JPS605782B2 - Internal combustion engine intake control device - Google Patents

Internal combustion engine intake control device

Info

Publication number
JPS605782B2
JPS605782B2 JP52081658A JP8165877A JPS605782B2 JP S605782 B2 JPS605782 B2 JP S605782B2 JP 52081658 A JP52081658 A JP 52081658A JP 8165877 A JP8165877 A JP 8165877A JP S605782 B2 JPS605782 B2 JP S605782B2
Authority
JP
Japan
Prior art keywords
negative pressure
intake
passage
air
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52081658A
Other languages
Japanese (ja)
Other versions
JPS5417410A (en
Inventor
晃 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP52081658A priority Critical patent/JPS605782B2/en
Publication of JPS5417410A publication Critical patent/JPS5417410A/en
Publication of JPS605782B2 publication Critical patent/JPS605782B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の吸気系に排ガスの一部または同排ガ
スおよび希釈用空気を運転状態に応じて付加する吸気制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake control device that adds part of exhaust gas or the exhaust gas and dilution air to the intake system of an internal combustion engine depending on the operating state.

一般に内燃機関の排ガス還流装置は排ガス中の有害な窒
素酸化物(NOx)を低減する目的で設けられ、排ガス
の一部を還流させて内燃機関の吸入系からシリンダ内に
導き燃焼温度を下げることによりNO戊の発生を減少さ
せるものである。
Generally, an exhaust gas recirculation device for an internal combustion engine is installed to reduce harmful nitrogen oxides (NOx) in the exhaust gas, and it recirculates a portion of the exhaust gas and guides it from the intake system of the internal combustion engine into the cylinder to lower the combustion temperature. This reduces the generation of NOx.

しかるに、排ガスを還流させると一般にシリング内での
燃焼効率が悪く、多量に排ガスが還流されると出力およ
び燃費が極端に悪化するばかりか、ドライバピリティを
そこないまたエンスト等の不具合発生に至る。そこで、
従来より排ガス還流量はN松の発生量、出力および燃費
を考慮して種々の運転状態に応じた複雑な制御が行われ
ている。
However, when exhaust gas is recirculated, the combustion efficiency within the cylinder is generally poor, and when a large amount of exhaust gas is recirculated, not only does the output and fuel efficiency deteriorate dramatically, but it also impairs drivability and can lead to problems such as engine stalling. . Therefore,
Conventionally, the amount of exhaust gas recirculation has been controlled in a complicated manner in accordance with various operating conditions, taking into consideration the amount of nitrogen gas generated, output, and fuel efficiency.

ところで、N○×の発生量を燃焼過程で低減する手段と
しては、上記排ガス還流方式の他に希薄燃焼方式が知ら
れておりトこの希薄燃焼方式は空燃比が理論空燃比より
相当大きな値、例えば16〜2鉄壁度の混合気を燃焼室
において良好に燃焼させるもので、この希薄混合気は一
般に着火性が悪く、しかも燃焼性が悪いために対策とし
て種々の方式が採用されている。
By the way, in addition to the above-mentioned exhaust gas recirculation method, a lean combustion method is known as a means for reducing the amount of N○× generated in the combustion process. For example, the purpose is to burn a mixture of 16 to 2 iron wall degree satisfactorily in a combustion chamber, and since this lean mixture generally has poor ignitability and poor combustibility, various methods have been adopted as countermeasures.

例えば、登山室式燃焼方式、層状燃焼方式あるいは嫡流
発生方式等が知られているが、これらの方式においては
点火プラグ付近に濃混合気を導いたり点火プラグ付近を
掃気することにより着火性を向上せしめるとともに、強
力な渦流発生等によって燃料一空気の混合性を向上し「
しかも火焔伝播速度を高めて燃焼性を改善している。
For example, the climbing room combustion method, stratified combustion method, and direct flow generation method are known, but in these methods, ignition performance is improved by guiding a rich mixture to the vicinity of the spark plug or scavenging the vicinity of the spark plug. At the same time, it improves the mixing of fuel and air by generating strong vortices, etc.
Moreover, it increases the flame propagation speed and improves combustibility.

上記N○×の発生量を低減する2つの方式にはそれぞれ
一長一短があり、排ガス還流方式においてはN○×の低
減率が高いが、上述したごとく出力および燃費面で劣り
、一方希薄燃焼方式においては気化器での空燃費制御が
難かしく、しかもN○×の低減率が低いがL 燃費が向
上し、また、排ガス還流方式に比してドライバビリティ
は良好である。また、一般に吸気通路に吸入される吸気
の温度が低いと密度が高く、気化器において生成される
混合気の空燃比は大となって、混合気は希薄化される傾
向があり、一方、吸気温度が適度に高くなると気化器の
燃料通路内で一部の燃料が気化され、ベーバロックを生
じる不具合が発生するばかりか吸気温度の変化による空
燃比の不安定はHC,C○,N○×等の有害ガスの排出
量が増大するとともに「燃費さらにはドライバビリティ
の悪化を招来するという不具合も発生する。
The above two methods for reducing the amount of N○× generated each have their advantages and disadvantages.The exhaust gas recirculation method has a high reduction rate of N○×, but as mentioned above, it is inferior in terms of output and fuel efficiency, while the lean burn method Although it is difficult to control air and fuel consumption using a carburetor and the reduction rate of N○× is low, L fuel efficiency is improved, and drivability is better than that of the exhaust gas recirculation method. In addition, generally speaking, when the temperature of the intake air taken into the intake passage is low, the density is high, and the air-fuel ratio of the air-fuel mixture generated in the carburetor increases, and the air-fuel mixture tends to be lean. When the temperature rises moderately, some of the fuel is vaporized in the fuel passage of the carburetor, which not only causes problems such as vapor lock, but also causes instability in the air-fuel ratio due to changes in intake air temperature, such as HC, C○, N○× As the emissions of harmful gases such as these increase, problems occur that lead to deterioration in fuel efficiency and drivability.

従って、近年特に自動車用機関においては吸気温度を極
力一定に保ち空燃比を安定させるためにェァクリーナに
吸気温度制御装置が付設される傾向にある。
Therefore, in recent years, particularly in automobile engines, there has been a tendency for intake air temperature control devices to be attached to air cleaners in order to keep the intake air temperature as constant as possible and stabilize the air-fuel ratio.

この吸気温度制御装置は大気温度の外気および機関の加
熱により高温となった空気を補集した暖気をそれぞれ吸
気通路に導び〈吸気取入通路を有し、同吸気取入通路に
暖気の吸入割合を制御する暖気制御弁が設けられた構成
で、一般に吸気通路内の吸気温度をバイメタルにより検
出し、バイメタルの変形を直接上記暖気制御弁に作用し
、それによって吸気温度に応じた制御を行なっている。
This intake air temperature control device collects outside air at ambient temperature and air that has become high temperature due to engine heating and guides the warm air into the intake passage. This configuration includes a warm air control valve that controls the ratio. Generally, the intake air temperature in the intake passage is detected by a bimetal, and the deformation of the bimetal is directly applied to the warm air control valve, thereby controlling according to the intake air temperature. ing.

本発明の主目的はバキュームモータを有する負圧式の暖
気吸入装置を採用し、同装置に作用する制御員圧を排ガ
スの還流量を制御する排ガス還流量制御手段の作動員圧
室にも作用させ、大気温度が低い時のドライバビリティ
および燃費を向上し得る内燃機関の吸気制御装置を提供
することにある。また、本発明の他の目的は、バキュー
ムモータを有する負圧式の暖気吸入装置を採用し、吸気
系に設けられた排ガス還流量制御手段の作動負圧室およ
び吸入混合気を希薄化するために吸気系に投入される空
気の投入量を制御する空気量制御手段の作動負圧室にも
作用させ、大気温度が低い時のドライバビリティおよび
燃費を向上し得る内燃機関の吸気制御装置を提供するこ
とにある。
The main object of the present invention is to adopt a negative pressure type warm air suction device having a vacuum motor, and to cause the controller pressure acting on the device to also act on the operator pressure chamber of the exhaust gas recirculation amount control means for controlling the amount of exhaust gas recirculation. An object of the present invention is to provide an intake air control device for an internal combustion engine that can improve drivability and fuel efficiency when the atmospheric temperature is low. Another object of the present invention is to employ a negative pressure type warm air intake device having a vacuum motor, and to operate a negative pressure chamber of an exhaust gas recirculation amount control means provided in the intake system and to dilute the intake air-fuel mixture. To provide an air intake control device for an internal combustion engine that can improve drivability and fuel efficiency when atmospheric temperature is low by operating an air amount control means that controls the amount of air introduced into an intake system. There is a particular thing.

本発明の他の目的は吸気系に排ガスの一部および空気を
運転状態に応じて付加することによりN■の発生量を低
減し得る内燃機関の吸気制御装置を提供することにある
Another object of the present invention is to provide an intake control system for an internal combustion engine that can reduce the amount of N2 generated by adding a portion of exhaust gas and air to the intake system depending on the operating conditions.

本発明のさらに他の目的は、出力の低下、燃費およびド
ライバビリティの悪化を最小限に抑えた上でN0×の発
生量を最大限に低減する特に自動車用内燃機関の吸気制
御装置を提供することにある。
Still another object of the present invention is to provide an air intake control device for an internal combustion engine, particularly for an automobile, which maximizes the amount of NOx generated while minimizing a decrease in output, deterioration in fuel consumption, and drivability. There is a particular thing.

本発明のさらに他の目的は、排ガス還流と希釈用空気の
流入との切換えが、両者のオーバーラップあるいは両者
の作動停止期間等の時間的なずれを生ずることなくスム
ーズに行われて、ノッキングの発生がなく、上記切換時
のドライバビリテイが良好であるとともにNO戊の9E
生量が低減される特に自動車内燃機関の吸気制御装橿を
提供することにある。
Still another object of the present invention is to smoothly switch between the exhaust gas recirculation and the inflow of dilution air without causing an overlap between the two or a time lag such as a period during which the two are stopped, thereby preventing knocking. There is no occurrence, and the drivability during the above switching is good, and the NO 9E
An object of the present invention is to provide an air intake control system, especially for an automobile internal combustion engine, in which the amount of air flow is reduced.

本発明の他の目的は、低速運転領域が多用される市街地
走行において主として排ガス還流によるNO戊低減を行
い、高速運転領域が多用される郊外等での走行において
希釈用空気投入によるN瓜低減および燃費向上を計る特
に自動車用内燃機関の吸気制御装置を提供することにあ
る。
Another object of the present invention is to reduce NOx mainly by recirculating exhaust gas when driving in urban areas where low-speed driving ranges are frequently used, and to reduce NOx emissions by injecting diluting air when driving in suburban areas where high-speed driving ranges are often used. An object of the present invention is to provide an air intake control device for an internal combustion engine, especially for automobiles, which improves fuel efficiency.

本発明のさらに他の目的は、構造簡単、安価にして信頼
性の高いニューマチック方式の吸気制御装置を提供する
ことにある。上記諸目的は、負圧室を有し同負圧室に作
用する制御負圧の大きさ‘こ応じて排気通路より吸気通
路に還流される排ガスの還流量を制御する排ガス還流量
制御手段、上誌員圧室に吸気通路内に発生する特定の吸
気負圧を導適する第1の負圧通路、上記負圧室を大気に
開放する空気通路、負圧室を有し同負圧室に発生する制
御負圧の大きさに応じて上記空気通路を開閉する負圧制
御手段、バキュームモ−外こより作動した大気温度の外
気および機関の加熱により高温となった暖気の吸気通路
に導びかれる吸入割合を制御する暖気制御弁、上記バキ
ュームモータの作動室に吸気負圧を導び〈第2の負圧通
路、上記バキュームモータの作動室に大気を供給するり
リーフ穴、吸気通路内の吸気温度を検出して同吸気温度
に応じて上託IJリーフ穴の開度を制御するサーモバル
ブ、上記負圧制御手段の負圧室に吸気通路内に発生する
特定の吸気負圧を導適する第3の負圧通路およびバキュ
ームモータの作動室と上記員圧制御手段の負圧室とを蓮
通し上記バキュームモータ方向にのみ空気の流通が可能
なチェックバルブが介装された第4の負圧通路を具備し
、上記吸気温度が低い場合には上記サーモバルプが閉じ
て上記第2負圧通路を介して比較的大きな吸気負圧がバ
キュームモータの作動室に供給され、暖気制御弁が開い
て暖気の吸入割合が増大するとともに、上記第4負圧通
路を介して上記比較的大きな吸気負圧が上記員圧制御手
段の負圧室に供給されて同負圧制御手段が空気通路を大
気開放して上記バキュームバルブは閉塞状態となるよう
に構成したことを特徴とする内燃機関の吸気制御装置、
または負圧室を有し同負圧室に作用する制御負圧の大き
さに応じて排気通路より吸気通路に還流される排ガス還
流量を制御する排ガス還流量制御手段、吸入混合気を希
薄化するために吸気系に設けられた空気通路より投入さ
れる空気投入量を負圧室を有し同負圧室に作用する制御
員圧の大きさに応じて制御する空気量制御手段、上記各
負圧室の各々に吸気通路内に発生する特定の吸気負圧を
導適する第1の負圧通路、上記各負圧室を個々に大気に
開放する空気通路、負圧室を有し同負圧室に発生する制
御負圧の大されこ応じて上記空気通路の一方が開の時他
方を開とする切襖制御を行なう負圧制御手段、バキュー
ムモ−外とより作動し大気温度の外気および機関の加熱
により高温となった暖気の吸気通路に導びかれる吸入割
合を制御する暖気制御弁、上記バキュ−ムモータの作動
室に吸気負圧を導びく第2の負圧通路、上記バキューム
モータの作動室に大気を供給するりリーフ穴、吸気通路
内の吸気温度を検出して同吸気温度に応じて上託りリー
フ穴の関度を制御するサーモバルプ、上記負圧制御手段
の負圧室に吸気通路内に発生する特定の吸気負圧を導適
する第3の負圧通路および上記バキュームモータの作動
室と上記負伍制御手段の負圧室とを蓮通し、上記バキュ
ームモータ方向のみ空気の流通が可能なチェックバルブ
が介装された第4の負圧通路を具備し、上記吸気温度が
低い場合には上言己サーモバルブが閉じて上記第2倉圧
通路を介して比較的大きな吸気員圧が、バキュームモー
タの作動室に供給され、暖気制御弁が開いて暖気の吸入
割合が増大するとともに、上記第4負圧通路を介して上
記比較的大きな吸気負圧が上記負圧制御手段の負圧室に
供給されて同負圧制御手段が上記排ガス還流量制御手段
に接続された空気通路を開放して上記空気量制御手段に
接続された空気通路を閉じ少なくとも上記排ガス還流量
制御手段が閉塞状態となるように構成したことを特徴と
する内燃機関の吸気制御装置、さらには後述する実施例
装置により達成される。
Still another object of the present invention is to provide a pneumatic intake control device that is simple in structure, inexpensive, and highly reliable. The above-mentioned objects include an exhaust gas recirculation amount control means which has a negative pressure chamber and controls the amount of recirculation of exhaust gas recirculated from the exhaust passage to the intake passage in accordance with the magnitude of the control negative pressure acting on the negative pressure chamber; A first negative pressure passage that introduces a specific intake negative pressure generated in the intake passage to the upper pressure chamber, an air passage that opens the negative pressure chamber to the atmosphere, and a negative pressure chamber that has a negative pressure chamber. Negative pressure control means that opens and closes the air passage according to the magnitude of the control negative pressure generated, and a vacuum motor that guides outside air at atmospheric temperature activated from outside and warm air that has become high temperature due to engine heating to the intake passage. A warm air control valve that controls the intake ratio, which guides the intake negative pressure to the working chamber of the vacuum motor; A thermo valve that detects the temperature and controls the opening degree of the IJ leaf hole according to the intake air temperature; a fourth negative pressure passage in which a check valve is installed that allows air to flow only in the direction of the vacuum motor; When the intake air temperature is low, the thermovalp closes and a relatively large intake negative pressure is supplied to the working chamber of the vacuum motor via the second negative pressure passage, and the warm air control valve opens to supply warm air. As the intake rate increases, the relatively large intake negative pressure is supplied to the negative pressure chamber of the air pressure control means through the fourth negative pressure passage, and the negative pressure control means opens the air passage to the atmosphere. An intake control device for an internal combustion engine, characterized in that the vacuum valve is configured to be in a closed state;
Or an exhaust gas recirculation amount control means that has a negative pressure chamber and controls the amount of exhaust gas recirculated from the exhaust passage to the intake passage according to the magnitude of the control negative pressure acting on the negative pressure chamber, and dilutes the intake air-fuel mixture. an air amount control means that has a negative pressure chamber and controls the amount of air input from an air passage provided in the intake system in accordance with the magnitude of the controller pressure acting on the negative pressure chamber; A first negative pressure passage that introduces a specific intake negative pressure generated in the intake passage to each of the negative pressure chambers, an air passage that individually opens each of the negative pressure chambers to the atmosphere, and a negative pressure chamber that has the same negative pressure. Negative pressure control means performs slit control such that when one of the air passages is open, the other is opened depending on the magnitude of the control negative pressure generated in the pressure chamber, and the vacuum motor operates from outside to control the outside air at atmospheric temperature. and a warm air control valve that controls the intake rate of warm air that has become high temperature due to engine heating and is guided to the intake passage, a second negative pressure passage that guides intake negative pressure to the working chamber of the vacuum motor, and the vacuum motor. a leaf hole for supplying atmospheric air to the working chamber of the valve, a thermovalp for detecting the temperature of the intake air in the intake passage and controlling the relationship between the leaf holes and the leaf hole according to the temperature of the intake air, and a negative pressure chamber of the negative pressure control means. A third negative pressure passage that introduces a specific intake negative pressure generated in the intake passage, the working chamber of the vacuum motor, and the negative pressure chamber of the negative control means are connected to each other, so that air flows only in the direction of the vacuum motor. A fourth negative pressure passage is provided with a check valve that allows circulation, and when the intake air temperature is low, the thermovalve closes and a relatively large intake air is passed through the second pressure passage. The internal air pressure is supplied to the working chamber of the vacuum motor, the warm air control valve opens and the intake ratio of warm air increases, and the relatively large intake negative pressure is applied to the negative pressure control means through the fourth negative pressure passage. and the negative pressure control means opens an air passage connected to the exhaust gas recirculation amount control means and closes an air passage connected to the air amount control means. This is achieved by an intake control device for an internal combustion engine, which is characterized in that it is configured such that the engine is in a closed state, and further by an embodiment device to be described later.

次に「本発明を第1図に示す一実施例により詳細に説明
する。
Next, the present invention will be explained in detail with reference to an embodiment shown in FIG.

第1図に示す本発明の−実施例において、図示しない自
動車用多気筒内燃機関の各気筒に吸気を分配供給する吸
気マニホルド8の上部には従来一般の気化器2が取付け
られ〜 さらにその上部にはェアクリーナ3が配穀され
「吸入混合気はェアクリーナ3により浄化された空気が
吸気適路4を下流する途中において、気化器2のベンチ
ュリ5でメインノズル6より噴射された燃料あるいはス
ロットル弁7近傍の吸気管壁に穿設された図示しないス
ロ−系の燃料ボートより噴射された燃料と混合された後
吸気マニホルドー内において排ガス還流通路8より供給
される排ガスとまたは二次空気と混合されて形成される
In the embodiment of the present invention shown in FIG. 1, a conventional general carburetor 2 is attached to the upper part of an intake manifold 8 which distributes and supplies intake air to each cylinder of an automobile multi-cylinder internal combustion engine (not shown). The air cleaner 3 distributes grains, and the intake air-fuel mixture is generated by the fuel injected from the main nozzle 6 by the venturi 5 of the carburetor 2 or the throttle valve 7 while the air purified by the air cleaner 3 flows downstream through the intake passage 4. The fuel is mixed with fuel injected from a slow-type fuel boat (not shown) drilled into the wall of the nearby intake pipe, and then mixed with exhaust gas supplied from the exhaust gas recirculation passage 8 or with secondary air in the intake manifold. It is formed.

スロットル弁7は図示しないアクセルペダルに連動して
スロットル軸9を中りこ回動され、同スロットル弁?の
全閉位置においてその上流側自由端部10の上流側に位
置し、スロットル弁7が関動されると岡目由端部亀0の
下流側となる吸気通路壁には3個のボート11,12お
よび13が穿設されている。
The throttle valve 7 is rotated around the throttle shaft 9 in conjunction with an accelerator pedal (not shown). Three boats 11 are located on the intake passage wall which is located upstream of the upstream free end 10 in the fully closed position, and which becomes downstream of the Okame-yui end turtle 0 when the throttle valve 7 is engaged. , 12 and 13 are drilled.

なお、第亀図における各ボート11〜13は、以下に詳
述する負圧回路の説明の便宜から実際の位置とは異って
画かれており、本実施例の各ボートの実際の形状および
配置は後述する負圧特性を有する負圧が発生するように
設定されるものである。
In addition, each boat 11 to 13 in Fig. 1 is drawn differently from the actual position for convenience of explanation of the negative pressure circuit described in detail below, and the actual shape and shape of each boat in this example are The arrangement is such that a negative pressure having negative pressure characteristics described below is generated.

上記排ガス還流通路8は一端が排気通路特に図示しない
機関本体に形成された排気ボートの途中に接続されると
ともに他端が吸気マニホルド1に蓮通関口され「同通路
8の途中には同通路を開閉する3個の排ガス還流量制御
弁14,15,16が介装され、制御弁15,16は制
御弁14に対して上流側に位置するとともに互に並列に
配置されている。
One end of the exhaust gas recirculation passage 8 is connected to an exhaust passageway, particularly an exhaust boat formed in the engine body (not shown), and the other end is connected to the intake manifold 1 through a customs port. Three exhaust gas recirculation amount control valves 14, 15, and 16 that open and close are interposed, and the control valves 15 and 16 are located upstream with respect to the control valve 14 and are arranged in parallel with each other.

排ガス還流通路81こ介設されたバルブシートi7に先
端が当俵して閉じる制御弁14の弁体18の後織部には
リンク19の一端が連結され、同リンク19の他端は上
記スロットル軸9に鞍着されたレバー20の自由端部に
連結され、また「弁体18には防塵用のべローズ21が
設けられている。
One end of a link 19 is connected to the rear part of the valve body 18 of the control valve 14, which closes when the tip of the control valve 14 closes to the valve seat i7 provided in the exhaust gas recirculation passage 81, and the other end of the link 19 is connected to the throttle shaft. The valve body 18 is connected to the free end of a lever 20 mounted on the valve body 9, and the valve body 18 is provided with a bellows 21 for dust prevention.

制御弁15は排ガス還流通路8の主通路22を開閉し、
制御弁16はそのバイパス通路23を開閉する。制御弁
15の弁体24はダイヤフラム25と同ダイヤフラムの
−側に形成された負圧室26とを有する差圧応動装置2
7により作動され、同弁体24はダイヤフラム25の中
央部に固着されるとともにスプリング28により閉方向
に付勢されている。一方、制御弁16の弁体29はダイ
ヤフラム30と、同ダイヤフラムの一側に形成された負
圧室31とを有する差圧応動装置32により作動され弁
体29はダイヤフラム30の中央部に固着されるととも
にスプリング33により開方向に付勢されている。
The control valve 15 opens and closes the main passage 22 of the exhaust gas recirculation passage 8,
The control valve 16 opens and closes the bypass passage 23 thereof. The valve body 24 of the control valve 15 is a differential pressure responsive device 2 having a diaphragm 25 and a negative pressure chamber 26 formed on the negative side of the diaphragm.
The valve body 24 is fixed to the center of the diaphragm 25 and urged in the closing direction by a spring 28. On the other hand, the valve body 29 of the control valve 16 is operated by a differential pressure response device 32 having a diaphragm 30 and a negative pressure chamber 31 formed on one side of the diaphragm. At the same time, it is urged in the opening direction by a spring 33.

ところで、排ガス還流通路8の制御弁14介装位置によ
り上流側でしかも制御弁15および16が介装された位
置より下流側にはェアクリーナ3のクリ−ンサィド34
に蓮通された空気通路35が開□し、同空気通路35の
途中には同通路35を開閉する空気弁36が介装されて
いる。
By the way, there is a clean side 34 of the air cleaner 3 on the upstream side due to the interposed position of the control valve 14 in the exhaust gas recirculation passage 8, and further downstream from the position where the control valves 15 and 16 are interposed.
An air passage 35 is opened, and an air valve 36 for opening and closing the air passage 35 is interposed in the middle of the air passage 35.

同空気弁36の弁体37は差圧応動装置38により開閉
作動され、同装置38は上記弁体37が中央部に突設さ
れたダイヤフラム39と負圧室40とを具備し、弁体3
7はスプリング41により空気通路35を閉じる方向に
付勢されている。
The valve body 37 of the air valve 36 is opened and closed by a differential pressure response device 38, and the device 38 includes a diaphragm 39 from which the valve body 37 protrudes from the center and a negative pressure chamber 40.
7 is biased by a spring 41 in a direction to close the air passage 35.

吸気マニホルド1にはヒートライザを構成する冷却水通
路42が設けられ、同通路42にはサーモバルブ43が
取付けられている。上記サーモバルブ43は上記冷却水
通路42内に突設されたワックスェレメント44の熱膨
張によりロッド45が変位して弁体46が開閉作動する
構成で、弁体46が開作動するとェアフィルタ47が介
装された大気開放孔48に4つの大気開放通路49,5
0,51および52が同時に蓮通され、閉作動すると上
記4つの通路49,50,51,52の大気開放孔48
との蓮通が庶断されるとともに各通路間の運通も遮断さ
れる。
A cooling water passage 42 constituting a heat riser is provided in the intake manifold 1, and a thermovalve 43 is attached to the passage 42. The thermovalve 43 has a structure in which a rod 45 is displaced by thermal expansion of a wax element 44 protruding into the cooling water passage 42, and a valve body 46 is opened and closed.When the valve body 46 is opened, a air filter 47 is opened and closed. There are four atmosphere opening passages 49 and 5 in the intervening atmosphere opening hole 48.
0, 51 and 52 are simultaneously opened, and when they are closed, the atmosphere opening holes 48 of the four passages 49, 50, 51, and 52 are opened.
The lotus road to the area was cut off, and traffic between the various passages was also cut off.

ところで、図示しないエンジン本体あるいはエンジンル
ーム内の適所に取付けられる負圧制御装層53には2つ
の空気通路54および55を選択的に開閉する開閉弁5
6と、同開閉弁56が上記空気通路54または55が関
の時蓮通されェアフィルタ57を有する大気開放孔58
と、上記開閉弁56を作動するダイヤフラム69と、同
ダイヤフラム59の一側に形成された負圧室60と、他
側に形成された大気開放孔58に運速された大気圧室6
1と、同負圧室601こ員氏を導く負圧通路62と、開
閉弁56が閉じる方向にダイヤフラム62を付勢するス
プリング63と、開閉弁56を開方向に弱いスプリング
力で付勢するスプリング64とが内蔵され、負圧通路6
2にはオリフィス65と逆止弁66とが並列に介袋され
、空気通路54は空気通路67と681こ分岐され、通
路68にはチェックバルブ69が介装されている。
Incidentally, a negative pressure control layer 53 (not shown) installed at a suitable location in the engine body or engine room has an on-off valve 5 that selectively opens and closes two air passages 54 and 55.
6, and an atmosphere opening hole 58 having an air filter 57 which is passed through when the on-off valve 56 is connected to the air passage 54 or 55.
, a diaphragm 69 that operates the on-off valve 56, a negative pressure chamber 60 formed on one side of the diaphragm 59, and an atmospheric pressure chamber 6 conveyed to the atmosphere opening hole 58 formed on the other side.
1, a negative pressure passage 62 that guides the negative pressure chamber 601, a spring 63 that biases the diaphragm 62 in the direction in which the on-off valve 56 closes, and a weak spring force that biases the on-off valve 56 in the opening direction. A spring 64 is built in, and the negative pressure passage 6
2, an orifice 65 and a check valve 66 are installed in parallel, the air passage 54 is branched into an air passage 67 and an air passage 681, and a check valve 69 is installed in the passage 68.

また、ェアクリーナ3には吸気温度制御装置70が装着
されており、同吸気温度制御装置70は図示しない機関
本体に取付けられた排気マニホルド71の加熱により高
温となった外気を瓶集するヒートカゥル72と、補集さ
れた暖気をェアクリーナ3のノーズ73の途中に導びく
暖気ダクト74と、バキュームモータ75の作動により
暖気の吸入割合を制御する暖気制御弁76と、上記バキ
ュームモータ75の作動室77に吸気通路4のス。ット
ル弁7より下流側に発生する吸気マニホルド負圧を導び
く負圧通路78と、同負圧通路78の途中に設けられ大
気を吸入するりリーフ穴79とェアクリーナ3のクリー
ンサイド34内の吸気温度をバイメタル801こより検
出して同吸気温度に応じて上託りリーフ穴79の開度を
制御するサーモバルブ61とを具備している。上記バキ
ュームモータ75は、暖気制御弁76をロッド82を介
して中央部に連結するダイヤフラム83を作動室T7に
内蔵されたスプリング84により第1図下方に押圧する
構成で、作動室77が大気圧の時はスプリング84の付
勢力でダイヤフラム83は第1図下方に位置し、暖気制
御弁76は暖気ダクト74を全閉する一方ノーズ73を
全開し、作動室77に負圧が導びかれ、ダイヤ.フラム
83がスプリング84の付勢力に抗して第1図上方に吸
引されると、暖気制御弁76はノーズ73に取付けられ
たピン85を中心に回動して暖気ダクト74を上記作動
室77に発生している負圧の大きさに応じた関度で開き
、その分だけ/ーズ73は絞られる。
In addition, the air cleaner 3 is equipped with an intake air temperature control device 70, and the intake air temperature control device 70 includes a heat coil 72 that collects outside air that has become hot due to heating of an exhaust manifold 71 attached to the engine body (not shown). , a warm air duct 74 that guides the collected warm air to the middle of the nose 73 of the air cleaner 3, a warm air control valve 76 that controls the intake ratio of warm air by operating the vacuum motor 75, and an operating chamber 77 of the vacuum motor 75. Su of intake passage 4. A negative pressure passage 78 that guides the intake manifold negative pressure generated downstream from the throttle valve 7, a leaf hole 79 provided in the middle of the negative pressure passage 78 for sucking the atmosphere, and an intake air inside the clean side 34 of the air cleaner 3. It is equipped with a thermovalve 61 that detects the temperature from the bimetal 801 and controls the opening degree of the overpass leaf hole 79 according to the intake air temperature. The vacuum motor 75 has a configuration in which a diaphragm 83 that connects the warm-up control valve 76 to the center via a rod 82 is pressed downward in FIG. At this time, the diaphragm 83 is positioned in the lower part of FIG. 1 due to the biasing force of the spring 84, the warm air control valve 76 fully closes the warm air duct 74, and fully opens the nose 73, so that negative pressure is introduced into the working chamber 77. Diamond. When the flamm 83 is sucked upward in FIG. 1 against the biasing force of the spring 84, the warm air control valve 76 rotates around a pin 85 attached to the nose 73 to move the warm air duct 74 into the working chamber 77. The lens 73 is opened at a rate corresponding to the magnitude of the negative pressure generated in the area, and the lens 73 is narrowed by that amount.

上記負圧通路78のリリーフ穴79より上流側および下
流側には、それぞれオリフイス86および87が介装さ
れ、オリフィス86は吸気マニホルド1に発生する負圧
の導適量を制御し、一方、オリフィス87はバキューム
モータ75の作動の安定化を計っている。
Orifices 86 and 87 are installed on the upstream and downstream sides of the relief hole 79 of the negative pressure passage 78, respectively. is aimed at stabilizing the operation of the vacuum motor 75.

本実施例においては、サーモバルブ811まェアクリー
ナ3内の吸気温度が約4000になると小jーフ穴79
を全開してバキュームモータ75の作動室77を略大気
圧とし、4000以下において上記吸気温度が低下する
につれてリリーフ穴79の関度が漸減されるように設定
されている。
In this embodiment, when the temperature of the intake air inside the thermovalve 811 and the air cleaner 3 reaches approximately 4000, the small J-hole 79
is fully opened to bring the working chamber 77 of the vacuum motor 75 to approximately atmospheric pressure, and the pressure of the relief hole 79 is set to gradually decrease as the intake air temperature decreases below 4,000 ℃.

気化器2に設けた前記3つのボート11,12および1
3のうち、ボート11は負圧通路88を介して従来一般
の負圧式点火進角装置89の負圧室9川こ接続されると
ともに、負圧通路88より分岐した負圧通路91を介し
て上記サーモバルブ43により開閉される大気開放通路
51に接続され、さらには、負圧通路92を介して差圧
応動装置32の負圧室31および空気通路67に運速さ
れ、また、負圧通路88より分岐した他の負圧通路93
を介して差圧応動装置38の負圧室40および空気通路
55に蓮通されている。
The three boats 11, 12 and 1 provided in the carburetor 2
3, the boat 11 is connected to the negative pressure chamber 9 of a conventional negative pressure type ignition advance device 89 through a negative pressure passage 88, and is connected to the negative pressure chamber 9 of a conventional negative pressure type ignition advance device 89 through a negative pressure passage 91 branched from the negative pressure passage 88. It is connected to the atmosphere opening passage 51 which is opened and closed by the thermovalve 43, and is further transported to the negative pressure chamber 31 of the differential pressure response device 32 and the air passage 67 via the negative pressure passage 92. Another negative pressure passage 93 branched from 88
It is connected to the negative pressure chamber 40 and the air passage 55 of the differential pressure response device 38 via.

ボート12は負圧通路94を介して差圧応動装置27の
負圧室26に蓮通され、また負圧通路94の途中より分
岐した負圧通路95を介して大気開放通路68に接続さ
れ、さらに負圧通路94の途中にはサーモバルブ43に
より開閉される大気開放通路49に接続されている。
The boat 12 is connected to the negative pressure chamber 26 of the differential pressure response device 27 via a negative pressure passage 94, and is connected to the atmosphere opening passage 68 via a negative pressure passage 95 branched from the middle of the negative pressure passage 94. Furthermore, the negative pressure passage 94 is connected in the middle to an atmosphere opening passage 49 which is opened and closed by a thermovalve 43 .

さらにボート13は負圧通路96を介して負圧制御装置
53のオリフィス65に接続されるとともに、負圧通路
96より分岐してサーモバルブ43により開閉される大
気開放通路50に接続されている。また、サーモバルブ
43により開閉される大気開放通路52は負圧通路78
の作動室77とオリフィス87との間に蓮通され、さら
に大気開放通路52の途中より分岐した負圧通路97を
介して上記賃圧制御装置53のチェックバルブ66に接
続されている。
Further, the boat 13 is connected to the orifice 65 of the negative pressure control device 53 via a negative pressure passage 96, and is also connected to an atmosphere opening passage 50 that branches from the negative pressure passage 96 and is opened and closed by a thermovalve 43. Further, the atmosphere opening passage 52 which is opened and closed by the thermovalve 43 is a negative pressure passage 78.
It is connected to the check valve 66 of the pressure control device 53 through a negative pressure passage 97 that branches off from the middle of the atmosphere opening passage 52.

上記各通路のうち、負圧通路91にはオリフィス98が
介装され「負圧通路92にはオリフィス99が介装され
、負圧通路93にはオリフィス100が介装され、大気
開放通路52の負圧通路9了閉口位置と負圧通路78と
の間にはオリフイス101が介袋されている。
Among the above-mentioned passages, the negative pressure passage 91 is provided with an orifice 98, the negative pressure passage 92 is provided with an orifice 99, the negative pressure passage 93 is provided with an orifice 100, and the atmospheric release passage 52 is provided with an orifice 99, An orifice 101 is inserted between the closed position of the negative pressure passage 9 and the negative pressure passage 78.

さらに「ポ−ト12およびボート13にもそれぞれオリ
フイス102,103が介装されている。
Furthermore, the port 12 and the boat 13 are also provided with orifices 102 and 103, respectively.

上記構成によれば、機関駆動中吸気通路4のスロットル
弁7より下流側に発生する吸気マニホルド負圧は負圧通
路78を介して、途中小J−フ穴79より吸入される空
気により薄められた状態でバキュームモータ75の作動
室77に導びかれる。
According to the above configuration, the intake manifold negative pressure generated downstream of the throttle valve 7 in the intake passage 4 while the engine is running is diluted by the air taken in from the small J-hole 79 midway through the negative pressure passage 78. It is guided into the working chamber 77 of the vacuum motor 75 in a state where the vacuum motor 75 is closed.

この場合、大気開放通路52が大気開放されていても、
オリフィス101はその絞り抵抗が大きく設定されてい
るので、負圧通路78内の負圧は上記大気開放通路52
からの空気ではほとんど薄められることはない。
In this case, even if the atmosphere opening passage 52 is open to the atmosphere,
Since the orifice 101 has a large restricting resistance, the negative pressure in the negative pressure passage 78 is reduced to the atmosphere opening passage 52.
It is hardly diluted by air from outside.

従って「作動室77にはリリーフ穴79の開度に応じた
大きさの負圧が作用し、吸気温度が40qo以上の高温
になるとサーモバルブ81が作動してリリーフ穴79が
全開となり、作動室77は略大気圧となって暖気制御弁
76が暖気ダクト74を全閉し、吸気はノーズ73の開
□より吸入される大気温の外気のみとなり「吸気温度が
40oC以下の場合にはサーモバルブ81が作動してリ
リ−フ穴79は吸気温に応じた関度を得、作動室77に
はサーモバルブ81により調整された負圧が作用して暖
気制御弁76は暖気ダクト74の関度を吸気温に応じて
制御し、ノーズ73の関口より吸入される大気温度の外
気および排気マニホルド71により加熱された空気がヒ
ートカウル72により橘集された後援気ダクト74を通
ってノーズ73に吸入される暖気の吸入割合が制御され
て吸気温度は略一定に保たれる。
Therefore, a negative pressure of a magnitude corresponding to the opening degree of the relief hole 79 acts on the working chamber 77, and when the intake air temperature reaches a high temperature of 40 qo or more, the thermovalve 81 is activated, the relief hole 79 is fully opened, and the working chamber 77 becomes approximately atmospheric pressure, the warm air control valve 76 completely closes the warm air duct 74, and the intake air is only outside air at atmospheric temperature taken in through the opening □ of the nose 73. 81 operates, the relief hole 79 obtains a function according to the intake temperature, and the negative pressure adjusted by the thermovalve 81 acts on the working chamber 77, and the warm air control valve 76 adjusts the function of the warm air duct 74. is controlled according to the intake air temperature, and outside air at atmospheric temperature and air heated by the exhaust manifold 71 are drawn in from the entrance of the nose 73 and are drawn into the nose 73 through the support air duct 74 collected by the heat cowl 72. The intake rate of warm air is controlled to keep the intake air temperature approximately constant.

気化器2のボート11に発生する負圧(以下ディスブ−
ストと称す)は負圧通路88を介して負圧式点火進角装
置89の負圧室9川こ導かれ、図示しないディストリビ
ュータの点火時期が制御されるとともに、負圧通路91
,92を介して差圧応動装置32の負圧室31に導かれ
、制御弁16の開閉制御を行い、また負圧通路93を介
して菱圧応動装置38の負圧室40にも導びかれ、空気
弁36の開閉制御を行なう。
Negative pressure generated in the boat 11 of the carburetor 2 (hereinafter referred to as disbu-
A negative pressure chamber 9 of a negative pressure type ignition advance device 89 is guided through a negative pressure passage 88 to control the ignition timing of a distributor (not shown), and the negative pressure passage 91
, 92 to the negative pressure chamber 31 of the differential pressure response device 32 to control the opening and closing of the control valve 16, and also to the negative pressure chamber 40 of the rhombic pressure response device 38 via the negative pressure passage 93. This controls the opening and closing of the air valve 36.

また、気化器2のポ}ト12に発生する負圧(以下EG
Rブーストと称す)は負圧通路94を介して差圧応動装
置27の負圧室26に導かれ、制御弁15の開閉制御を
行う。
In addition, negative pressure (hereinafter referred to as EG) generated at port 12 of carburetor 2
R boost) is led to the negative pressure chamber 26 of the differential pressure response device 27 via the negative pressure passage 94, and controls the opening and closing of the control valve 15.

さらに、気化器2のボート13に発生する負圧(以下V
CU負圧と称す)は負圧通路96、オリフィス65およ
び負圧通路62を介して負圧制御装置53の負圧室60
に導かれ開閉弁56の開閉切換制御を行う。
Furthermore, negative pressure (hereinafter referred to as V) generated in the boat 13 of the carburetor 2
(referred to as CU negative pressure) is supplied to the negative pressure chamber 60 of the negative pressure control device 53 via the negative pressure passage 96, the orifice 65, and the negative pressure passage 62.
is guided to perform opening/closing switching control of the on-off valve 56.

また、制御弁14はスロットル弁7の関敷にリンク19
を介して連動されて開き、その開度はスロットル弁7の
開度に略比例的である。
Further, the control valve 14 is linked to the throttle valve 7 by a link 19.
The opening degree is approximately proportional to the opening degree of the throttle valve 7.

排気通路より排ガス還流通路8を通って吸気マニホルド
ー内に還流される排ガスの流量はまず制御弁15,16
により制御された後さらに制御弁14により制御される
The flow rate of exhaust gas recirculated from the exhaust passage through the exhaust gas recirculation passage 8 into the intake manifold is first controlled by the control valves 15 and 16.
After being controlled by the control valve 14, it is further controlled by the control valve 14.

制御弁16は、主に低負荷時の比較的少量の排ガス還流
量を制御し、制御弁15は、主に中負荷以上の運転領域
における排ガス還流量を制御している。
The control valve 16 mainly controls a relatively small amount of exhaust gas recirculation at low loads, and the control valve 15 mainly controls the amount of exhaust gas recirculation in an operating range of medium load or higher.

一方、ェアクリーナ34のクリーンサイド34より空気
通路35を通って排ガス還流通路8に導びかれ、さるに
吸気マニホルド1内に投入される空気の流量は、まず空
気弁36により制御された後排ガス還流と同様制御弁1
4によっても制御される。
On the other hand, the flow rate of the air that is guided from the clean side 34 of the air cleaner 34 through the air passage 35 to the exhaust gas recirculation passage 8 and then introduced into the intake manifold 1 is first controlled by the air valve 36, and then the exhaust gas recirculation is carried out. Similar to control valve 1
It is also controlled by 4.

次に上記制御弁15,16および空気弁36の作動の一
例を第2図に示す出力線図により説明する。
Next, an example of the operation of the control valves 15, 16 and the air valve 36 will be explained with reference to the output diagram shown in FIG.

なお第2図において、実線Aはスロットル弁7の全開時
の全開出力線、実線Bはアイドル関度(例えばスロツト
ル弁7の開度が3度)における出力線、二点鎖線Fは定
常走行曲線、点Cは40物/日、点Dは60物/日、点
Eは80物/日の車速点を示す。
In Fig. 2, the solid line A is the full-open output line when the throttle valve 7 is fully open, the solid line B is the output line at an idle function (for example, when the throttle valve 7 is opened 3 degrees), and the two-dot chain line F is the steady running curve. , point C indicates a vehicle speed of 40 motors/day, point D indicates a vehicle speed of 60 motors/day, and point E indicates a vehicle speed of 80 motors/day.

ディスブーストが作用する制御弁16および空気弁36
は破線Gより左側の運転領域で開「右側の運転領域でデ
ィスブーストの大きさに応じた開度を得、EGRブース
トが作用する制御弁15は一点鎖線日より左側の運転領
域で閉、右側の運転領域でEGRブーストの大きさに応
じた開度を得、N○×の発生量の少ないアィドリング時
やスロットル全開時は両制御弁15,16および空気弁
36が閉じ、アィドリング時の燃焼不安定によるエンジ
ン本体の振動発生〜全開出力の低下等を防止している。
Control valve 16 and air valve 36 on which the disboost acts
is open in the operating range to the left of the dashed line G; the control valve 15, on which the EGR boost operates, is opened in the operating range to the left of the dashed line; The opening degree corresponds to the size of the EGR boost in the operating range of This prevents vibrations in the engine body due to stability and a decrease in full-throttle output.

また、排ガス圧と吸気マニホルド員圧との差圧によって
排ガス還流が行われるため、もし排ガス還流通路8の流
通抵抗が等しければ、スロットル弁7の開度が小さく吸
気マニホルド負圧が高い運転状態ほど排ガス還流量は増
大することとなって、低負荷城において排ガス還流量が
過多となり、中高負荷域において排ガス還流量が過少と
なる不具合があるが、この不具合は制御弁14の機関出
力に反比例的に絞り量を減ずる関度特性によって解消さ
れる。同様に、空気通路35を介して二次空気の投入も
制御弁14の制御により好適な投入量特性を得ている。
In addition, since exhaust gas recirculation is performed by the differential pressure between the exhaust gas pressure and the intake manifold member pressure, if the flow resistance of the exhaust gas recirculation passage 8 is equal, the operating state where the opening degree of the throttle valve 7 is small and the intake manifold negative pressure is high is The amount of exhaust gas recirculation increases, and there is a problem that the amount of exhaust gas recirculation becomes excessive in low load ranges, and too small in medium and high load regions, but this problem is inversely proportional to the engine output of the control valve 14. This is solved by the relational characteristic that reduces the amount of aperture. Similarly, the supply of secondary air via the air passage 35 is controlled by the control valve 14 to obtain suitable supply amount characteristics.

機関冷態時(例えば冷却水通路42の水温が70℃以下
)には、サーモバルプ43の弁体46が開いており、大
気がェアフイルタ47を介して大気開放孔48より各大
気開放通路49,50,51,52に導かれている。
When the engine is cold (for example, when the water temperature in the cooling water passage 42 is 70°C or lower), the valve body 46 of the thermovalp 43 is open, and the atmosphere passes through the air filter 47 through the atmosphere opening hole 48 to the atmosphere opening passages 49, 50. , 51, 52.

従って、大気開放通路51に導入された大気は、負圧通
路92を介して負圧室31に導かれ、制御弁16を閉じ
るとともに、オリフイス98が介袋された通路91より
負圧通路88に流入し、負圧式点火進角装置89の負圧
室9川こ導かれているデイスブーストが弱められ、デイ
ストリビユータの真空進角はその弱められた分だけ遅れ
を生じ、ローアドバンス状態となる。
Therefore, the atmosphere introduced into the atmosphere opening passage 51 is guided to the negative pressure chamber 31 via the negative pressure passage 92, closes the control valve 16, and enters the negative pressure passage 88 from the passage 91 in which the orifice 98 is inserted. The discharge boost flowing into the negative pressure chamber 9 of the negative pressure type ignition advance device 89 is weakened, and the vacuum advance angle of the distributor is delayed by the weakened amount, resulting in a low advance state. .

また、大気開放通路50に導入された大気は、負圧通路
96、オリフィス65、負圧通路62を介して負圧室6
0に導かれ、この時ボート13に発生するVCU負圧の
影響は同ボート13に介装されたオリフィス103によ
りほとんどなく、負圧室60は大気圧となり、開閉弁5
6はスプリング63の付勢力により空気通路54を閉じ
、空気通路55を開いている。
Further, the atmosphere introduced into the atmosphere opening passage 50 passes through the negative pressure passage 96, the orifice 65, and the negative pressure passage 62 to the negative pressure chamber 6.
At this time, the VCU negative pressure generated in the boat 13 has almost no effect due to the orifice 103 installed in the boat 13, and the negative pressure chamber 60 becomes atmospheric pressure, and the on-off valve 5
6 closes the air passage 54 and opens the air passage 55 by the biasing force of the spring 63.

さらに、大気開放通路49に導入された大気は、負圧通
路94を介して負圧室26に導かれ、この時ECR負圧
の影響はボート12に介菱されたオリフイス102によ
って袷んどなく、また、チェックバルブ66には大気開
放通路52、負圧通路97を介して大気圧が作用してお
り、負圧室26は略大気圧となって制御弁15を閉じる
Further, the atmosphere introduced into the atmosphere opening passage 49 is guided to the negative pressure chamber 26 via the negative pressure passage 94, and at this time, the influence of the ECR negative pressure is suppressed by the orifice 102 installed in the boat 12. Further, atmospheric pressure acts on the check valve 66 via the atmosphere opening passage 52 and the negative pressure passage 97, and the negative pressure chamber 26 becomes approximately atmospheric pressure, thereby closing the control valve 15.

また、開閉弁56は空気通路55を開いているため、ェ
アフィルタ57、大気開放孔58より大気が空気通路5
5に導ぴかれ、この大気は差圧応勤装置38の負圧室4
0に導入されて同負圧室40を略大気圧とし、空気弁3
6は閉じている。以上より、エンジン袷態時の腰機中は
「ディストリビュータの真空進角が遅角状態となって「
排気温度が高められ、例えば排気通路に本実施例に示す
ごとく触媒コンバータが介袋されている場合、あるいは
サーマルリアクタ等の排ガス浄化装置が介袋されている
場合には、同排ガス浄化装置の昇温が促進され、また、
制御弁15,16および空気弁36が閉じられて排ガス
還流および混合気希薄化用空気の投入が停止されるため
、ドライバリティの悪化が防止されている。機関暖機後
(冷却水温が70q0以上)においてはサーモバルブ4
3の弁体46が大気開放通路49,50,51および5
2の総てを閉塞し、この状態でしかも低速運転状態、例
えば第2図において実線Jより左側の運転領域において
は、ボート13に発生するVCU員圧が負圧制御装置5
3の負圧室601こ導通されるが、このVCU負圧は4
・さくダイヤフラム59はスプリング63の付勢力で第
1図に示すごとく下方に位置しており、開閉弁56は機
関暖磯前と同様空気通路55を開き、空気通路54を閉
じている。
In addition, since the on-off valve 56 opens the air passage 55, the atmosphere enters the air passage 5 through the air filter 57 and the atmosphere opening hole 58.
5, this atmosphere is introduced into the negative pressure chamber 4 of the differential pressure response device 38.
0, the negative pressure chamber 40 is brought to approximately atmospheric pressure, and the air valve 3
6 is closed. From the above, when the engine is on the side, the vacuum advance of the distributor is retarded and
If the exhaust gas temperature is increased and, for example, a catalytic converter is installed in the exhaust passage as shown in this example, or if an exhaust gas purification device such as a thermal reactor is installed, the temperature of the exhaust gas purification device will increase. Warmth is promoted, and
Since the control valves 15 and 16 and the air valve 36 are closed to stop the exhaust gas recirculation and the injection of air for air mixture dilution, deterioration of the drive performance is prevented. After warming up the engine (cooling water temperature is 70q0 or more), thermo valve 4
The valve body 46 of No. 3 is connected to the atmosphere opening passages 49, 50, 51 and 5.
2 is closed, and in this state and in a low-speed operating state, for example, in the operating region to the left of the solid line J in FIG. 2, the VCU member pressure generated in the boat 13 is
3 negative pressure chamber 601 is conducted, but this VCU negative pressure is 4
- The suspension diaphragm 59 is positioned downward as shown in FIG. 1 by the biasing force of the spring 63, and the on-off valve 56 opens the air passage 55 and closes the air passage 54 as before the engine warm-up.

従って、この状態では負圧室26にECR員圧が導通さ
れ、負圧室31にデイスブーストが導通され、制御弁1
5,16は各員圧の大きさに応じた関度を得て適正な排
ガス還流が行なわれ、空気弁36は機関腰磯前と同様閉
状態に保持され、排ガス還流により充分なNOk低減効
果が達成されている。
Therefore, in this state, the ECR member pressure is conducted to the negative pressure chamber 26, the disboost is conducted to the negative pressure chamber 31, and the control valve 1
5 and 16 have a relationship depending on the pressure of each member, and proper exhaust gas recirculation is performed, and the air valve 36 is kept closed as in front of the engine waist, and the exhaust gas recirculation provides a sufficient NOk reduction effect. has been achieved.

一方、機関暖機後の高速運転状態例えば第2図において
実線Jより右側の運転領域においては、ボート13に発
生するVCU負圧が大きくなってスプリング63の付勢
力に抗してダイヤフラム59を第1図上方に吸引し、開
閉弁56は空気通路54を開き、空気通路55を閉じ、
空気通路54には大気開放孔58を介して大気が導入さ
れる。
On the other hand, in a high-speed operating state after warming up the engine, for example in the operating range to the right of the solid line J in FIG. 1, the on-off valve 56 opens the air passage 54, closes the air passage 55,
Atmospheric air is introduced into the air passage 54 through an atmospheric vent hole 58.

空気通路54に導入された大気は空気通路68、負圧通
路95,94を通って員圧室26に導びかれ、この場合
にもECR負圧の影響は少なく負圧室26は略大気圧と
なり、制御弁15は閉じる。また、空気通路54に導入
された大気は空気通路67、負圧通路92を介して負圧
室31に導かれ負圧室31が略大気圧となって制御弁1
6は閉じる。なお、この場合、オリフィス99の介装に
よりディスブーストには特に影響を及ぼさない。
The atmosphere introduced into the air passage 54 passes through the air passage 68 and the negative pressure passages 95 and 94 and is led to the member pressure chamber 26. In this case as well, the influence of the ECR negative pressure is small and the negative pressure chamber 26 is at approximately atmospheric pressure. Therefore, the control valve 15 is closed. Further, the atmosphere introduced into the air passage 54 is guided to the negative pressure chamber 31 via the air passage 67 and the negative pressure passage 92, and the negative pressure chamber 31 becomes approximately atmospheric pressure, and the control valve 1
6 closes. In this case, the interposition of the orifice 99 does not particularly affect the disboost.

ところで、空気通路55は開閉弁56により閉じられて
いるため、差圧応動装置38の負圧室40‘こはデイス
ブーストが導通されており、空気弁36はディスプース
トの大きさに応じた関度を得る。以上により、豚機後の
高速運転状態においては、腰機中と同様制御弁15およ
び16が閉じられて排ガス還流が停止され、一方〜空気
弁36が運転状態に応じた開度で開かれて空気通路35
より吸気通路4に空気が投入されるため、排ガス還流に
よる出力低下、迫趣し性能の低下さらには排気系の温度
過昇が防止されるとともに、混合気希薄化によってN0
×の発生量が低減され、燃費が向上しトしかも、過昇着
火によるノッキングの発生が抑制される。
By the way, since the air passage 55 is closed by the on-off valve 56, the negative pressure chamber 40' of the differential pressure response device 38 is connected to the discharge boost, and the air valve 36 adjusts the function depending on the magnitude of the displacement. get. As described above, in the high-speed operation state after the pig machine, the control valves 15 and 16 are closed to stop the exhaust gas recirculation as in the case of the waist machine, while the air valves 36 to 36 are opened at the opening degree according to the operating state. air passage 35
Since more air is injected into the intake passage 4, it is possible to prevent a decrease in output due to exhaust gas recirculation, a decrease in exhaust gas performance, and an excessive rise in temperature in the exhaust system.
The amount of x generated is reduced, fuel efficiency is improved, and the occurrence of knocking due to excessive ignition is suppressed.

また「負圧制御装置53の負圧通路62にオリフィス6
5を介したことにより低速から高速への過渡期において
ボート13に発生するVCU負圧の負圧室60への伝達
に遅れが生じて、運転状態が高速に移行されてもいまら
くの間は開閉弁56が切換作動せず「従って、増速時の
暫時の間急激な空燃比の変化が避けられてドライバビリ
ティの悪化が防止されるとともに、排ガス還流の作動停
止が遅らされて増遠時特に増大しがちなN瓜の発生量が
低減される。また、上詑実施例によれば増速あるいは減
速時、排ガス還流から大気投入に、または大気投入から
排ガス還流に切れ目なくスムーズに切換えられ「上記変
速途中において一時的に出力が大きく変動することなく
、ドライバビリティは良好である。
In addition, an orifice 6 is provided in the negative pressure passage 62 of the negative pressure control device 53.
5, there is a delay in transmitting the VCU negative pressure generated in the boat 13 to the negative pressure chamber 60 during the transition period from low speed to high speed, and even if the operating state is shifted to high speed, for the time being When the on-off valve 56 does not switch, a sudden change in the air-fuel ratio is avoided for a while during speed increase, preventing deterioration of drivability, and the stoppage of exhaust gas recirculation is delayed, resulting in an increase in speed. In addition, according to the above embodiment, when speeding up or decelerating, there is a seamless and smooth transition from exhaust gas recirculation to atmospheric input, or from atmospheric input to exhaust gas recirculation. ``Drivability is good, with no large temporary fluctuations in output during the above-mentioned gear shift.

ところで、機関暖機後であっても、外気温度が例えば0
℃以下と低温の場合には、サーモバルフ81がリリーフ
穴79を全閉または略全開状態とし、バキュームモータ
75の作動室77に高負圧を導びし・て暖気制御弁76
を全開するとともに、この高負圧はオリフィス101を
介して負圧通路97に導びかれ、さらにチェックバルブ
66、負圧通路62を介して負圧室601こ導びかれ、
ボート13に発生するVCU賃圧はオリフィス65の介
装により影響が少なく、負圧室60は後述する高速運転
状態を除いてVCU員圧の大きさに関係なく高負圧とな
って、上記高遠運転状態と同じく開閉弁56は空気通路
54を開き、空気通路55を閉じる。
By the way, even after the engine has been warmed up, if the outside temperature is, for example, 0.
℃ or lower, the thermovalve 81 fully closes or substantially fully opens the relief hole 79 and guides high negative pressure to the working chamber 77 of the vacuum motor 75 to open the warm air control valve 76.
is fully opened, and this high negative pressure is led to the negative pressure passage 97 via the orifice 101, and further to the negative pressure chamber 601 via the check valve 66 and the negative pressure passage 62,
The VCU pressure generated in the boat 13 has little influence due to the interposition of the orifice 65, and the negative pressure chamber 60 has a high negative pressure regardless of the VCU pressure, except in high-speed operating conditions, which will be described later. As in the operating state, the on-off valve 56 opens the air passage 54 and closes the air passage 55.

従って、外気温度が極度に低く、機関の燃焼性が悪く−
てN○×の排出量が少なく、また、ドライバビリティの
点でも問題のある運転状態において、排ガス還流は低止
され、ドライバビリティの悪化増大が防止されている。
Therefore, the outside air temperature is extremely low and the combustion performance of the engine is poor.
Under operating conditions in which the amount of N○× discharged is small and drivability is problematic, the exhaust gas recirculation is suppressed and the deterioration and increase in drivability is prevented.

高速運転状態においてはスロットル弁7の関度が大で、
吸気マニホルド員圧は低下し、サーモバルブ81がリリ
ーフ穴79を閉じていても負圧通路97を介してチェッ
クバルブ66に作用する負圧はチェックバルブ66の介
菱により負圧室60に導通されず、負圧制御装置53は
VCU負圧によって制御されることになる。本実施例に
おいては、負圧通路97に約200柳Hg以上の負圧が
作用しなければスプリングの付勢力でチェックバルブ6
6は開かないように設定されている。
In high-speed operating conditions, the throttle valve 7 has a large influence;
The intake manifold pressure decreases, and even though the thermovalve 81 closes the relief hole 79, the negative pressure acting on the check valve 66 through the negative pressure passage 97 is conducted to the negative pressure chamber 60 by the check valve 66. First, the negative pressure control device 53 is controlled by the VCU negative pressure. In this embodiment, if a negative pressure of approximately 200 Yanagi Hg or more does not act on the negative pressure passage 97, the check valve 6 is operated by the biasing force of the spring.
6 is set not to open.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は上記
実施例の作動を説明するための機関出力線図である。 1:吸気マニホルド、2:気化器、3:ェァクリリナ、
4:吸気通路、7ミスロツトル弁、8:排ガス還流通路
、11,12,13:ボート、14715,16:排ガ
ス還流量制御弁、27,32,38:差圧応動装置、2
6,29,40,60,90:負圧室、35:空気通路
、36:空気弁「 43:サーモバルブ、49,50,
51,52:大気開放通路、53:負圧制御装置、54
,55,67,68:空気通路、56:開閉弁、62,
78,88,91,92、93,94,95,96,9
7:負圧通路、65,86,87,98,99,100
,101,102,103:オリフイス、66,69:
チェックバルブ、70:吸気温度制御装置、72:ヒー
トカウル、73:ノーズ、74:暖気ダクト、75:バ
キュ−ムモータ、76:暖気制御弁、77:作動室、7
9:リリ−フ穴、81:サーモバルブ、89:点火進角
装置。 弟2図 紫J図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is an engine output diagram for explaining the operation of the above embodiment. 1: Intake manifold, 2: Carburetor, 3: Air cleaner,
4: Intake passage, 7 Misthrottle valve, 8: Exhaust gas recirculation passage, 11, 12, 13: Boat, 14715, 16: Exhaust gas recirculation amount control valve, 27, 32, 38: Differential pressure response device, 2
6, 29, 40, 60, 90: Negative pressure chamber, 35: Air passage, 36: Air valve 43: Thermo valve, 49, 50,
51, 52: Atmospheric opening passage, 53: Negative pressure control device, 54
, 55, 67, 68: Air passage, 56: Open/close valve, 62,
78, 88, 91, 92, 93, 94, 95, 96, 9
7: Negative pressure passage, 65, 86, 87, 98, 99, 100
, 101, 102, 103: Orifice, 66, 69:
Check valve, 70: Intake air temperature control device, 72: Heat cowl, 73: Nose, 74: Warm air duct, 75: Vacuum motor, 76: Warm air control valve, 77: Working chamber, 7
9: Relief hole, 81: Thermo valve, 89: Ignition advance device. Little brother 2 diagram Purple J diagram

Claims (1)

【特許請求の範囲】 1 負圧室を有し同負圧室に作用する制御負圧の大きさ
に応じて拝気通路より吸気通路に還流される排ガスの還
流量を制御する排ガス還流量制御手段、上記負圧室に吸
気通路内に発生する特定の吸気負圧を導通する第1の負
圧通路、上記負圧室を大気に開放する空気通路、負圧室
を有し同負圧室に発生する制御負圧の大きさに応じて上
記空気通路を開閉する負圧制御手段、バキユームモータ
により作動し大気温度の外気および機関の加熱により高
温となった暖気の吸気通路に導びかれる吸入割合を制御
する暖気制御弁、上記バキユームモータの作動室に吸気
負圧を導びく第2の負圧通路、上記バキユームモータの
作動室に大気を供給するリリーフ穴、吸気通路内の吸気
温度を検出して同吸気温度に応じて上記リリーフ穴の開
度を制御するサーモバルブ、上記負圧制御手段の負圧室
に吸気通路内に発生する特定の吸気負圧を導通する第3
の負圧通路および上記バキユームモータの作動室と上記
負圧制御手段の負圧室とを連通し、上記バキユームモー
タ方向のみ空気の流通が可能なチエツクバルブが介装さ
れた第4の負圧通路を具備し、上記吸気温度が低い場合
には上記サーモバルブが閉じて上記第2負圧通路を介し
て比較的大きな吸気負圧がバキユームモータの作動室に
供給され、暖気制御弁が開いて暖気の吸入割合が増大す
るとともに、上記第4負圧通路を介して上記比較的大き
な吸気負圧が上記負圧制御手段の負圧室に供給されて同
負圧制御手段が空気通路を大気開放して上記排ガス還流
量制御手段が閉塞状態となるように構成したことを特徴
とする内燃機関の吸気制御装置。 2 負圧室を有し同負圧室に作用する制御負圧の大きさ
に応じて排気通路より吸気通路に還流される排ガスの還
流量を制御する排ガス還流量制御手段、吸入混合気を希
薄化するために吸気系に設けられた吸気通路より投入さ
れる空気投入量を負圧室を有し同負圧室に作用する制御
負圧の大きさに応じて制御する空気量制御手段、上記各
負圧室の各々に吸気通路内に発生する特定の吸気負圧を
導通する第1の負圧通路、上記各負圧室を個々に大気に
開放する空気通路、負圧室を有し同負圧室に発生する制
御負圧の大きさに応じて上記空気通路の一方が開の時他
方を閉とする切換制御を行なう負圧制御手段、バキユー
ムモータにより作動し大気温度の外気および機関の加熱
により高温となった暖気の吸気通路に導びかれる吸入割
合を制御する暖気制御弁、上記バキユームモータの作動
室に吸気負圧を導びく第2の負圧通路、上記バキユーム
モータの作動室に大気を供給するリリーフ穴、吸気通路
内の吸気温度を検出して同吸気温度に応じて上記リリー
フ穴の開度を制御するサーモバルブ、上記負圧制御手段
の負圧室に吸気通路内に発生する特定の吸気負圧を導通
する第3の負圧通路および上記バキユームモータの作動
室と上記負圧制御手段の負圧室とを連通し上記バキユー
ムモータ方向にのみ空気の流通が可能なチエツクバルブ
が介装された第4の負圧通路を具備し、上記吸気温度が
低い場合には上記サーモバルブが閉じて上記第2負圧通
路を介して比較的大きな吸気負圧がバキユームモータの
作動室に供給され、暖気制御弁が開いて暖気の吸入割合
が増大するとともに、上記第4負圧通路を介して上記比
較的大きな吸気負圧が上記負圧制御手段の負圧室に供給
されて同負圧制御手段が上記排ガス還流量制御手段に接
続された空気通路を大気開放して上記空気量制御手段に
接続された空気通路を閉じ少なくとも上記排ガス還流量
制御手段が閉塞状態となるように構成したことを特徴と
する内燃機関の吸気制御装置。 3 特許請求の範囲第1項記載の装置において、負圧制
御手段の負圧室に吸気通路内に発生する特定の吸気負圧
を導通する負圧通路にオリフイスを介装した内燃機関の
吸気制御装置。 4 特許請求の範囲第1項記載の装置において、負圧制
御手段の負圧室に導通される吸気通路内に発生する特定
の吸気負圧が、吸気通路に介装されたスロツトル弁の全
閉位置において同スロツトル弁上流側自由端部の上流側
に位置し、スロツトル弁が開動されると上記自由端部の
下流側となる吸気管壁に設けられたポートに発生する負
圧である内燃機関の吸気制御装置。 5 特許請求の範囲第1項記載の装置において、排ガス
還流量制御手段の負圧室に大気開放通路を接続し、同通
路に機関温度を検出して機関の冷態時のみ開くサーモバ
ルブを介装した内燃機関の吸気制御装置。 6 特許請求の範囲第2項記載の装置において、排ガス
還流量制御手段の負圧室および負圧制御手段の負圧室の
各々に大気開放通路を接続し、上記両大気開放通路に機
関温度を検出して機関の冷態時のみ開くサーモバルブを
介装した内燃機関の吸気制御装置。 7 特許請求の範囲第2項記載の装置において、排ガス
還流量制御手段介装位置より下流側の排ガス還流通路に
吸入混合気希薄化用の空気通路を開口し、同空気通路の
開口位置より下流側の排ガス還流通路に気化器のスロツ
トル弁の開度に応じて作動する流量制御弁を介装した内
燃機関の吸気制御装置。 8 特許請求の範囲第2項記載の装置において、負圧制
御手段の負圧室に吸気通路内に発生する特定の吸気負圧
を導通する負圧通路にオリフイスを介装した内燃機関の
吸気制御装置。 9 特許請求の範囲第2項記載の装置において、負圧制
御手段の負圧室に導通される吸気通路内に発生する特定
の吸気負圧が、吸気通路に介装されたスロツトル弁の全
閉位置において同スロツトル弁上流側自由端部の上流側
に位置し、スロツトル弁が開動されると上記自由端部の
下流側となる吸気管壁に設けられたポートに発生する負
圧である内燃機関の吸気制御装置。
[Claims] 1. Exhaust gas recirculation amount control that has a negative pressure chamber and controls the amount of recirculation of exhaust gas that is recirculated from the intake passage to the intake passage in accordance with the magnitude of the control negative pressure acting on the negative pressure chamber. means, a first negative pressure passage that conducts a specific intake negative pressure generated in the intake passage to the negative pressure chamber, an air passage that opens the negative pressure chamber to the atmosphere, and a negative pressure chamber that includes a negative pressure chamber; Negative pressure control means opens and closes the air passage according to the magnitude of the control negative pressure generated in a second negative pressure passage that guides intake negative pressure to the working chamber of the vacuum motor; a relief hole that supplies atmospheric air to the working chamber of the vacuum motor; a thermovalve that controls the opening degree of the relief hole according to the intake air temperature; and a third valve that conducts a specific intake negative pressure generated in the intake passage to the negative pressure chamber of the negative pressure control means.
A fourth negative pressure passage is provided with a check valve that communicates the negative pressure passage of the vacuum motor with the working chamber of the vacuum motor and the negative pressure chamber of the negative pressure control means and allows air to flow only in the direction of the vacuum motor. However, when the intake air temperature is low, the thermovalve closes and relatively large intake negative pressure is supplied to the working chamber of the vacuum motor via the second negative pressure passage, and the warm air control valve opens to adjust the intake ratio of warm air. increases, the relatively large intake negative pressure is supplied to the negative pressure chamber of the negative pressure control means through the fourth negative pressure passage, and the negative pressure control means opens the air passage to the atmosphere to reduce the exhaust gas. An intake control device for an internal combustion engine, characterized in that the recirculation amount control means is configured to be in a closed state. 2 Exhaust gas recirculation amount control means having a negative pressure chamber and controlling the amount of recirculation of exhaust gas recirculated from the exhaust passage to the intake passage according to the magnitude of the control negative pressure acting on the negative pressure chamber, which dilutes the intake air-fuel mixture. an air amount control means having a negative pressure chamber and controlling the amount of air input from an intake passage provided in the intake system in accordance with the magnitude of the control negative pressure acting on the negative pressure chamber; A first negative pressure passage that conducts a specific intake negative pressure generated in the intake passage to each of the negative pressure chambers, an air passage that individually opens each of the negative pressure chambers to the atmosphere, and a negative pressure chamber. Negative pressure control means that performs switching control such that one of the air passages is open and the other closed depending on the magnitude of the controlled negative pressure generated in the negative pressure chamber, and is operated by a vacuum motor to heat the outside air at atmospheric temperature and the engine. a warm air control valve that controls the intake ratio of warm air that has become high in temperature and is guided to the intake passage; a second negative pressure passage that guides the intake negative pressure to the working chamber of the vacuum motor; and a supply of atmospheric air to the working chamber of the vacuum motor. a thermovalve that detects the intake air temperature in the intake passage and controls the opening degree of the relief hole according to the intake air temperature; A third negative pressure passage that conducts intake negative pressure and a check valve that connects the working chamber of the vacuum motor and the negative pressure chamber of the negative pressure control means and allows air to flow only in the direction of the vacuum motor are interposed. A fourth negative pressure passage is provided, and when the intake air temperature is low, the thermovalve is closed and a relatively large intake negative pressure is supplied to the working chamber of the vacuum motor via the second negative pressure passage, thereby controlling warm air. As the valve opens and the intake ratio of warm air increases, the relatively large intake negative pressure is supplied to the negative pressure chamber of the negative pressure control means through the fourth negative pressure passage, and the negative pressure control means The air passage connected to the exhaust gas recirculation amount control means is opened to the atmosphere and the air passage connected to the air amount control means is closed, so that at least the exhaust gas recirculation amount control means is in a closed state. Intake control device for internal combustion engines. 3. The device according to claim 1, for controlling the intake air of an internal combustion engine, in which an orifice is interposed in the negative pressure passage that conducts a specific intake negative pressure generated in the intake passage to the negative pressure chamber of the negative pressure control means. Device. 4. In the device according to claim 1, the specific intake negative pressure generated in the intake passage connected to the negative pressure chamber of the negative pressure control means causes the throttle valve disposed in the intake passage to be fully closed. An internal combustion engine in which negative pressure is generated in a port provided in an intake pipe wall that is located upstream of the upstream free end of the throttle valve and downstream of the free end when the throttle valve is opened. intake control device. 5. In the device set forth in claim 1, an air release passage is connected to the negative pressure chamber of the exhaust gas recirculation amount control means, and a thermovalve is connected to the passage to detect the engine temperature and open only when the engine is cold. Air intake control device for an internal combustion engine. 6. In the device according to claim 2, an atmosphere opening passage is connected to each of the negative pressure chamber of the exhaust gas recirculation amount control means and the negative pressure chamber of the negative pressure control means, and the engine temperature is connected to both the atmosphere opening passages. An intake control device for internal combustion engines equipped with a thermovalve that detects and opens only when the engine is cold. 7. In the device according to claim 2, an air passage for intake mixture dilution is opened in the exhaust gas recirculation passage downstream of the position where the exhaust gas recirculation amount control means is installed, and the air passage is opened downstream of the opening position of the air passage. An intake control device for an internal combustion engine that includes a flow control valve that operates in accordance with the opening degree of the throttle valve of the carburetor in the side exhaust gas recirculation passage. 8. In the device according to claim 2, the intake control of an internal combustion engine includes an orifice interposed in the negative pressure passage that conducts a specific intake negative pressure generated in the intake passage to the negative pressure chamber of the negative pressure control means. Device. 9. In the device according to claim 2, the specific intake negative pressure generated in the intake passage connected to the negative pressure chamber of the negative pressure control means causes the throttle valve disposed in the intake passage to be fully closed. An internal combustion engine in which negative pressure is generated in a port provided in an intake pipe wall that is located upstream of the upstream free end of the throttle valve and downstream of the free end when the throttle valve is opened. intake control device.
JP52081658A 1977-07-07 1977-07-07 Internal combustion engine intake control device Expired JPS605782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52081658A JPS605782B2 (en) 1977-07-07 1977-07-07 Internal combustion engine intake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52081658A JPS605782B2 (en) 1977-07-07 1977-07-07 Internal combustion engine intake control device

Publications (2)

Publication Number Publication Date
JPS5417410A JPS5417410A (en) 1979-02-08
JPS605782B2 true JPS605782B2 (en) 1985-02-14

Family

ID=13752417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52081658A Expired JPS605782B2 (en) 1977-07-07 1977-07-07 Internal combustion engine intake control device

Country Status (1)

Country Link
JP (1) JPS605782B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815046U (en) * 1981-07-22 1983-01-29 シャープ株式会社 Ink mist absorption device for inkjet printers
JP4298099B2 (en) 1999-12-07 2009-07-15 曙ブレーキ工業株式会社 Ventilated disc

Also Published As

Publication number Publication date
JPS5417410A (en) 1979-02-08

Similar Documents

Publication Publication Date Title
JPS6025604B2 (en) Intake control method for internal combustion engine
US4117814A (en) Intake regulator for internal combustion engine
US4484549A (en) 4-Cycle internal combustion engine
US3827414A (en) Exhaust recirculation
JPS592790B2 (en) Air-fuel ratio control device for internal combustion engines
JPS605782B2 (en) Internal combustion engine intake control device
JP3538860B2 (en) Engine intake system
JPH06323201A (en) Exhaust gas recirculation system of engine
KR820001570B1 (en) Intake regulator for an internal combustion engine
JPS636463Y2 (en)
JPS624664Y2 (en)
JPH078836Y2 (en) EGR device for turbo cars
JPS6111480Y2 (en)
JP3260508B2 (en) Gas-fuel mixture mixture formation device
JPS5913343Y2 (en) Vehicle internal combustion engine
JPS6038039Y2 (en) Engine air-fuel ratio control device
JPS6214366Y2 (en)
KR810001925B1 (en) Air-fuel ratio regulator for internal combustion engine
JPH0212286Y2 (en)
JPS5918120Y2 (en) engine carburetor
JPS597566Y2 (en) Dual intake internal combustion engine
JPS6161918A (en) Air intake device of internal-combustion engine
JPS6012945Y2 (en) Ignition timing control device
JPS5823977Y2 (en) Exhaust recirculation device
JPS6315552Y2 (en)