JPS61130536A - Iron pillar leg - Google Patents

Iron pillar leg

Info

Publication number
JPS61130536A
JPS61130536A JP59252005A JP25200584A JPS61130536A JP S61130536 A JPS61130536 A JP S61130536A JP 59252005 A JP59252005 A JP 59252005A JP 25200584 A JP25200584 A JP 25200584A JP S61130536 A JPS61130536 A JP S61130536A
Authority
JP
Japan
Prior art keywords
anchor bolt
tension
column base
base
steel column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59252005A
Other languages
Japanese (ja)
Other versions
JPH0214496B2 (en
Inventor
英成 松尾
真武 直政
鈴木 周衛
邦昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Proterial Ltd
Original Assignee
Kajima Corp
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Hitachi Metals Ltd filed Critical Kajima Corp
Priority to JP59252005A priority Critical patent/JPS61130536A/en
Priority to KR1019850007752A priority patent/KR930002646B1/en
Publication of JPS61130536A publication Critical patent/JPS61130536A/en
Publication of JPH0214496B2 publication Critical patent/JPH0214496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/388Separate connecting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Foundations (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄骨建築物の鉄骨柱をベースプレーFを介して
基礎コンクリートに固着した鉄骨柱脚に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steel column base in which a steel column of a steel frame building is fixed to foundation concrete via a base plate F.

〔従来の技術〕[Conventional technology]

従来から建築物の鉄骨柱脚は、第7図(基礎コンクリー
トの断面を示す斜線を省略した。池の図も同じ)に示す
ように、鋼板を鉄骨柱2の下端部に溶接したベースプレ
ート1を基礎コンクリート4中に定着させたアンカーボ
ルト3に緊結する、施工が簡単な露出型の柱脚が用いら
れている。しかしこの柱脚は外力(柱脚に発生する曲げ
モーメント)に対して柱脚部の回転変形が大き(、その
ためにMi染物の上部架構で多大な応力を負担しなけれ
ばならないという欠陥があった。
Conventionally, steel frame column bases for buildings have been constructed using a base plate 1 in which a steel plate is welded to the lower end of the steel frame column 2, as shown in Figure 7 (diagonal lines indicating the cross section of the foundation concrete are omitted. The same applies to the diagram of the pond). Exposed column bases that are easy to construct are used, which are fastened to anchor bolts 3 fixed in foundation concrete 4. However, this column base suffered from large rotational deformation of the column base in response to external force (bending moment generated on the column base), which resulted in the defect that the upper frame of the Mi-dyed fabric had to bear a large amount of stress. .

従って最近は、この柱脚を改良した工法として、第8図
に示すようにアンカーボルト3の基礎コンクリート4へ
の定着は、アンカーボルト3の最下端の77り部3b等
で行ない、フックHit 3 bの上方の紬% 3 a
がコンクリート4との付着をなくした軸方向不拘束55
3 c となっているアンカーボルト3及び基礎コンク
リート4上にベースプレート1をセットし、ナツト5に
よってベースプレート]を締め付け、アンカーボルト3
に張力を導入した鉄骨柱脚6が用いられる1ようになっ
てきた。
Therefore, recently, as an improved construction method for this column base, the anchor bolt 3 is fixed to the foundation concrete 4 at the lowermost part 77 of the anchor bolt 3, etc., as shown in FIG. Tsumugi % above b 3 a
Axial direction unrestrained 55 which eliminates adhesion with concrete 4
3C Set the base plate 1 on the anchor bolt 3 and the foundation concrete 4, tighten the base plate with nuts 5, and tighten the anchor bolt 3.
Steel column bases 6 with tension applied to them have come to be used1.

〔発明が解決しようとする問題、α〕[Problem that the invention seeks to solve, α]

しかし、この鉄骨柱脚は多少固定度(回転剛性)が増大
し、建築物上部架構の負担応力は、ある程度軽減できる
が、第9図に示すように以下の欠点がある。
However, although the fixity (rotational rigidity) of this steel column base increases to some extent and the stress borne by the upper frame of the building can be reduced to some extent, it has the following drawbacks as shown in FIG. 9.

(1)柱51部に外力(曲げそ一メン1M)が作用した
場合、ベースプレート1が局部的にしかも複雑に変形す
る。
(1) When an external force (bending force 1M) is applied to the column 51, the base plate 1 deforms locally and in a complicated manner.

(2) アンカーボルト3に導入する張力の値が明確に
されておらず、各建築物において、この張力の値がまち
まちであると同時に、性能(固定度)の評価方法も定ま
っていなすなわち、従来の改良型鉄骨柱脚は、上述(]
)(2)の理由で、アンカーボルトの性能を最大限生か
した高い固定度が得られないばかりか、固定度を建築置
設計時に、正確に把握することが困難であり、!!染物
の安全性確保という点において、大きな不安を残したも
のである6本発明は、これらの問題点を解決するための
1らのであり、アンカーボルトの性能を最大限発揮でき
る固定度の高い、しがも固定度の評価が明確な鉄骨柱脚
を提供し、11!染物の安全性を確保することを目的と
するものである。
(2) The value of the tension to be introduced into the anchor bolt 3 has not been clarified, and the value of this tension varies for each building, and at the same time, the method for evaluating performance (fixation degree) has not been determined. The conventional improved steel column base is as described above (]
) Due to (2), not only is it not possible to obtain a high degree of fixation that takes full advantage of the performance of the anchor bolt, but it is also difficult to accurately grasp the degree of fixation when designing a building. ! In terms of ensuring the safety of dyed products, there remains great anxiety.6 The present invention is one of the first steps to solve these problems. We provide steel column bases with a clear evaluation of the degree of fixation, and are rated 11! The purpose is to ensure the safety of dyed products.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の鉄骨柱脚は、第1図に示すように以下の点が大
きなりf?lJtである。
As shown in Fig. 1, the steel frame column base of the present invention has the following major points. It is lJt.

(a)  ベースプレート1は、鉄骨柱2と接合する部
分1a、を突出させ、基部1bから端部1cにかけて勾
配を設けて基部1bを中高にし、柱2と溶接またはボル
ト接合できる剛性の高い鋳造または鍛造製の柱脚金物を
用いた6 (b)  アンカーボルト7の基礎コンクリート4への
定着は、アンカーボルト7の軸部7aとコンクリートと
の付着をなくした不拘束部7bのある不拘束状態で、ア
ンカーフレームまたはアンカープレート8を用いて行な
った。
(a) The base plate 1 has a protruding portion 1a that connects with the steel column 2, a slope from the base 1b to the end 1c to make the base 1b medium and high, and is made of a highly rigid cast or plated material that can be welded or bolted to the column 2. (b) The anchor bolt 7 is anchored to the foundation concrete 4 using forged column base hardware in an unrestrained state where the shaft portion 7a of the anchor bolt 7 and the unrestrained portion 7b are free from adhesion to the concrete. , using an anchor frame or anchor plate 8.

(c、)  ベースプレート1の基礎コンクリート41
への固着は、ベースプレート】をアンカーボルト7にセ
ノトシた後、アンカーボルト7に降伏値の0.15〜1
.2倍の張力を導入した。
(c,) Foundation concrete 41 of base plate 1
To fix the base plate to the anchor bolt 7, attach the yield value of 0.15 to 1 to the anchor bolt 7.
.. Twice the tension was introduced.

〔作 用〕[For production]

本発明における鉄骨柱脚は、ベースプレート1の剛性が
非常に高いので、その変形を極端に小さくすることがで
き、ベースプレート1に起因する柱脚の回転変形をほば
0にする二とができる。また剛性の高いベースプレート
1を用いると同時に、アンカーボルト7に所定の張力を
導入することによって、柱脚部の力学的メカニズムを単
純化でき、柱脚の回転剛性に関する評価を正確に把握で
きるようにしたものである。
In the steel frame column base according to the present invention, since the base plate 1 has very high rigidity, its deformation can be extremely reduced, and the rotational deformation of the column base caused by the base plate 1 can be reduced to almost zero. In addition, by using a highly rigid base plate 1 and at the same time introducing a predetermined tension to the anchor bolts 7, the mechanical mechanism of the column base can be simplified, and the rotational rigidity of the column base can be evaluated accurately. This is what I did.

実験によれば、本発明による鉄骨柱脚の外力(曲げモー
メント)に対する回転変形の挙動は、第2図(al中に
実線で示すような単純化された形体となる。
According to experiments, the rotational deformation behavior of the steel column base according to the present invention in response to external force (bending moment) has a simplified shape as shown by the solid line in FIG. 2 (al).

すなわち、柱脚部の回転剛性(M/θ)は、第、2FA
(b)におけるベースプレート1の引張側アンカーボル
ト位置の底面1eと基礎コンクリート上面4aとが離間
する点A(第2図(a))までと、引張側アンカーボル
ト7が降伏する点B (第2図(a))までと、さらに
その後との3区分に別れて変化する。
In other words, the rotational rigidity (M/θ) of the column base is
In (b), the bottom surface 1e of the base plate 1 at the tension side anchor bolt position and the top surface 4a of the foundation concrete are separated from each other up to point A (FIG. 2(a)), and the point B (second point) where the tension side anchor bolt 7 yields. It changes in three categories: up to (a) in Figure (a) and after that.

第2図(aJ中に−、ヴ鎖線で示した回転剛性は、ベー
スプレート1を完全剛体とし、アンカーボルト7には張
力を導入しない場合の回転剛性の理論値であり、幾何的
に(1)式で与えられる。
The rotational rigidity indicated by dashed lines in Figure 2 (aJ) is the theoretical value of rotational rigidity when the base plate 1 is a completely rigid body and no tension is introduced into the anchor bolt 7, and geometrically (1) It is given by Eq.

Ko:アンカーボルトに張力を導入しない場合の柱脚部
の回転剛性(Lm/rad)E :アンカーボルトのヤ
ング係数(L/cm’)AB:引張側アンカーボルト群
の総断面積(cm’)! :アンカーボルト間距R(a
m) L :アンカーボルト有効埋込深さ (am 1本発明
における鉄骨柱脚の0〜A間での回軒剛性には引張接合
と同様の理論(2)式に示すようにアンカーボルトに張
力を導入しない場合の(1+α)倍のものが得られる。
Ko: Rotational rigidity of the column base when no tension is introduced into the anchor bolt (Lm/rad) E: Young's modulus of the anchor bolt (L/cm') AB: Total cross-sectional area of the tension-side anchor bolt group (cm') ! : Distance between anchor bolts R (a
m) L: Anchor bolt effective embedment depth (am 1) In the present invention, the eave rigidity of the steel column base between 0 and A is based on the same theory as that of tensile joints, as shown in equation (2), where tension is applied to the anchor bolt. (1+α) times as much as when not introducing.

この場合、αはアンカーボルトと基礎コンクリートとの
バ牟定数比で(3)式で与えられる。
In this case, α is the constant ratio of the anchor bolt to the foundation concrete and is given by equation (3).

K;(1+α)Ko  ・・・・・・・・・・・・ (
2)Ac二基礎コンクリートの有効断面積(Cl3)A
b:アンカーボルトの断面積(cs+”)n :アンカ
ーボルトと基礎コンクリートとのヤング係数比 (1+α)の値は、一般に使用される5S41材等のア
ンカーボルト7では、約5〜6となり、0〜A間ではア
ンカーボルト7に張力を導入することで、大幅に高い回
転剛性が得られることになる。ところが、A−B間では
、ベースプレート1の底面が基礎コンクリート上面4a
より離間すると、アンカーボルトは張力を導入しない場
合と同じ単純引張りの状態に変化するので、回転剛性は
(1)式のに0と同値となり、0〜AIIITの値を下
まわる。
K; (1+α)Ko ・・・・・・・・・・・・ (
2) Effective cross-sectional area of Ac two foundation concrete (Cl3)A
b: Cross-sectional area of the anchor bolt (cs+”) n: The value of the Young's modulus ratio (1+α) between the anchor bolt and the foundation concrete is approximately 5 to 6 for the commonly used anchor bolt 7 such as 5S41 material, which is 0. - A, significantly higher rotational rigidity can be obtained by introducing tension to the anchor bolt 7. However, between A and B, the bottom surface of the base plate 1 touches the top surface of the foundation concrete 4a.
When the anchor bolts are separated further apart, the anchor bolt changes to a state of simple tension, which is the same as when no tension is introduced, so the rotational rigidity becomes the same value as 0 in equation (1), and is less than the value of 0 to AIIIT.

ここで建築業界では一般に、柱脚の許容耐力は柱脚全体
の降伏値をもって定めているので、本発明の柱脚の許容
耐力は第2図(al中のMy(アンカーボルト7が降伏
する曲げモーメント)の値となる。従って柱脚の許容耐
力がMyであり、離間モーメントMsがMyを下まわる
場合1よ、柱脚の回転剛性をに′としてしか評価せざる
をえず、高い回転剛性Kを確保することが困難となる。
Here, in the construction industry, the allowable proof stress of a column base is generally determined by the yield value of the entire column base, so the allowable proof stress of the column base of the present invention is shown in Fig. 2 (My (the bending angle at which the anchor bolt 7 yields) Therefore, if the allowable strength of the column base is My and the separation moment Ms is less than My, the rotational stiffness of the column base must be evaluated as It becomes difficult to secure K.

また逆に高い回転剛性Kを保証するためには、柱脚の許
容耐力をMPからMsに下げて評価せざるを得なくなり
、耐力的なデメリットが生じる。
On the other hand, in order to guarantee a high rotational rigidity K, the allowable strength of the column base must be evaluated by lowering it from MP to Ms, resulting in a strength disadvantage.

それゆ元に高い回転剛性Kを保証し、本末柱脚部が保有
する高い許容耐力Myを確保するため、には、MsをM
yと同値とすればよい。
Therefore, in order to guarantee a high rotational rigidity K and a high allowable strength My of the main column base, Ms is set to M.
It may be set to the same value as y.

ところで離間モーノン)Msは、アンカーボルトへの導
入張力の値に関係し、(4)式で与えられる。
By the way, the separation force Ms is related to the value of the tension introduced into the anchor bolt, and is given by equation (4).

Ms 学 To・l   ・・・・・・・・・・・・・
・・  (4)To:7ン力−ボルトの導入張力の(a
 (L/c+*”) 1 :アンカーボルト間距1% Cc醜)また柱脚の許
容耐力は、 (5)式によって与えられる。
Ms Gaku To・l・・・・・・・・・・・・・
... (4) To: 7 ton force - bolt introduction tension (a
(L/c+*”) 1: Distance between anchor bolts 1% Cc) Also, the allowable strength of the column base is given by formula (5).

M、  : T、−p  =  σy−AB−1  ・
・・・・・・・・ (5)Ty : 7ンカーボルト降
伏引張力(t/cm’)σy:アンカーボルト降伏応力
度(L/Cm”)それゆえに、Ms=Myとするために
は T0=77=  σF’ABとすればよく、これが
アンカーボルトの性能を許容耐力的にもまた回松剛鴨的
を二ち最大限lこ発揮する方法である。
M, : T, -p = σy-AB-1 ・
・・・・・・・・・ (5) Ty: 7 Anchor bolt yield tensile force (t/cm') σy: Anchor bolt yield stress (L/Cm'') Therefore, in order to set Ms=My, T0= 77=σF'AB, and this is the method to maximize the performance of the anchor bolt both in terms of allowable strength and in terms of strength.

従って基本的には、アンカーボルトへの導入張力を付与
する効果は、アンカーボルト降伏応力度の0〜1倍まで
の間で発生する。
Therefore, basically, the effect of applying tension to the anchor bolt occurs between 0 and 1 times the anchor bolt yield stress.

ところが、77カーボルトの導入張力はコンクリートの
乾燥収縮およびクリープによって解除されることが従来
かられかっている。
However, it has been known that the tension introduced into the 77 car bolt is released by drying shrinkage and creep of the concrete.

発明者らが行なうtこアンカーボルト張力除荷試験結果
を第10図に示す。
The results of the anchor bolt tension unloading test conducted by the inventors are shown in FIG. 10.

第10図の試験はアンカーボルトの張力の経時変化(所
定時11!!経過後の張力と初期導入張力との比)を調
査したもので、柱脚食物、鉄骨柱、基礎コンクリート、
アンカーボルトで構成された、第11図に示すような実
際の鉄骨l!築物の鉄骨柱脚に相当する供試体(後記第
1表のN015の供試体)により行なったものである。
The test shown in Figure 10 investigated changes in anchor bolt tension over time (the ratio of the tension after a predetermined time of 11!! to the initially introduced tension).
An actual steel frame, as shown in Figure 11, consisting of anchor bolts! The test was carried out using a specimen corresponding to a steel column base of a building (specimen No. 015 in Table 1 below).

この災1tこより、アンカーボルトの導入張力がσyの
近傍では、アジカーボルトの応力解除に一定の規則性が
あることを発見した。すなわち、通常使用される打設後
4週間以上経過した基1i!コンクリートのアンカーボ
ルトに張力を導大した場合、応力解除が約4日で安定し
、約20%になる。このことは、発明者らが通常経験し
ている、基礎フンクリートを打設し上記1間経過後、ア
ンカーボルトを増締めする量とよく合致している。
From this disaster, it was discovered that there is a certain regularity in the stress release of the Ajiker bolt when the introduced tension of the anchor bolt is around σy. That is, base 1i! which has been used for more than 4 weeks after pouring in normal use! When tension is increased in concrete anchor bolts, the stress release stabilizes in about 4 days and reaches about 20%. This corresponds well with the amount of tightening of the anchor bolts after the above-mentioned 1 hour has elapsed after the foundation concrete is cast, which the inventors usually experience.

従って、上記実験結果から、アンカーボルトにσyの2
0%増の1.2σyの導入張力を付与しておけば、経時
変化後最終的にその値が1、Ofy となり理想的であ
る。
Therefore, from the above experimental results, the anchor bolt has σy of 2
If an introduction tension of 1.2σy, which is an increase of 0%, is applied, the value will eventually become 1, Ofy, after aging, which is ideal.

従って、本発明においては1.2σyを導入張力の上限
値とした。
Therefore, in the present invention, 1.2σy was set as the upper limit of the introduced tension.

しかしながら、日本建築センター昭和56年2月1日発
行の[構造計算指針・同解説」によると安全性を高度に
保持する見地から、アンカーボルトへの導入張力(許容
応力度)は、JIs規格の材質のアンカーボルトを使用
する場合は、1.1σyを上限の許容値として定めてい
る。
However, according to the ``Structural Calculation Guidelines and Explanations'' published by the Japan Building Center on February 1, 1981, from the standpoint of maintaining a high level of safety, the tension introduced into anchor bolts (allowable stress) is set according to JIs standards. When using anchor bolts made of other materials, 1.1σy is set as the upper limit allowable value.

従って、上記指針の上限許容値が改定されない1限り実
際の施工は、アンカーボルトの性能を1効率よくかつ安
全に発揮させるため、アンカーボルトに1.1σyまで
の導入張力を付与するこ゛とが望ましい。
Therefore, as long as the upper limit tolerance of the above guideline is not revised, in actual construction, it is desirable to apply an introductory tension of up to 1.1σy to the anchor bolt in order to efficiently and safely demonstrate the performance of the anchor bolt.

また本発明によるアンカーボルト導入張力の下限値は以
下の理由によって、0.15 fyとした。
Further, the lower limit value of the anchor bolt introduction tension according to the present invention was set to 0.15 fy for the following reason.

すなわち、アンカーボルトの導入張力が0の場合は、柱
脚は第3図に示すようなスリップ型となることは数多く
の実験結果がら明らかであり、柱脚に発生する曲げモー
メントが正負逆松するところでは、柱脚に大きな曲げモ
ーメントが発生しなくても、柱脚が大巾に回転変形を起
こす形態となる。そしてこれが上部構造に悪影響を及ぼ
すことにつながることは周知の@実である。
In other words, it is clear from numerous experimental results that when the tension introduced into the anchor bolt is 0, the column base assumes a slip type as shown in Figure 3, and the bending moment generated in the column base changes in positive and negative directions. By the way, even if a large bending moment does not occur in the column base, the column base undergoes extensive rotational deformation. It is a well-known fact that this can have a negative impact on the superstructure.

ここで柱脚を第4図に示すような良好な性能(紡錘形の
復元力特性)を有するものにするためには、アンカーボ
ルトに導入張力の完全な解除を起こさせないことが必要
条件である。
In order to make the column base have good performance (spindle-shaped restoring force characteristics) as shown in FIG. 4, it is necessary to prevent the anchor bolt from completely releasing the introduced tension.

1すなわち、アンカーボルトの導入張力が、〇−1〜0
.2σyの低いレベルでは、アンカーボルトの応力解除
は、コンクリートの乾燥収縮に上るものが約0.05σ
y1コンクリートのクリープによるものが約0.02σ
yとなり、合計的0.07σyの応力解除が起こること
を発見した。従って安全率を約2とし導入張力(応力度
)を最低0,15σYに設定すれば、経時的にアンカー
ボルトの導入張力は完全に解除されず(0,08σy残
る)、柱脚部の性能も第4図に示す良好な性能を確保で
きる。
1, that is, the tension introduced into the anchor bolt is between 〇-1 and 0.
.. At a low level of 2σy, the stress relief of the anchor bolt is approximately 0.05σ above the drying shrinkage of the concrete.
y1 Concrete creep is approximately 0.02σ
y, and a total stress release of 0.07σy was found to occur. Therefore, if the safety factor is set to about 2 and the introduced tension (stress degree) is set to a minimum of 0.15σY, the introduced tension of the anchor bolt will not be completely released over time (0.08σy will remain), and the performance of the column base will deteriorate. Good performance shown in FIG. 4 can be ensured.

従って本発明は、アンカーボルトの導入張力(応力度)
の下限値を0815σyとした。
Therefore, the present invention provides an introduction tension (stress degree) of the anchor bolt.
The lower limit of is set to 0815σy.

〔実施例〕〔Example〕

第11図(a) 、 (b)および第1表に示す各部寸
法の鉄骨柱脚の回転剛性を測定し、その結果を同じく第
1表中に示す。
The rotational rigidity of the steel column base having the dimensions shown in FIGS. 11(a) and 11(b) and Table 1 was measured, and the results are also shown in Table 1.

第1表中のに0はアンカーボルトに張力を導入しない場
合、すなわち、従来の鉄骨柱脚の回転剛性であり、Kは
アンカーボルトに張力を導入1した本発明による鉄骨柱
脚の回転剛性である1゜第1表かられかるように、本発
明による鉄骨柱脚の回転剛性には、従来のものの回転剛
性に0の5〜6倍であり、極めて高いものである。
In Table 1, 0 is the rotational stiffness of the conventional steel column base when no tension is introduced into the anchor bolt, and K is the rotational rigidity of the steel column base according to the present invention when tension is introduced into the anchor bolt. As can be seen from Table 1, the rotational rigidity of the steel column base according to the present invention is extremely high, being 5 to 6 times the rotational rigidity of the conventional one.

なお、本発明におけるベースプレート1において、鉄骨
柱と接合する部分1&を突出させているのは、注2との
溶接時の歪をベースプレート底面1dに及ぼさないよう
に考匣したものである。
In addition, in the base plate 1 of the present invention, the reason why the part 1& that connects with the steel column is made to protrude is to prevent distortion during welding with the base plate 1d from being applied to the bottom surface 1d of the base plate.

また基部1bから端n1eにかけて勾配を設けて、基部
を中高にしているのは、第5図中に矢印で示すようにア
ンカーボルト7の導入張力の効果を、立ち上がり基礎コ
ンクリート4の全域に4允るためのものである。
Furthermore, the reason why the slope is provided from the base 1b to the end n1e to make the base mid-height is that the effect of the tension introduced by the anchor bolt 7 is increased by 4 mm over the entire area of the rising foundation concrete 4, as shown by the arrow in FIG. It is for the purpose of

しかして、ベースプレートとしては、例えば特公昭51
−47963号、特公昭52−13642号、同433
30号、特公昭56−30425号等の各公報に記載さ
れた柱脚金物を泪いると本発明の効果を十分に発揮させ
ることができる。
However, as a base plate, for example,
-47963, Special Publication No. 52-13642, 433
The effect of the present invention can be fully exhibited by using the column base hardware described in each publication such as No. 30 and Japanese Patent Publication No. 56-30425.

1前述の本発明による鉄骨柱脚は、第1.5図では柱と
ベースプレートとを溶接で接合する形式のものを示した
が、第6図に示すようにボルト接合によっても接合する
ことができる。
1 The above-described steel frame column base according to the present invention is shown in Fig. 1.5 in which the column and base plate are joined by welding, but as shown in Fig. 6, they can also be joined by bolt connection. .

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明の鉄骨柱脚は、アンカー
ボルトへの導入張力(応力度)を0゜15〜1.2σy
の値に設定したので、7ンカーボルトの性能を許¥Fi
t力的に最大限発揮することができ、しかも柱脚の回転
剛性も高く評価できる。
As described above, the steel column base of the present invention has a tension (stress degree) introduced into the anchor bolt of 0°15 to 1.2σy.
Since the value is set to , the performance of 7 anchor bolts is allowed.
It is possible to exert maximum force in terms of torque, and the rotational rigidity of the column base can also be highly evaluated.

また、地震時等の正負繰り返し応力(柱脚に発生する曲
げモーメント)に対しても、良好な性能(紡錘形復元力
特性)を確保できる。
In addition, good performance (spindle-shaped restoring force characteristics) can be ensured against repeated positive and negative stresses (bending moments generated in column bases) such as during earthquakes.

またさらに、柱脚部の力学的メカニズムを単純化するこ
とにより、柱脚部の性能(回転剛性         
 (および耐力)を正確に把握でき、建築物の安全性を
高めることができる。
Furthermore, by simplifying the mechanical mechanism of the column base, the performance of the column base (rotational rigidity)
(and yield strength) can be accurately determined, increasing the safety of buildings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す鉄骨柱脚の断1面図、
tA2図(、)は本発明による鉄骨柱脚の外力に対する
回転変形の挙動を示す図、fJS2図(b)は同じく回
転変形の俣弐図、第3図はアンカーボルトに張力を導入
した従来の鉄骨柱脚の復元力特性図、@4図は同じく本
発明による鉄骨柱脚の復元力特性図、第5図は本発明に
よろ鉄骨柱脚のベースプレート部分の拡大図、第6図は
本発明の他の実施例を示す断面図、第7図は従来の鉄骨
柱脚の一例を示す断面図、第8図はアンカーボルトに張
力を導入した従来の鉄骨柱脚の断面図、第9図(a) 
、 (b)はアンカーボルトに張力を導入した従来の鉄
骨柱脚に外力(曲げモーメント)が作用した時の状態を
示す正面断面図および側面断面図、第10図はアンカー
ボルトの張力の経時変化を示す図、第11図(a) 、
 (b)は本発明の実施例における供試体の平面図およ
び側面断面図である。 1 :ベースプレート、1a :突出部、 1b: 基
部、 1c :端部、 2 :鉄骨柱、 4 :基礎コ
ンクリート、 6 :鉄骨柱脚、 7:7ン1カーボル
ト、7a :帖部、7b :不拘束部、8 :アンカー
7レーム(アンカープレート)代理人 弁理士 本  
間     崇第1閏 第2図 ′4.5図 第7回          第り日 傭q回 (a)                 (b)F/
/隠 (b)
FIG. 1 is a cross-sectional view of a steel column base showing an embodiment of the present invention;
Figure tA2 (,) is a diagram showing the behavior of rotational deformation of the steel column base according to the present invention in response to external force, Figure fJS2 (b) is also a figure of Mata 2 showing rotational deformation, and Figure 3 is a diagram showing the behavior of rotational deformation of the steel column base according to the present invention. Figure 4 is a restoring force characteristic diagram of a steel column base according to the present invention, Figure 5 is an enlarged view of the base plate portion of a steel column base according to the present invention, and Figure 6 is an enlarged view of the base plate portion of a steel column base according to the present invention. 7 is a cross-sectional view showing an example of a conventional steel column base, FIG. 8 is a cross-sectional view of a conventional steel column base in which tension is introduced into the anchor bolt, and FIG. 9 is a cross-sectional view showing an example of a conventional steel column base. a)
, (b) is a front sectional view and a side sectional view showing the state when an external force (bending moment) is applied to a conventional steel column base in which tension is introduced into the anchor bolt, and Fig. 10 is a change in the tension of the anchor bolt over time. A diagram showing FIG. 11(a),
(b) is a plan view and a side sectional view of a specimen in an example of the present invention. 1: Base plate, 1a: Projection, 1b: Base, 1c: End, 2: Steel column, 4: Foundation concrete, 6: Steel column base, 7: 7-1 car bolt, 7a: Chapter, 7b: Unrestrained Part, 8: Anchor 7 frame (anchor plate) agent patent attorney Hon.
Takashi Ma 1st leap 2nd figure '4.5 Figure 7th 1st leap (a) (b) F/
/hidden (b)

Claims (1)

【特許請求の範囲】[Claims] 鉄骨柱と接合する部分を突出させ、該突出部分の基部か
ら端部に向かって漸次肉厚を変化させた鋳造または鍛造
製の柱脚金物に、前記鉄骨柱を溶接またはボルトにより
接合し、該柱脚金物を、軸方向不拘束状態で基礎コンク
リート中に埋設固定したアンカーボルトに降伏点の0.
15〜1.2倍の引張力を付与して緊結したことを特徴
とする鉄骨柱脚。
The steel column is joined by welding or bolts to a cast or forged column base hardware in which the part to be connected to the steel column protrudes, and the thickness of the protruding part gradually changes from the base to the end. The column base metal fittings are fixed to the anchor bolts buried in the foundation concrete without being constrained in the axial direction, and the yield point is 0.
A steel column pedestal characterized by being tightened by applying a tensile force of 15 to 1.2 times.
JP59252005A 1984-11-30 1984-11-30 Iron pillar leg Granted JPS61130536A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59252005A JPS61130536A (en) 1984-11-30 1984-11-30 Iron pillar leg
KR1019850007752A KR930002646B1 (en) 1984-11-30 1985-10-21 Steel frame column base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252005A JPS61130536A (en) 1984-11-30 1984-11-30 Iron pillar leg

Publications (2)

Publication Number Publication Date
JPS61130536A true JPS61130536A (en) 1986-06-18
JPH0214496B2 JPH0214496B2 (en) 1990-04-09

Family

ID=17231239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252005A Granted JPS61130536A (en) 1984-11-30 1984-11-30 Iron pillar leg

Country Status (2)

Country Link
JP (1) JPS61130536A (en)
KR (1) KR930002646B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346960B1 (en) * 1999-04-20 2002-07-31 (주)씨.에스 구조 엔지니어링 An apparatus and method for anchoring steel column to concrete

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120425A (en) * 1974-08-12 1976-02-18 Hitachi Metals Ltd TETSUKOTSUKUMIBA SHIRAYOCHUKYAKUKANAMONO OYOBI CHUKYAKUBUKOZO
JPS5664050A (en) * 1979-10-29 1981-06-01 Hitachi Metals Ltd Connection of column leg of reinforced concrete structure and base concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120425A (en) * 1974-08-12 1976-02-18 Hitachi Metals Ltd TETSUKOTSUKUMIBA SHIRAYOCHUKYAKUKANAMONO OYOBI CHUKYAKUBUKOZO
JPS5664050A (en) * 1979-10-29 1981-06-01 Hitachi Metals Ltd Connection of column leg of reinforced concrete structure and base concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346960B1 (en) * 1999-04-20 2002-07-31 (주)씨.에스 구조 엔지니어링 An apparatus and method for anchoring steel column to concrete

Also Published As

Publication number Publication date
JPH0214496B2 (en) 1990-04-09
KR930002646B1 (en) 1993-04-07
KR860004221A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
US7047704B1 (en) Method for designing and fabricating multi-step tension prestressed girder
JPS61130536A (en) Iron pillar leg
JPH01299963A (en) Method of re-clamping or repairing and reinforcing or load-reducing deformed existing structure
JP3620708B2 (en) Fixed part of exposed column base
JPH08246547A (en) Pole-beam junction structure
JP2533830B2 (en) Girder section stress improvement method
Fujii Minimum Weight Design of Structures based on Buckling Strength and Plastic Collapse (3 rd report) An Improved Theory on Post-buckling Strength of Plate Girders in Shear
JPS61261556A (en) Reinforcement of connection part of pillar and beam/slab in inverse impact construction method
JP2955372B2 (en) Composite beams and beams
JPH04269228A (en) Connection structure of column and beam
JPH11264190A (en) Joint construction for concrete-filled steel pipe column
JPH05195600A (en) Composite beam
JPS59116090A (en) Wall structure in reactor building and the like
JPS5940978B2 (en) Kiiso reinforcement method
JPH08177157A (en) Connection of column and slab in steel structure
JPH08226131A (en) Anchor bolt erection structure
KR200428360Y1 (en) Pre-stressed beam
JPS6215367Y2 (en)
JPS6016672A (en) Earthquake-proof structural element of skeletal structure
JPS61186644A (en) Fixing of reinforced pillar leg
JPS5935607Y2 (en) Support structure
JPS62178647A (en) Prestressed truss girder
JPS61242220A (en) Sc pile introduced temporary prestress
JPS6351542A (en) Structure of pillar/beam connection part
RU2209901C2 (en) Condensation tower of atomic power station, way to diminish sagging of loaded part of condensation tower, spacer element of condensation tower