JPS5913343Y2 - Vehicle internal combustion engine - Google Patents

Vehicle internal combustion engine

Info

Publication number
JPS5913343Y2
JPS5913343Y2 JP1978047555U JP4755578U JPS5913343Y2 JP S5913343 Y2 JPS5913343 Y2 JP S5913343Y2 JP 1978047555 U JP1978047555 U JP 1978047555U JP 4755578 U JP4755578 U JP 4755578U JP S5913343 Y2 JPS5913343 Y2 JP S5913343Y2
Authority
JP
Japan
Prior art keywords
negative pressure
valve
passage
pressure signal
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978047555U
Other languages
Japanese (ja)
Other versions
JPS54150719U (en
Inventor
昭夫 中村
正人 畠中
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP1978047555U priority Critical patent/JPS5913343Y2/en
Publication of JPS54150719U publication Critical patent/JPS54150719U/ja
Application granted granted Critical
Publication of JPS5913343Y2 publication Critical patent/JPS5913343Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【考案の詳細な説明】 本考案は、排気中の有害成分を効率よく低減し、同時に
機関の安定を図るために排気還流装置と配電器及び混合
気濃化装置の作動を同時に調整できるようにした車両用
内燃機関に関するものである。
[Detailed description of the invention] This invention enables the operation of the exhaust gas recirculation device, power distribution device, and mixture enrichment device to be adjusted simultaneously in order to efficiently reduce harmful components in exhaust gas and to stabilize the engine at the same time. This invention relates to a vehicle internal combustion engine.

車両用内燃機関の排気中に含有されるNoxtC分の濃
度を低減させるには、排気の一部を吸気中に還流させる
排気還流装置を設けることが有効であることは知られて
いる。
In order to reduce the concentration of NoxtC contained in the exhaust gas of a vehicle internal combustion engine, it is known that it is effective to provide an exhaust gas recirculation device that recirculates a portion of the exhaust gas into intake air.

ところが、上記のように排気還流を行うと機関の出力が
低下するから、高出力が要求される高速度下での走行特
性を維持するためには、排気対策よりもむしろ、機関性
能即ち安定走行を重視する必要から排気還流を減少また
は停止させ、燃焼効率を向上させ燃費を稼ぐのが有効で
ある。
However, as mentioned above, exhaust gas recirculation reduces engine output, so in order to maintain running characteristics at high speeds where high output is required, engine performance, that is, stable running, is needed rather than exhaust countermeasures. Because of the need to place emphasis on this, it is effective to reduce or stop exhaust gas recirculation, improve combustion efficiency, and increase fuel efficiency.

一方、点火時期の進角度合を排気還流している時に合せ
た場合においては、排気還流の減少または停止にともな
って高速度走行ではノッキングゾーンが移動してノッキ
ングが発生し易く、出力が極度に低下し運転性が悪くな
る他、エミッションが悪化して触媒コンバータ等が過熱
状態となり耐久性が低下する欠点がある。
On the other hand, if the ignition timing is advanced at the same time as exhaust gas recirculation, the knocking zone will shift at high speeds as exhaust gas recirculation decreases or stops, and knocking is likely to occur, resulting in extremely low output. In addition to deteriorating drivability due to a decrease in fuel consumption, there are also drawbacks such as deterioration of emissions, overheating of the catalytic converter, etc., and deterioration of durability.

従って排気還流減少又は停止と同時に点火時期を遅らせ
るのが望ましい。
Therefore, it is desirable to retard the ignition timing at the same time as the exhaust gas recirculation is reduced or stopped.

また排気還流を行う場合には、混合気の空燃比を理論空
燃比より濃側に設定し、排気還流を行うことによる着火
性の悪化、出力低下、始動性不良等の障害を排除するの
が望ましい。
In addition, when performing exhaust gas recirculation, it is recommended to set the air-fuel ratio of the mixture to be richer than the stoichiometric air-fuel ratio to eliminate problems such as poor ignition, reduced output, and poor starting performance caused by exhaust gas recirculation. desirable.

かかる観点によって従来装置例えば特開昭53−178
03号をみると、このものでは低車速領域でかつ吸気通
路に設けた絞弁小開度領域では排気還流を行わないにも
かかわらず点火進角を進ませるから、出力が低下し燃費
が悪化するという不都合があるものであった。
From this point of view, conventional devices such as JP-A-53-178
Looking at No. 03, this engine advances the ignition angle even though exhaust gas recirculation is not performed in the low vehicle speed range and small opening range of the throttle valve provided in the intake passage, resulting in lower output and worse fuel efficiency. This was inconvenient.

本考案はかかる実情に鑑み、車速が高速度領域にある時
には排気還流を減少または停止して燃焼効率を高くし、
しかもこの排気還流の減少または停止に同期して点火時
期の進角を最適状態に遅らせてノッキングを防止し、出
力あるいは熱負荷の犠牲のない状態で排気の有害成分を
効率よく低減すると共に上記以外の低車速領域では混合
気を濃化して着火性、出力、始動性を改善する極めて簡
単な構成の排気対策装置を提供することを目的とする。
In view of these circumstances, the present invention reduces or stops exhaust gas recirculation when the vehicle speed is in a high speed range to increase combustion efficiency.
Moreover, in synchronization with the reduction or stop of this exhaust recirculation, the ignition timing advance is delayed to the optimum state to prevent knocking, efficiently reducing harmful components of the exhaust without sacrificing output or heat load, and other than the above. The purpose of the present invention is to provide an exhaust countermeasure device having an extremely simple configuration that improves ignition performance, output, and startability by enriching the air-fuel mixture in the low vehicle speed region of the vehicle.

以下、添付図面に示された一実施例に基づいて本考案を
詳細に説明する。
Hereinafter, the present invention will be described in detail based on an embodiment shown in the accompanying drawings.

図において、車両に搭載した内燃機関の気化器絞弁6下
流の吸気通路1には図示しない機関の、排気通路から分
岐させた排気還流通路2を接続している。
In the figure, an exhaust gas recirculation passage 2 branched from an exhaust passage of an engine (not shown) is connected to an intake passage 1 downstream of a carburetor throttle valve 6 of an internal combustion engine mounted on a vehicle.

排気還流通路2に設けた弁体3は、負圧応動型排気還流
制御弁4のダイアフラム5に連結されており、ダイアフ
ラム5によって画成された負圧作動室7と絞弁6全閉状
態において絞弁6よりもやや上流側であって弁開度増大
につれて絞弁6より下流側に位置する吸気通路1に開[
1する第1の負圧取出ポー)8aとを第1の負圧信号通
路8を介して接続する。
A valve body 3 provided in the exhaust gas recirculation passage 2 is connected to a diaphragm 5 of a negative pressure responsive exhaust recirculation control valve 4, and when a negative pressure working chamber 7 defined by the diaphragm 5 and a throttle valve 6 are fully closed, It opens to the intake passage 1 located slightly upstream of the throttle valve 6 and downstream of the throttle valve 6 as the valve opening increases.
1 and a first negative pressure take-out port (8a) via a first negative pressure signal passage 8.

この第1の負圧信号通路8は負圧調整弁9の弁体9aに
よってその負圧信号が大気で稀釈調整される。
The negative pressure signal of the first negative pressure signal passage 8 is diluted and adjusted with the atmosphere by the valve element 9a of the negative pressure regulating valve 9.

即ち負圧調整弁9は気化器吸気通路1のベンチュリ部か
ら取り出したベンチュリ負圧信号通路10を負圧作動室
11に接続し、前記排気還流通路2の排気還流制御弁4
の上流部分から分岐させた機関の排気圧力信号通路13
を圧力作動室14に接続しており、これら作動室11.
14を画成するダイアフラム12及び15はロッド16
を介して相互に連結されている。
That is, the negative pressure regulating valve 9 connects the venturi negative pressure signal passage 10 taken out from the venturi portion of the carburetor intake passage 1 to the negative pressure working chamber 11, and connects the exhaust recirculation control valve 4 of the exhaust gas recirculation passage 2 to the negative pressure working chamber 11.
Engine exhaust pressure signal passage 13 branched from the upstream part of
are connected to a pressure working chamber 14, and these working chambers 11.
Diaphragms 12 and 15 defining rod 14
are interconnected through.

そして吸気通路1のベンチュリ負圧(吸入空気量の関数
)と排気還流通路2の圧力(吸入空気量、負荷等の関数
)とにもとづいてダイヤフラム12.15を上下動する
ことにより弁体9aを移動させ、第1の負圧信号通路8
の大気開放口8bを開閉作動させ、ベンチュリ負圧から
換算する吸入空気量が増大するにともなって、また、機
関の排気圧力から換算する吸入空気量および負荷が増大
するにともなって吸入負圧信号通路8の大気開放割合(
吸入負圧の大気稀釈割合)を小さくし、排気還流制御弁
3の開度を大きくして排気還流量を増加させるようにし
である。
The valve body 9a is then moved up and down by moving the diaphragm 12.15 up and down based on the venturi negative pressure in the intake passage 1 (a function of the amount of intake air) and the pressure in the exhaust gas recirculation passage 2 (a function of the amount of intake air, load, etc.). move the first negative pressure signal path 8
As the air opening port 8b of the engine is opened and closed, as the intake air amount calculated from the venturi negative pressure increases, and as the intake air amount and load calculated from the engine exhaust pressure increase, the intake negative pressure signal increases. Ratio of passage 8 open to atmosphere (
The amount of exhaust gas recirculation is increased by decreasing the atmospheric dilution ratio of the suction negative pressure and increasing the opening degree of the exhaust gas recirculation control valve 3.

他方全閉時の絞弁6の近傍上流でかつ弁開度増大につれ
て絞弁の下流側となる第2の負圧取出ポート19及び絞
弁6の常時下流にある負圧導入口20に第2の負圧信号
通路21を接続しかつ該通路21を従来公知の負圧進角
装置22の負圧作動室22 aに接続する。
On the other hand, a second negative pressure outlet port 19 is located upstream near the throttle valve 6 when the valve is fully closed and becomes downstream of the throttle valve as the valve opening increases, and a second negative pressure inlet port 20 is located downstream of the throttle valve 6 at all times. The negative pressure signal passage 21 of the negative pressure signal passage 21 is connected to the negative pressure working chamber 22a of a conventionally known negative pressure advance device 22.

これによって前記第2の負圧取出ポート19及び負圧導
入口20から導いた合成負圧即も機関の負荷上昇にとも
なって点火時期の進角を次第に進めるようにしである。
As a result, as the combined negative pressure introduced from the second negative pressure outlet port 19 and the negative pressure inlet 20 increases, the ignition timing is gradually advanced as the engine load increases.

23はディストリビュータである。23 is a distributor.

同図では、第1及び゛第2の負圧取出ポート8 a、
19が吸気の上下流方向にずれた配置となっているが、
これは図示の便宜上で実際には゛絞弁6の同一開度で同
期して開閉される位置に開口されているものである。
In the figure, first and second negative pressure extraction ports 8a,
19 is arranged shifted in the upstream and downstream directions of the intake air,
For convenience of illustration, this is actually opened at a position where the throttle valve 6 is opened and closed synchronously with the same opening degree.

また負圧導入口20は第2の負圧取出ポート19との間
に安定した合成負圧を作り出すために設けたものである
が、:れを省いて単一の第2の負圧取出ポートからのみ
負圧を取り出すようにしても何ら問題がないことは、従
来からこの種負圧取出手段として知られていることであ
る。
Furthermore, the negative pressure inlet 20 is provided to create a stable composite negative pressure between the second negative pressure outlet port 19; This type of negative pressure extraction means has been known in the past, and there is no problem even if the negative pressure is extracted only from.

かかる第2の負圧信号通路21は常閉の第1の電磁開閉
弁24を介して大気に開放される。
The second negative pressure signal passage 21 is opened to the atmosphere via a normally closed first electromagnetic on-off valve 24.

又、上記第2の負圧信号通路21と第1の負圧信号通路
8とを、第2の負圧信号通路21から第1の負圧信号通
路8に向ってのみ大気の流動を許容する逆止弁25を介
して連通形成する。
Further, the second negative pressure signal path 21 and the first negative pressure signal path 8 allow atmospheric air to flow only from the second negative pressure signal path 21 toward the first negative pressure signal path 8. Communication is established via the check valve 25.

従って逆止弁25連通時は第1の負圧信号通路8をも第
2の負圧信号通路21および電磁開閉弁24を介して大
気に開放させることになる。
Therefore, when the check valve 25 is in communication, the first negative pressure signal passage 8 is also opened to the atmosphere via the second negative pressure signal passage 21 and the electromagnetic on-off valve 24.

逆止弁25は具体的にはA、 B両室の隔壁25 aの
連通孔25 bを、第1の負圧信号通路8に通じるB室
側からスプリング25 Cのばね力により弁体25 d
が着座して、閉塞する構成としている。
Specifically, the check valve 25 connects the communication hole 25 b of the partition wall 25 a of both chambers A and B to the valve body 25 d by the spring force of the spring 25 C from the B chamber side which communicates with the first negative pressure signal passage 8.
The structure is such that it is seated and closed.

弁体25 dはこのためA、 B両室の圧力差が生じB
室側圧力が低くなった時のみ弁体25 dが開きA室か
らB室べと空気流が生じ逆には閉じる逆止作用を行う。
For this reason, a pressure difference between chambers A and B occurs in the valve body 25 d.
Only when the pressure on the chamber side becomes low, the valve body 25d opens to create an air flow from the A chamber to the B chamber, which acts as a check to close the chamber.

電磁開閉弁24を開閉制御するソレノイド26と電源2
7との間には、車両が所定値以上の高速度状態(例えば
55km/h以上)で走行していることを検出し、この
検出時に接点を閉成させるスイッチ28を接続する。
Solenoid 26 and power supply 2 that control opening and closing of electromagnetic on-off valve 24
7, a switch 28 is connected which detects that the vehicle is running at a high speed of at least a predetermined value (for example, at least 55 km/h) and closes a contact at the time of this detection.

そして車速が所定値以上であることを検出すればスイッ
チ28が閉成しソレノイド26を励磁させて電磁開閉弁
24を開き、第2の負圧信号通路21を大気に開放して
負圧進角装置22に供給される信号負圧を大気で稀釈す
る。
If it is detected that the vehicle speed is above a predetermined value, the switch 28 is closed, the solenoid 26 is energized, the electromagnetic on-off valve 24 is opened, the second negative pressure signal passage 21 is opened to the atmosphere, and the negative pressure is advanced. The signal negative pressure supplied to device 22 is diluted with atmospheric air.

このとき逆止弁25においてA室が大気圧となり負圧の
大きいB室との間に差圧が発生し弁体25 dを開く。
At this time, in the check valve 25, the pressure in chamber A becomes atmospheric pressure, and a pressure difference is generated between chamber A and chamber B, which has a large negative pressure, and opens the valve body 25d.

その結果第2の負圧信号通路21がら逆止弁25を介し
て大気が流入し、第1の負圧信号通路8の信号負圧をも
大気で稀釈すべくしである。
As a result, the atmosphere flows into the second negative pressure signal path 21 via the check valve 25, and the signal negative pressure in the first negative pressure signal path 8 is also diluted with the atmosphere.

なお、上記スイッチ28は、車速が所定値以上の高車速
を検出して作動するものであれば任意であり車速に直接
応動する車速スイッチ、機関の回転速度がら車速を割り
出す回転速度スイッチ、あるいは、車両の変速機の変速
状態がら車速を計測する変速機スイッチなど、あらゆる
車速検出手段を採用することができる。
The switch 28 may be any switch that operates upon detecting a high vehicle speed of a predetermined value or higher, and may be a vehicle speed switch that directly responds to the vehicle speed, a rotational speed switch that determines the vehicle speed from the engine rotational speed, or Any vehicle speed detection means can be employed, such as a transmission switch that measures the vehicle speed based on the gear change state of the vehicle's transmission.

かかる構成の排気対策装置において、車両が所定値(5
5km/ h )未満の低速度で走行している状態では
、スイッチ28の接点が開成されているのでソレノイド
26は消磁状態を保持し、電磁開閉弁24を閉鎖保持さ
せる。
In the exhaust control device having such a configuration, the vehicle can reach a predetermined value (5
When the vehicle is traveling at a low speed (less than 5 km/h), the contact of the switch 28 is open, so the solenoid 26 is kept in a demagnetized state, and the electromagnetic on-off valve 24 is kept closed.

したがって、第2の負圧信号通路21には大気が導入さ
れず、第1の負圧取出ポート19及び負圧導入口20か
ら取出した負圧がそのままの状態で負圧進角装置22の
風圧作動室22 aに供給されディストリビュータ23
の図示しないベースプレートを回動して真空進角分を進
角させる一方ベンチュリ部から導出したベンチュリ負圧
および排気還流通路2から取出した排気圧力に応答して
第1の負圧信号通路8の大気開放口を開閉する負圧調整
弁9を開閉制御しこれにより、吸入空気量及び負荷に応
じて大気で稀釈された信号負圧を排気還流制御弁4に供
給し、弁体3の開度を調整して所定量(率)の排気を吸
気中に還流させる。
Therefore, the atmosphere is not introduced into the second negative pressure signal passage 21, and the wind pressure of the negative pressure advance device 22 is maintained while the negative pressure taken out from the first negative pressure take-out port 19 and the negative pressure inlet 20 remains as it is. The distributor 23 is supplied to the working chamber 22a.
The base plate (not shown) is rotated to advance the vacuum advance angle, while the atmospheric pressure in the first negative pressure signal passage 8 is increased in response to the venturi negative pressure derived from the venturi section and the exhaust pressure taken out from the exhaust gas recirculation passage 2. Controls the opening and closing of the negative pressure regulating valve 9 that opens and closes the opening, thereby supplying a signal negative pressure diluted with the atmosphere according to the intake air amount and load to the exhaust recirculation control valve 4, and controlling the opening degree of the valve body 3. Adjustment is made to recirculate a predetermined amount (rate) of exhaust gas into the intake air.

このとき、第1の負圧信号通路8の信号負圧は、上記の
ように吸気量等に応答して大気で稀釈されるため第2負
圧信号通路21の信号負圧より弱くなり逆止弁25にお
けるA室内の負圧がB室内の負圧より大きい(絶対値)
ので弁体25 dが連通孔25 bを閉じ両通路8,2
1を実質的に独立させることができる。
At this time, the signal negative pressure in the first negative pressure signal path 8 is diluted with the atmosphere in response to the intake air amount as described above, so it becomes weaker than the signal negative pressure in the second negative pressure signal path 21, preventing a reverse reaction. Negative pressure in chamber A at valve 25 is greater than negative pressure in chamber B (absolute value)
Therefore, the valve body 25 d closes the communication hole 25 b and both passages 8, 2
1 can be substantially independent.

その結果、排気還流通路2に設けた弁体3および負圧進
角装置22は相互に独立して制御される。
As a result, the valve body 3 and the negative pressure advance device 22 provided in the exhaust gas recirculation passage 2 are controlled independently of each other.

このようにして所定速度以下の車速領域では排気還流を
行ないNOxを低減すると共に、点火進角を進ませて良
好な燃費を得る。
In this way, in a vehicle speed range below a predetermined speed, exhaust gas recirculation is performed to reduce NOx, and the ignition advance angle is advanced to obtain good fuel efficiency.

但し絞弁6の全閉付近の領域では負圧取出ポー)−8a
における圧力は大気圧となるから排気還流がなされない
However, in the area near the fully closed throttle valve 6, the negative pressure outlet port)-8a
Since the pressure at is atmospheric pressure, there is no exhaust gas recirculation.

また、これまでの点火進角ではノッキングゾーンの移動
によりノッキングし易くなる所定車速以上の高車速運転
状態になると、スイッチ28の接点が閉成されソレノイ
ド26が励磁されて電磁開閉弁24が開く。
In addition, when the vehicle reaches a high speed operating state of a predetermined vehicle speed or higher, in which knocking is likely to occur due to movement of the knocking zone with the conventional ignition advance angle, the contact of the switch 28 is closed, the solenoid 26 is energized, and the electromagnetic on-off valve 24 is opened.

このために、第2の負圧信号通路21に大気が流入し負
圧進角装置22の負圧作動室22a内に大気が導入され
て点火進角を遅らせノッキングの発生を避ける。
For this purpose, the atmosphere flows into the second negative pressure signal passage 21 and is introduced into the negative pressure working chamber 22a of the negative pressure advance device 22, thereby delaying the ignition advance angle and preventing the occurrence of knocking.

同時に逆止弁25のA室に導かれた大気が既述のように
弁体25 dを開いて連通孔25 bを開き第1の負圧
信号通路8に流入する。
At the same time, the atmosphere introduced into chamber A of the check valve 25 opens the valve body 25 d, opens the communication hole 25 b, and flows into the first negative pressure signal passage 8 as described above.

したがって、第1の負圧信号通路8および第2の負圧信
号通路21内の信号負圧は大気で稀釈される。
Therefore, the signal negative pressure in the first negative pressure signal path 8 and the second negative pressure signal path 21 is diluted with the atmosphere.

このため排気還流制御弁4の開度が小さくなりあるいは
これを閉じるため排気還流が減少または停止する。
For this reason, the opening degree of the exhaust gas recirculation control valve 4 becomes smaller or is closed, so that the exhaust gas recirculation is reduced or stopped.

即ち上記した点火進角の遅れによる機関の不安定を排気
還流の減少または停止によって防止する。
That is, the instability of the engine due to the delay in the ignition advance described above is prevented by reducing or stopping the exhaust gas recirculation.

一方、上記のように逆止弁25がら大気が流入して第1
の負圧信号通路8の信号負圧がさらに大気で稀釈された
時点では、第2の負圧信号通路21の信号負圧も大気で
稀釈されているため負圧進角装置22による点火時期の
進角が遅れており、早期着火によるノッキングを防止し
て出力を高くすると共に燃焼温度の急上昇を防止して有
害排気成分の生成、各部品の過熱を予防するのである。
On the other hand, as mentioned above, the atmosphere flows in through the check valve 25 and the first
At the time when the signal negative pressure of the second negative pressure signal path 8 is further diluted with the atmosphere, the signal negative pressure of the second negative pressure signal path 21 is also diluted with the atmosphere, so that the ignition timing is adjusted by the negative pressure advance device 22. The advance angle is delayed, which prevents knocking due to early ignition and increases output, and also prevents a sudden rise in combustion temperature, preventing the generation of harmful exhaust components and overheating of various parts.

また、排気還流を行う場合には、混合気の空燃比を理論
空燃比より濃側に設定し、排気還流にともなう燃焼抑制
作用の各種障害(着火性の悪化、出力低下等)を防止す
る一方、排気還流の減少、停止に同期して吸入空気量を
増量させ、あるいは燃料供給を減量して空燃比の濃側設
定を解除することが好ましい。
In addition, when performing exhaust gas recirculation, the air-fuel ratio of the air-fuel mixture is set to be richer than the stoichiometric air-fuel ratio to prevent various problems with the combustion suppressing effect (deterioration of ignitability, reduction in output, etc.) that accompany exhaust gas recirculation. It is preferable to cancel the rich side setting of the air-fuel ratio by increasing the amount of intake air or decreasing the fuel supply in synchronization with the decrease or stop of exhaust gas recirculation.

図示の実施例では気化器のパワーバルブ31作動用の吸
入負圧導入通路32を第2の電磁開閉弁33で低速の5
5 km/ h未満では大気開放しパワーパルプ31を
作動して空燃比を濃側設定する。
In the illustrated embodiment, the suction negative pressure introduction passage 32 for operating the power valve 31 of the carburetor is controlled by a second electromagnetic on-off valve 33 at a low speed
When the speed is less than 5 km/h, the air is opened to the atmosphere and the power pulp 31 is operated to set the air-fuel ratio to the rich side.

なおこのとき、上記の如く、絞弁6の全閉付近では排気
還流が減少又は停止されているが、この領域では空燃比
濃側設定を解除せず、機関始動性を向上させアイドリン
グ回転を安定させる。
At this time, as mentioned above, exhaust gas recirculation is reduced or stopped near the fully closed area of the throttle valve 6, but in this region, the air-fuel ratio rich side setting is not canceled, improving engine startability and stabilizing idling rotation. let

また前記速度以上では大気を遮断して吸入負圧のみにす
ることによりパワーバルブ31を非作動制御して空燃比
の上記濃側設定を解除する。
Further, when the speed exceeds the above-mentioned speed, the air is shut off and only the suction negative pressure is applied, thereby controlling the power valve 31 to be inactive and canceling the above-mentioned rich side setting of the air-fuel ratio.

以上、説明したように、本考案によれば、車速が所定の
高速走行領域に達するまでは、排気還流と、この排気還
流に見合った点火時期の進角制御及び混合気の濃側設定
とで機関の有害排気成分の生成を防止し、同時に排気還
流による着火性の悪化、出力低下を防止し、かつ絞弁全
閉付近の排気還流を減少又は停止すると共に前記混合気
濃側設定により始動性の向上、機関アイドル回転の安定
化を図る。
As explained above, according to the present invention, until the vehicle speed reaches a predetermined high-speed driving range, exhaust gas recirculation, ignition timing advance control and mixture rich setting are performed in accordance with this exhaust gas recirculation. It prevents the generation of harmful exhaust components from the engine, and at the same time prevents deterioration of ignitability and output reduction due to exhaust gas recirculation, reduces or stops exhaust gas recirculation near the fully closed throttle valve, and improves startability by setting the mixture to the rich side. The aim is to improve engine speed and stabilize engine idle rotation.

また、車速が所定の高速走行領域に達した以後では排気
還流の減少又は停止と、これに見合った点火時期の進角
制御とを行っていわゆる高速度走行に必要な高出力を確
保すると同時に、ノッキング防止して機関の安定燃焼を
図ることができる。
In addition, after the vehicle speed reaches a predetermined high-speed driving range, exhaust gas recirculation is reduced or stopped, and the ignition timing is advanced accordingly, thereby ensuring the high output required for so-called high-speed driving. It is possible to prevent knocking and achieve stable combustion in the engine.

従って排気系各部品特に排気後処理装置等の過熱を予防
できる。
Therefore, it is possible to prevent overheating of each part of the exhaust system, especially the exhaust after-treatment device.

さらに、上記のような排気還流の制御と点火時期の進角
制御とを、同一の電磁開閉弁によって同期して行われる
のでその制御機構を簡略化でき経済的である上、同期精
度を高くできるため、車両の走行特性が一時的に悪化す
ることもない。
Furthermore, since the above-mentioned exhaust gas recirculation control and ignition timing advance control are performed synchronously by the same electromagnetic on-off valve, the control mechanism can be simplified and economical, and synchronization accuracy can be increased. Therefore, the driving characteristics of the vehicle will not be temporarily deteriorated.

【図面の簡単な説明】 図は本考案の一実施例を示す要部の断面図である。 1・・・吸気通路、2・・・排気還流通路、4・・・排
気還流制御弁、7・・・負圧作動室、8・・・第1の負
圧信号通路、8a・・・第1の負圧取出ポート、9・・
・負圧調整弁、19・・・第2の負圧取出ポート、21
・・・第2の負圧信号通路、22・・・負圧進角装置、
24・・・第1の電磁開閉弁、25・・・逆止弁、28
・・・スイッチ(車速検出手段)、31・・・パワーバ
ルブ、32・・・吸入負圧導入通路、33・・・第2の
電磁開閉弁。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a sectional view of essential parts showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Intake passage, 2... Exhaust recirculation passage, 4... Exhaust recirculation control valve, 7... Negative pressure working chamber, 8... First negative pressure signal passage, 8a... No. 1 negative pressure outlet port, 9...
・Negative pressure regulating valve, 19...Second negative pressure extraction port, 21
...Second negative pressure signal path, 22...Negative pressure advance device,
24... First electromagnetic on-off valve, 25... Check valve, 28
... switch (vehicle speed detection means), 31 ... power valve, 32 ... suction negative pressure introduction passage, 33 ... second electromagnetic on-off valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 排気還流通路に設けた負圧応動型排気還流制御弁と機関
吸気通路の絞弁全閉状態よりも上流側で開度増大につれ
て絞弁の下流側に位置する第1の負圧取出ポートとを第
1の負圧信号通路を介して接続し、気化器のベンチュリ
部のベンチュリ負圧と機関の排気圧力に応動する負圧調
整弁で前記第1の負圧信号通路の大気希釈割合を変動さ
せるようにした排気還流装置と、点火時期を進角制御す
る負圧進角装置の負圧作動室と前記絞弁により前記第1
の負圧取出ポートに略同期して開閉される機関吸気通路
位置に開口した第2の負圧取出ポートを第2の負圧信号
通路を介して接続した負圧進角装置と、前記絞弁下流位
置の吸入負圧に応動し該吸入負圧信号減少時に混合気を
濃化する混合気濃化装置と、車速検出手段により所定値
以上の高車速領域を検出した時に開弁作動し前記第2の
負圧信号通路を大気に開放させる常閉の第1の開閉弁と
、該第2の負圧信号通路と前記第1の負圧信号通路とを
第1の負圧信号通路側に向ってのみ大気の流動を許容す
べく連通する逆止弁と、車速検出手段により前記高車速
領域以外の領域を検出したときに前記混合気濃化装置へ
の吸入負圧信号を大気希釈する第2の開閉弁と、を設け
たことを特徴とする車両用内燃機関。
A negative pressure-responsive exhaust recirculation control valve provided in the exhaust gas recirculation passage and a first negative pressure take-out port located downstream of the throttle valve as the opening increases upstream of the throttle valve in the engine intake passage when the throttle valve is fully closed. The atmospheric dilution ratio in the first negative pressure signal path is varied by a negative pressure regulating valve that is connected via the first negative pressure signal path and responds to the venturi negative pressure of the venturi section of the carburetor and the exhaust pressure of the engine. The exhaust gas recirculation device configured as shown in FIG.
a negative pressure advance device in which a second negative pressure take-out port opened at a position of the engine intake passage which is opened and closed in substantially synchronization with the negative pressure take-out port of the engine is connected via a second negative pressure signal passage; a mixture enrichment device that responds to the suction negative pressure at a downstream position and enriches the mixture when the suction negative pressure signal decreases; a normally closed first on-off valve that opens the second negative pressure signal passage to the atmosphere; and a normally closed first on-off valve that opens the second negative pressure signal passage to the atmosphere; a second check valve that communicates with the air so as to permit the flow of air only when the vehicle speed is in the air-fuel mixture enrichment device; An internal combustion engine for a vehicle, characterized in that it is provided with an on-off valve.
JP1978047555U 1978-04-13 1978-04-13 Vehicle internal combustion engine Expired JPS5913343Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978047555U JPS5913343Y2 (en) 1978-04-13 1978-04-13 Vehicle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978047555U JPS5913343Y2 (en) 1978-04-13 1978-04-13 Vehicle internal combustion engine

Publications (2)

Publication Number Publication Date
JPS54150719U JPS54150719U (en) 1979-10-19
JPS5913343Y2 true JPS5913343Y2 (en) 1984-04-20

Family

ID=28929625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978047555U Expired JPS5913343Y2 (en) 1978-04-13 1978-04-13 Vehicle internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5913343Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944128A (en) * 1972-08-31 1974-04-25
JPS52151418A (en) * 1976-06-11 1977-12-15 Nissan Motor Co Ltd Control system
JPS5317803A (en) * 1976-08-02 1978-02-18 Toyota Motor Corp Exhaust gas purifying system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944128A (en) * 1972-08-31 1974-04-25
JPS52151418A (en) * 1976-06-11 1977-12-15 Nissan Motor Co Ltd Control system
JPS5317803A (en) * 1976-08-02 1978-02-18 Toyota Motor Corp Exhaust gas purifying system

Also Published As

Publication number Publication date
JPS54150719U (en) 1979-10-19

Similar Documents

Publication Publication Date Title
CA1137840A (en) Internal combustion engine
JPS6143543B2 (en)
JPH0433381Y2 (en)
JPS5913343Y2 (en) Vehicle internal combustion engine
JPS6041216B2 (en) Control device for internal combustion engine with exhaust gas recirculation system
JPS6128033Y2 (en)
JPS6263128A (en) Fuel controller for engine
JPS599074Y2 (en) Pressure-responsive devices in internal combustion engines
JPS62225745A (en) Air-fuel ratio control device for engine
JPS6334289B2 (en)
JPS6231656Y2 (en)
JPS6210461A (en) Air-fuel ratio control device of internal combustion engine
JPS5856381Y2 (en) Internal combustion engine ignition timing control system
JPS5823977Y2 (en) Exhaust recirculation device
JPS6161918A (en) Air intake device of internal-combustion engine
JPS6145055B2 (en)
JPS6214366Y2 (en)
JPS5847254Y2 (en) Engine exhaust gas purification device
JPS5918120Y2 (en) engine carburetor
JPS61197719A (en) Intake device for internal-combustion engine
JPS624664Y2 (en)
JPS591341B2 (en) Engine EGR control device
JPS605782B2 (en) Internal combustion engine intake control device
JPS64587B2 (en)
JPS6158963A (en) Device of controlling fuel cut during deceleration of internal-combustion engine