイクロ
コンピユータの制御手段の簡単化、出力処理装置
の削減、これに伴うその他の制御のための余裕代
を得ることができる。
Furthermore, since only one of exhaust gas recirculation and auxiliary air introduction needs to be controlled reliably, it is possible to configure a single solenoid valve, simplifying the overall configuration, and making it possible to control the solenoid valve in a single manner. This can be done using signals, which makes the control extremely simple, making it possible to simplify the control means of the microcomputer, reduce the number of output processing devices, and thereby obtain margin for other controls.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に依る内燃機関の実施例の系統
図、第2図〜第4図は他の実施例を示す系統図で
ある。 1……内燃機関、7……スロツトル弁、10…
…バイパス通路、11……吸入空気量補助制御
弁、16,46……負圧導入通路、17,47…
…定圧弁、19,49……パルス電磁弁、20…
…マイクロコンピユータ、25……水温センサ、
27……スロツトルスイツチ、29……車速スイ
ツチ、51……切換電磁弁。
FIG. 1 is a system diagram of an embodiment of an internal combustion engine according to the present invention, and FIGS. 2 to 4 are system diagrams showing other embodiments. 1... Internal combustion engine, 7... Throttle valve, 10...
...Bypass passage, 11...Intake air amount auxiliary control valve, 16, 46...Negative pressure introduction passage, 17, 47...
...Constant pressure valve, 19,49...Pulse solenoid valve, 20...
...Microcomputer, 25...Water temperature sensor,
27...Throttle switch, 29...Vehicle speed switch, 51...Switching solenoid valve.

Claims (1)

【特許請求の範囲】 1 機関吸気通路のスロツトル弁の上流と下流と
を連通するバイパス通路を設け該バイパス通路を
通過する空気量を制御する負圧応動型の吸入空気
量補助制御弁と、排気通路と吸気通路とを連通す
る排気還流通路を流れる排気還流量を制御する負
圧応動型の排気還流制御弁と、負圧源から前記2
つの制御弁に導入する負圧信号の大きさを制御す
る単一の電磁弁と、該単一の電磁弁により制御さ
れた負圧を前記吸入空気量補助制御弁若しくは前
記排気還流制御弁に選択的に導く切換手段と、機
関の温度を含む機関運転状態を検出する手段と、
該検出手段からの検出信号に基づいて、機関温度
が所定値以下であつてかつ低速低負荷の第1運転
状態では吸入空気量補助制御弁を作動しそれ以外
の第2運転状態では排気還流制御弁を作動する負
圧制御信号を前記電磁弁に出力すると共に前記第
1運転状態では負圧を吸入空気量補助制御弁に導
き第2運転状態では負圧を排気還流制御弁に導く
べく前記切換手段を選択的に作動する信号を出力
するマイクロコンピユータと、を備えたことを特
徴とする内燃機関。 2 電磁弁によつて制御されるべき負圧信号は単
一の負圧源から取り出した負圧を定圧弁によつて
定圧化された負圧信号である特許請求の範囲第1
項に記載の内燃機関。
[Scope of Claims] 1. A negative pressure-responsive intake air amount auxiliary control valve that is provided with a bypass passage that communicates the upstream and downstream sides of the throttle valve in the engine intake passage and controls the amount of air that passes through the bypass passage; a negative pressure-responsive exhaust recirculation control valve that controls the amount of exhaust gas recirculated through an exhaust recirculation passage that communicates the passage with the intake passage;
A single solenoid valve that controls the magnitude of a negative pressure signal introduced into one control valve, and the negative pressure controlled by the single solenoid valve is selected as the intake air amount auxiliary control valve or the exhaust recirculation control valve. means for detecting engine operating conditions including engine temperature;
Based on the detection signal from the detection means, the intake air amount auxiliary control valve is operated in the first operating state where the engine temperature is below a predetermined value and low speed and low load, and the exhaust recirculation control valve is operated in the other second operating state. outputting a negative pressure control signal for operating the valve to the electromagnetic valve, and switching the negative pressure to the intake air amount auxiliary control valve in the first operating state and to guide the negative pressure to the exhaust recirculation control valve in the second operating state; An internal combustion engine comprising: a microcomputer that outputs a signal for selectively operating the means. 2. Claim 1, wherein the negative pressure signal to be controlled by the solenoid valve is a negative pressure signal obtained by taking negative pressure from a single negative pressure source and making it constant by a constant pressure valve.
Internal combustion engines as described in section.
JP4784978A 1978-04-24 1978-04-24 Internal combustion engine Granted JPS54140022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4784978A JPS54140022A (en) 1978-04-24 1978-04-24 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4784978A JPS54140022A (en) 1978-04-24 1978-04-24 Internal combustion engine

Publications (2)

Publication Number Publication Date
JPS54140022A JPS54140022A (en) 1979-10-30
JPS6113102B2 true JPS6113102B2 (en) 1986-04-11

Family

ID=12786806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4784978A Granted JPS54140022A (en) 1978-04-24 1978-04-24 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPS54140022A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289107A (en) * 1979-12-28 1981-09-15 Ford Motor Company Engine carburetor throttle blade positioning control

Also Published As

Publication number Publication date
JPS54140022A (en) 1979-10-30

Similar Documents

Publication Publication Date Title
US6978599B2 (en) Fuel injection controlling apparatus for engine
JPH04318264A (en) Fuel control method in hydrogen engine
EP0640757B1 (en) Charge forming device
JPH0622554U (en) Engine exhaust gas recirculation system
JPH02277919A (en) Suction device of multi-cylinder engine
US5947097A (en) Apparatus and method for controlling intake air amount in engines that perform lean combustion
JPH0433381Y2 (en)
JPH0396632A (en) Control device for engine
US6625974B1 (en) Method for operating an internal combustion engine
JPS6113102B2 (en)
JP3082445B2 (en) Multi-fuel engine cooling system
JPS636463Y2 (en)
JPS627943A (en) Exhaust reflux device of diesel engine
JP3969499B2 (en) Exhaust gas recirculation control system for two-cycle diesel engines
JPS5840284Y2 (en) Carburetor with air-fuel ratio control device
KR100233612B1 (en) Auxiliary intake devices of engines
KR820001570B1 (en) Intake regulator for an internal combustion engine
JP2816438B2 (en) Acceleration control device for internal combustion engine
JPS605782B2 (en) Internal combustion engine intake control device
JPH0212286Y2 (en)
JP2022021455A (en) EGR system
JPH06200834A (en) Air-fuel ratio control device of internal combustion engine
JPS5913343Y2 (en) Vehicle internal combustion engine
JPS6143954Y2 (en)
JPS6142093B2 (en)