JPS61242220A - Sc pile introduced temporary prestress - Google Patents

Sc pile introduced temporary prestress

Info

Publication number
JPS61242220A
JPS61242220A JP8078285A JP8078285A JPS61242220A JP S61242220 A JPS61242220 A JP S61242220A JP 8078285 A JP8078285 A JP 8078285A JP 8078285 A JP8078285 A JP 8078285A JP S61242220 A JPS61242220 A JP S61242220A
Authority
JP
Japan
Prior art keywords
concrete
steel pipe
pile
tube
end plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8078285A
Other languages
Japanese (ja)
Inventor
Yukio Matsumoto
松元 幸男
Toshimitsu Midou
利満 三堂
Katsumi Tokunaga
徳永 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8078285A priority Critical patent/JPS61242220A/en
Publication of JPS61242220A publication Critical patent/JPS61242220A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/58Prestressed concrete piles

Abstract

PURPOSE:To raise the retained horizontal durability and axial pressure-durabilty of a pile by a method in which a prestress is introduced into the internal concrete of a steel tube and then removed as drying contraction and creeping phenomenon proceed in the concrete. CONSTITUTION:Many spiral projected lines 2 of slow slopes are formed on the inner surface of a steel tube 1 as an outer shell and on the upper and lower ends of a pile (a), an upper end plate 3 and a coupler end plate 4 are integrally connected to the tube 1. A tension is operated by using the formwork housing the tube 1 as a reactor to produce a desired tensile stress in the tube 1. Even when hair cracks develop, no extension of the cracks occurs by the restricting force of the projected lines 2, the tensile resistance of the concrete (b) is worked, and the retained horizontal durability of the pile (a) is increased. The pile (a) can withstand increased axial pressure and great bending moment to be encountered during the earthquake.

Description

【発明の詳細な説明】 この発明は,慣用の外殻鋼管付き高強度コンクリート杭
(以下SC杭と略称する。)の改良に関し,その目的は
,本発明の特殊効果によつてSC杭の保有水平耐力及び
保有軸圧耐力を高め,耐農能力の大きい新たなSC杭を
提供することにある。
[Detailed Description of the Invention] This invention relates to the improvement of conventional high-strength concrete piles with outer shell steel pipes (hereinafter referred to as SC piles), and its purpose is to improve the retention of SC piles by the special effects of the present invention. The objective is to provide a new SC pile with increased horizontal bearing capacity and axial pressure bearing capacity, and greater agricultural resistance.

外殻となる鋼管杭の内部に遠心力による通常のコンクリ
ートを打設した場合,コンクリートの乾燥収縮の進行に
従つて,鋼管とコンクリートとは容易に肌■れし,コン
クリートだけにひずみが生じ,この杭には合成杭として
の耐荷態力はない。この現象を避ける手段としてコンク
リートに膨張材を混和して鋼管内面にコンクリートを圧
着させる方法,又は鋼管内面に突条を設け,この突条で
コンクリートの自由な乾燥収端を拘束する手段がとられ
る。この場合の鋼管とコンクリートとの応力状態を以下
に分析する。
When ordinary concrete is placed inside a steel pipe pile, which forms the outer shell, by centrifugal force, as the drying shrinkage of the concrete progresses, the steel pipe and concrete easily rub together, causing distortion only in the concrete. This pile does not have the load-bearing capacity of a composite pile. As a means to avoid this phenomenon, methods are used to mix an expansive material into the concrete and press the concrete to the inner surface of the steel pipe, or to provide a protrusion on the inner surface of the steel pipe and use this protrusion to restrict the free drying of the concrete. . The stress state between the steel pipe and concrete in this case will be analyzed below.

無拘束状態のコンクリートの乾燥収縮のヒズミを0.0
003と仮定する。SC杭の外径を50cm,鋼管の板
厚を4.5mmとした杭種の場合,鋼管の断面積は約7
0cm2,コンクリートに換算した鋼管の断面積は弾性
係数比を5.25として算定すると367.5cm2と
なる。一方コンクリートの断面積は986cm2である
。SC杭の鋼管とコンクリートとが一体に挙動し合成杭
としての耐荷能力を維持するには,鋼管の拘束を受ける
コンクリートに生ずる乾燥収縮に基ずく引張力と,コン
クリートの収縮に対応して鋼管に生ずる圧縮力とがつり
合わねばならない。これより試算すると,鋼管の換算断
面積に作用する圧縮応力は87.42kgf/cm2,
コンクリートに作用する引張応力は32.58kgf/
cm2となる,験算すると87.42×367.5=3
2,126.85kg32.58×986=32,12
3.88kg上記のとおり,鋼管の圧縮力は,コンクリ
ートの引張力とつり合いこの状態で安定する。また,こ
のときのSC杭のヒズミは0.00021855となり
,鋼管に作用する圧縮応力は87.42×5.25=4
58.955kgf/cm2すなわち,コンクリートの
避け難い内部組織変化に基ずく乾燥収縮の作用で,鋼管
にほぼ460kgf/cm2の圧縮応力が生ずる。且つ
,鋼管にこの圧縮応力が生じないとするなんらの反証も
見出だせない。
The strain of drying shrinkage of unrestrained concrete is 0.0.
Assume 003. In the case of a pile type in which the outer diameter of the SC pile is 50 cm and the thickness of the steel pipe is 4.5 mm, the cross-sectional area of the steel pipe is approximately 7 mm.
0 cm2, and the cross-sectional area of the steel pipe converted to concrete is 367.5 cm2 when calculated assuming an elastic modulus ratio of 5.25. On the other hand, the cross-sectional area of concrete is 986 cm2. In order for the steel pipe and concrete of an SC pile to behave as one and maintain the load-bearing capacity of a composite pile, the tensile force due to drying shrinkage that occurs in the concrete that is restrained by the steel pipe, and the tensile force on the steel pipe in response to the shrinkage of the concrete are required. The resulting compressive forces must be balanced. Based on this calculation, the compressive stress acting on the converted cross-sectional area of the steel pipe is 87.42 kgf/cm2,
The tensile stress acting on concrete is 32.58 kgf/
cm2, the experimental calculation is 87.42 x 367.5 = 3
2,126.85kg32.58×986=32,12
3.88 kg As mentioned above, the compressive force of the steel pipe is balanced with the tensile force of the concrete and becomes stable in this state. Also, the strain of the SC pile at this time is 0.00021855, and the compressive stress acting on the steel pipe is 87.42 x 5.25 = 4
58.955 kgf/cm2, that is, a compressive stress of approximately 460 kgf/cm2 is generated in the steel pipe due to the effect of drying shrinkage based on the unavoidable internal structure change of concrete. Moreover, no evidence to the contrary can be found that this compressive stress does not occur in steel pipes.

以上は,コンクリートの乾燥収縮だけを対象とした鋼管
とコンクリートとの応力状態を分析したものであるが,
この乾燥収縮に上部構造物の鉛直軸力に基ずくコンクリ
ートのクリープが加わると,コンクリートよりはるかに
クリープしにくい鋼管の分担する軸力は,コンクリート
の分担する軸力に比較し異状に増大することが予測され
,鋼管に発生する実際上の圧縮応力は,従来想定された
鋼管の圧縮応力よりかなり大きな応力となるであろう。
The above is an analysis of the stress state between steel pipes and concrete, focusing only on the drying shrinkage of concrete.
When the creep of concrete based on the vertical axial force of the superstructure is added to this drying shrinkage, the axial force shared by steel pipes, which is much less likely to creep than concrete, increases abnormally compared to the axial force shared by concrete. It is predicted that the actual compressive stress that will occur in the steel pipe will be much larger than the compressive stress that was previously assumed.

鉄筋コンクリート柱体においては,コンクリートのクリ
ープと軸鉄筋の応力との関係はすでに解明されていて,
基本的には鉄筋比の大きい鉄筋コン クリートと同一性質からなるSC杭では,鋼管に発生す
る圧縮応力の異状な増大は否定することのできない現象
である。鋼管に生ずる上記過大な事前圧縮応力は ,地
震発生時,直接SC杭の保有鉛■耐力及び保有水平耐力
を明らかに減少させる主要因子となるので,この問題を
解決することは,現下のSC杭の最大の課題である。
In reinforced concrete columns, the relationship between concrete creep and stress in the shaft reinforcement has already been clarified.
In SC piles, which basically have the same properties as reinforced concrete with a high reinforcement ratio, the abnormal increase in compressive stress that occurs in steel pipes is an undeniable phenomenon. The above-mentioned excessive pre-compressive stress generated in steel pipes is a major factor that clearly reduces the lead capacity and horizontal capacity of direct SC piles in the event of an earthquake. is the biggest challenge.

この発明は,以上の問題の解決を指向するものである。This invention aims to solve the above problems.

この発明では,直ちに実施できる方法として,まず鋼管
に対するコンクリートの乾燥収縮による影響をすべてな
くし,コンクリートのクリーブの鋼管に及ぼす影響をで
きるだけ軽減させる手段を用いた。以下に,本発明の新
たなSC杭の一般的な構造及び製造方法を説明する。こ
のSC杭は仮性(temporary)プレストレスを
コンクリートに導入するのでTPSC杭と名付ける。こ
のTPSC杭の外殻となる鋼管1の内面には緩傾斜をな
すスパイラル状の突条2が多条に突設され,TPSC杭
aの上端及び下端には,上部端板3及び継手端板4が鋼
管1に一体に溶接建結される,符号らは上部端板3及び
継手端板4に設けた所要数のネジ穴である。このTPS
C杭aの製造方法は,当業界の分野に属する技術者には
明細な説明及び鋼管1さ引張る装置などの図面を要せず
容易に理解が得られるであろう。次にその製法を略説す
る。
In this invention, as a method that can be implemented immediately, we first eliminate all effects of concrete drying shrinkage on steel pipes, and use means to reduce as much as possible the effects of concrete cleaves on steel pipes. Below, the general structure and manufacturing method of the new SC pile of the present invention will be explained. This SC pile introduces temporary prestress into concrete, so it is named a TPSC pile. The inner surface of the steel pipe 1, which forms the outer shell of this TPSC pile, is provided with multiple gently sloped spiral protrusions 2. At the upper and lower ends of the TPSC pile a, an upper end plate 3 and a joint end plate are provided. 4 is integrally welded to the steel pipe 1, and the symbols denote the required number of screw holes provided in the upper end plate 3 and the joint end plate 4. This TPS
The manufacturing method of C pile a will be easily understood by those skilled in the art without the need for detailed explanations or drawings of the device for pulling the steel pipe 1. Next, the manufacturing method will be briefly explained.

上部端板3及び継手端板4のそれぞれのネジ穴5に所要
数のネジ付き鋼棒をねじ込み,継手端板4のネジ付き鋼
棒を固定側の端面型枠の透孔に通してナツトで締付け,
継手端板4を固定側端面型枠に固定する。また,上部端
板3のネジ付鋼棒を引張り装置の緊張板の透孔に通して
ナツトで締付け,上部端板3を緊張板に固定し,鋼管1
を収容した本体型枠を反力体として引張り装置を作動し
,所要の引張応力を鋼管1に生せしめ,この引張り装置
を緊張側の端面型枠に固定する。次に,固定側がらコン
クリートポンプなどを用いて鋼管1内にコンクリートを
供給してのち,遠心力によつてコンクリートを締め固め
る。コンクリートのオートクレーブ養生及び鋼管1の引
張応力に基ずくプレストレスの導入は慣用のプレストレ
スト高強度コンクリート杭と同様に行う。
Screw the required number of threaded steel rods into the screw holes 5 of each of the upper end plate 3 and the joint end plate 4, pass the threaded steel rods of the joint end plate 4 through the through holes in the end face formwork on the fixed side, and tighten them with nuts. Tightening,
The joint end plate 4 is fixed to the stationary side end face formwork. In addition, the threaded steel rod of the upper end plate 3 is passed through the through hole of the tension plate of the tensioning device and tightened with a nut, the upper end plate 3 is fixed to the tension plate, and the steel pipe 1
A tensioning device is operated using the main body frame containing the steel pipe as a reaction force to generate the required tensile stress in the steel pipe 1, and this tensioning device is fixed to the end face formwork on the tensioning side. Next, concrete is supplied into the steel pipe 1 from the fixed side using a concrete pump, and then the concrete is compacted by centrifugal force. The autoclave curing of the concrete and the introduction of prestress based on the tensile stress of the steel pipe 1 are performed in the same manner as for conventional prestressed high-strength concrete piles.

かくして得られた,外径50cm,鋼管1の板厚84.
5mmとしたTPSC杭aの鋼管1の初期引張応力度σ
sを,1400kgt/cm2とする。このときのヒズ
ミ度εs1は εs1=σs/Es=1400/2.1×106=0.
00066666E3:鋼管の弾性係数(kgf/cm
2)高強度コンクリート6の弾性係数は完成硬化後は4
00,000kgf/cm2とみるが,応力導入時の弾
性係数Ec1はコンクリートが完全硬化状態とはみなさ
れないので375,000kgf/cm2とする。
The thus obtained steel pipe 1 has an outer diameter of 50 cm and a plate thickness of 84 cm.
Initial tensile stress degree σ of steel pipe 1 of TPSC pile a set to 5 mm
Let s be 1400 kgt/cm2. The degree of distortion εs1 at this time is εs1=σs/Es=1400/2.1×106=0.
00066666E3: Elastic modulus of steel pipe (kgf/cm
2) The elastic modulus of high-strength concrete 6 is 4 after completion and hardening.
00,000 kgf/cm2, but the elastic modulus Ec1 at the time of stress introduction is assumed to be 375,000 kgf/cm2 since the concrete is not considered to be in a completely hardened state.

試算によると,鋼管1の引張応力度が1000kgf/
cm2のとき,コンクリートbの圧縮応力とつり合う。
According to a trial calculation, the tensile stress of steel pipe 1 is 1000 kgf/
cm2, it balances the compressive stress of concrete b.

このときの鋼管1のヒズミ度εs2はεs2=1000
/2.1×106=0.00047619このときのコ
ンクリートbのヒズミ度εcはεc=εs1−εs2 =0.00066666−0.00047619=0.
00019047従つて上記ヒズミ度εcに対応するコ
ンクリートの圧縮応力σcは σc=εc×Ec1 =0.00019047×3.75×105=71.4
2625kgf/cm2鋼管1の総引張力Tとコンクリ
ートbの総圧縮力Cとのつり合いを験算する。
The distortion degree εs2 of the steel pipe 1 at this time is εs2=1000
/2.1×106=0.00047619 The distortion degree εc of concrete b at this time is εc=εs1−εs2 =0.00066666−0.00047619=0.
00019047 Therefore, the compressive stress σc of the concrete corresponding to the above distortion degree εc is σc=εc×Ec1 =0.00019047×3.75×105=71.4
The balance between the total tensile force T of the 2625 kgf/cm2 steel pipe 1 and the total compressive force C of the concrete b is estimated.

T=1000×70=70,000kgC=71.42
625×986=70.426kg上記のとおり両者の
力はほぼつり合つて安定する。すなわち,プレストレス
ト導入時,鋼管1の引張応力は初引張応力度から400
kgf/cm2減少し,1000kgf/cm2となる
とみなされる。
T=1000×70=70,000kgC=71.42
625 x 986 = 70.426 kg As mentioned above, both forces are almost balanced and stable. In other words, when prestressing is introduced, the tensile stress of steel pipe 1 increases by 400% from the initial tensile stress level.
kgf/cm2 decreases to 1000 kgf/cm2.

次に,コンクリートbの乾燥収縮による鋼管1の引張応
力の低下を算定する。コンクリートbの乾燥収縮のヒズ
ミ度を0.0003とみなすと,これに対応する鋼管1
の減小引張応力σ31はσ31=0.0003×2.1
×106=630kgf/cm2従つて鋼管1に残留す
る引張応力度σ32はσ32=1000−630=37
0kgf/cm2上記鋼管1の応力σ32は,地中に設
置されたTPSC杭aに作用する上部構造物の鉛直軸力
及が残留プレストレスによるコンクリートのクリープに
対応するもので,鋼管1の残留引張応力σ32がコンク
リートbのクリープに応じて消去された時点からは,コ
ンクリート6に生ずるクリープは極くわずかとなること
が想定される。
Next, the decrease in the tensile stress of the steel pipe 1 due to drying shrinkage of the concrete b is calculated. If the degree of distortion of drying shrinkage of concrete b is assumed to be 0.0003, the corresponding steel pipe 1
The reduced tensile stress σ31 is σ31=0.0003×2.1
×106=630kgf/cm2 Therefore, the tensile stress σ32 remaining in the steel pipe 1 is σ32=1000-630=37
0 kgf/cm2 The stress σ32 of the steel pipe 1 above corresponds to the vertical axial force of the superstructure acting on the TPSC pile a installed underground and the creep of concrete due to residual prestress, and the residual tension of the steel pipe 1 From the point in time when stress σ32 is eliminated in accordance with the creep of concrete b, it is assumed that the creep occurring in concrete 6 will be extremely small.

コンクリートのクリープ終息時のヒズミ度は ,各条件
を一定にすればほぼ一定の値が得られるので,上記σ3
2を種種変動させる実験によつてほぼ正確な値を把握で
き,これによつて正しい実験式が得られるであろう。以
上のことから本発明のTPSC杭と慣用のSC杭との本
質的な相違は,TPSC杭aの鋼管1には,コンクリー
トの乾燥収縮による影響が全くなく,旦つコンクリート
のクリープによる影響が微小,又ははとんどゼロとなる
結果,コンクリートの全収縮による鋼管の圧縮応力の増
加分は,極くわずか,又はほとんどゼロとなろうが,慣
用のSC杭の鋼管には,コンクリートの乾燥収縮による
圧縮応力の全増加分に,コンクリートのクリープによる
圧縮応力の全増加分加わり,これに上部構造物の単純計
算による軸力負担分が作用するので,場合によつては鋼
管の常時圧縮応力度は,800kgf/cm2内外とな
る恐れがある。以上述べた相違は,両者の杭の製造後,
日を経ずして行う曲げ試験では現われない。上部構造物
の軸力に相当する圧力を両者の杭に加えた状態で少くと
も1年間放置し,そののちコンクリート収縮の進行途上
に行う曲げ試験では,両者の杭の歴然とした相違が現わ
れるであろう。2年後,3年後には両者の差は更に広が
ることが想定される。以上の説明では,コンクリートの
乾燥収縮とクリープとをそれぞれ別個に説明したが,製
造後歳月を経ずして使用されるSC杭では,両者の収縮
はほとんど同時進行するので,両者を上記のように区別
できないが,これらの収縮の進行率はほぼ3年内外で極
めて緩漫になるので,結果的にはコンクリートの全収縮
は区別して説明したとおりの状況となる。すなわち本発
明のTPSC杭は,コンクリートの乾燥収縮及びクリー
プによつて将来大きな圧縮力を受ける鋼管に,前もつて
引張力を加え,この鋼管の引張力と,コンクリートに発
生する収縮とを相殺し,鋼管にまずる有害無用の圧縮応
力を未然に防止したものである。
The degree of distortion of concrete at the end of creep can be obtained by keeping each condition constant, so the above σ3
By conducting experiments in which 2 is varied in various ways, it will be possible to ascertain an almost accurate value, and thereby a correct empirical formula will be obtained. From the above, the essential difference between the TPSC pile of the present invention and the conventional SC pile is that the steel pipe 1 of the TPSC pile a is not affected by drying shrinkage of concrete at all, and is only slightly affected by creep of concrete. As a result, the increase in the compressive stress of the steel pipe due to the total shrinkage of concrete will be very small or almost zero. The total increase in compressive stress due to concrete creep is added to the total increase in compressive stress due to concrete creep, and the axial load burden from the simple calculation of the superstructure acts on this, so in some cases, the constant compressive stress of the steel pipe is likely to be around 800 kgf/cm2. The difference mentioned above is that after manufacturing both piles,
It does not appear in a bending test performed within a few days. If both piles are left under pressure equivalent to the axial force of the superstructure for at least one year, and then a bending test is performed while the concrete is shrinking, a clear difference between the two piles will appear. Dew. It is expected that the gap between the two will further widen in two or three years. In the above explanation, drying shrinkage and creep of concrete were explained separately, but in SC piles that are used soon after manufacture, the shrinkage of both occurs almost simultaneously, so both can be considered as Although these cannot be distinguished, the rate of progression of these shrinkages becomes extremely slow within about 3 years, and as a result, the total shrinkage of concrete will be as explained separately. In other words, the TPSC pile of the present invention applies tensile force in advance to a steel pipe that will receive a large compressive force in the future due to drying shrinkage and creep of concrete, and offsets the tensile force of the steel pipe with the shrinkage that occurs in the concrete. This prevents harmful and unnecessary compressive stress from occurring in steel pipes.

次に,第1図に示す鋼管1の内面に突条2を設けたTP
SC杭aの特長としては,杭に地震時の曲げモーノント
が作用した場合,鋼管1とコンクリートbとが突条2の
作用によつて文字どおり一体に挙動し,引張側のコンク
リートbに毛状ひびわれが発生しても,このひびわれは
突条2の拘束力によつて拡大せず,健全な組織の大部分
のコンクリートbの引張抵抗力が有効に働らき,保有水
平耐力が特に増大する事があげられる。この貴重な特長
と,外殻の鋼管1に有害な事前圧縮力が作用しない得難
い特長とを併せ考察すると,板厚4.5mm及び6mm
の鋼管1を用いた本発明のTPSC杭aの耐震能力は,
板厚6mm及び9mmの一段上級クラスの鋼管を用いた
慣用のSC杭にそれぞれ相当し得るであろうことが期待
される。なお,鋼管1に設ける突条2は必ずしもスパイ
ラル状突条だけでなく,杭の軸方向線と直角をなすフー
プ状の突条,きたはしま鋼板にみられる格子状の突条と
してもよい。
Next, we prepared a TP with protrusions 2 on the inner surface of the steel pipe 1 shown in Fig. 1.
A feature of SC pile a is that when the pile is subjected to bending force during an earthquake, the steel pipe 1 and the concrete b literally behave as one unit due to the action of the ridges 2, causing hair-like cracks in the concrete b on the tensile side. Even if this occurs, the cracks will not expand due to the restraining force of the protrusions 2, and the tensile resistance of most of the concrete b with a healthy structure will work effectively, and the horizontal bearing capacity will particularly increase. can give. Considering this valuable feature together with the rare feature that harmful pre-compression force does not act on the steel pipe 1 of the outer shell, it is found that the plate thickness is 4.5 mm and 6 mm.
The seismic capacity of the TPSC pile a of the present invention using the steel pipe 1 is as follows:
It is expected that these piles will correspond to conventional SC piles using higher grade steel pipes with plate thicknesses of 6 mm and 9 mm, respectively. Note that the ridges 2 provided on the steel pipe 1 are not necessarily limited to spiral ridges, but may also be hoop-shaped ridges that are perpendicular to the axial direction of the pile, or lattice-shaped ridges as seen on Kitahashima steel plates.

第1図に示す実線部分は,コンクリートbの収縮終息後
のTPSC杭aを示すもので,一点鎖線で示された部分
(拡大化してある。)は,鋼管1に初緊張力を加えた際
の鋼管1の伸びを示す。第2図は,固定側の鋼管1の端
部外面に鋼バンド7を溶接連結し,この鋼バンド7を本
体型枠8の端部に接面させて鋼管1の一端を本体型枠に
容易に定着させ,他端の上部端板3を引張るようにし,
鋼管1の予備緊張工程を単純化したものである。また第
2図に示す内面平滑な鋼管1′を用いるときは,初緊張
時鋼管1′の板厚が薄くなり,鋼管1′の内径がわずか
に拡大し,コンクリートの収縮に応じ鋼管の軸方向の伸
びが縮小するに従つて鋼管の内径が原寸法に復元し,鋼
管1′とコンクリートbとの一体化に多少の力を及ぼす
が,決定的一体化の力となるか否かは明白でないので,
この場合はコンクリートに膨張材を混和することが望ま
しい。但し,第1図に示す突条2を内面に突設した鋼管
1を用いる場合は,前記した鋼管内径の復元作用ととも
に,多数の突条2の構成によつてコンクリートbと鋼管
1とが一体化されるので,膨張材の混和は必ずしも必要
ではない。
The solid line part shown in Figure 1 shows the TPSC pile a after concrete b has finished shrinking, and the part shown by the dashed-dotted line (enlarged) shows the state when the initial tension is applied to the steel pipe 1. shows the elongation of steel pipe 1. In Fig. 2, a steel band 7 is welded to the outer surface of the end of the steel pipe 1 on the fixed side, and this steel band 7 is brought into contact with the end of the main body frame 8, so that one end of the steel pipe 1 is easily attached to the main body frame. , and pull the upper end plate 3 at the other end.
This is a simplified pre-tensioning process for the steel pipe 1. In addition, when using a steel pipe 1' with a smooth inner surface as shown in Fig. 2, the thickness of the steel pipe 1' becomes thinner at the time of initial tensioning, the inner diameter of the steel pipe 1' expands slightly, and the axial direction of the steel pipe increases as the concrete shrinks. As the elongation of the steel pipe decreases, the inner diameter of the steel pipe returns to its original size, exerting some force on the integration of the steel pipe 1' and the concrete b, but it is not clear whether it will become a decisive force for integration. So,
In this case, it is desirable to mix an expanding agent into the concrete. However, when using a steel pipe 1 with protruding ridges 2 protruding from the inner surface as shown in Fig. 1, the concrete b and steel pipe 1 are integrated together due to the structure of a large number of ridges 2, as well as the above-mentioned restoring action of the inner diameter of the steel pipe. , so it is not necessarily necessary to mix in an intumescent material.

以上述べたとおり,本発明のTPSC杭は,鋼管に初緊
張力を加えた状態で,この鋼管内にコンクリートを打設
成形する誠に単純な手段で,杭の外殻となる鋼管に有害
な巨大圧縮応力を発生させず,地中に設置され上部構造
物の軸力を受ける基礎杭の保有水平耐力及び保有軸圧耐
力を格別に高める特長を有し,地震時の軸力の激増に耐
え,且つ地震時の巨大な曲げモーメントに杭し得るもの
で,耐震基礎杭としての有用性が高い。
As mentioned above, the TPSC pile of the present invention is a very simple method in which concrete is cast and formed inside the steel pipe with initial tension applied to the steel pipe, and it is possible to create a TPSC pile using a very simple means of pouring and forming concrete into the steel pipe while applying an initial tension to the steel pipe. It does not generate compressive stress and has the feature of exceptionally increasing the horizontal bearing capacity and axial pressure bearing capacity of foundation piles that are installed underground and receive the axial force of the superstructure, and can withstand a dramatic increase in axial force during earthquakes. In addition, it can be piled to withstand huge bending moments during earthquakes, making it highly useful as earthquake-resistant foundation piles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一部外面図を含む本発明のTPSC杭の縦断面
図,第2図は固定側の本体型枠に,鋼管端部に連結した
鋼バンドを定着させた一部外面図を含む局部断面図であ
る。 図面中,符号a…TPSC杭,1及び1′…外殻の鋼管
,2…鋼管に設けた突条,3…上部端板,4…継手端板
,5…端板に設けたネジ穴,6…高強度コンクリート,
7…鋼管端部に連結した鋼バンド,8…本体型枠。
Figure 1 is a vertical cross-sectional view of the TPSC pile of the present invention, including a partial external view, and Figure 2 is a partial external view showing a steel band connected to the end of the steel pipe fixed to the main body frame on the fixed side. It is a local sectional view. In the drawings, reference numerals a... TPSC piles, 1 and 1'... steel pipes on the outer shell, 2... protrusions provided on the steel pipes, 3... upper end plate, 4... joint end plate, 5... screw holes provided in the end plate, 6...High strength concrete,
7... Steel band connected to the end of the steel pipe, 8... Main body frame.

Claims (1)

【特許請求の範囲】[Claims] (1)杭の外殻となる鋼管に、降伏点以下の緊張力を加
えて発生させた鋼管の引張応力に基ずくプレストレスを
、鋼管内部のコンクリートに導入し、このプレストレス
をコンクリートの乾燥収縮およびクリープの進行に従っ
て消去し得るようになすことを特徴とする仮性プレスト
レスを導入したSC杭。
(1) A prestress based on the tensile stress of the steel pipe, which is generated by applying a tension below the yield point to the steel pipe that forms the outer shell of the pile, is introduced into the concrete inside the steel pipe, and this prestress is applied to the drying of the concrete. An SC pile incorporating a false prestress characterized by being able to be eliminated as shrinkage and creep progress.
JP8078285A 1985-04-16 1985-04-16 Sc pile introduced temporary prestress Pending JPS61242220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8078285A JPS61242220A (en) 1985-04-16 1985-04-16 Sc pile introduced temporary prestress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8078285A JPS61242220A (en) 1985-04-16 1985-04-16 Sc pile introduced temporary prestress

Publications (1)

Publication Number Publication Date
JPS61242220A true JPS61242220A (en) 1986-10-28

Family

ID=13728014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8078285A Pending JPS61242220A (en) 1985-04-16 1985-04-16 Sc pile introduced temporary prestress

Country Status (1)

Country Link
JP (1) JPS61242220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265702A (en) * 2009-05-15 2010-11-25 Mitani Sekisan Co Ltd Method for manufacturing concrete pile covered with steel pipe, and concrete pile covered with steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265702A (en) * 2009-05-15 2010-11-25 Mitani Sekisan Co Ltd Method for manufacturing concrete pile covered with steel pipe, and concrete pile covered with steel pipe

Similar Documents

Publication Publication Date Title
Aboutaha et al. Retrofit of concrete columns with inadequate lap splices by the use of rectangular steel jackets
Viest Review of research on composite steel–concrete beams
JPS61242220A (en) Sc pile introduced temporary prestress
JP2948909B2 (en) Construction method of prestressed composite beam structure and prestressed composite beam for continuous beam
Hsu et al. Design of reinforced concrete spandrel beams
JPH01299963A (en) Method of re-clamping or repairing and reinforcing or load-reducing deformed existing structure
JP2652201B2 (en) Tension compression member
JPH1136224A (en) Prestress introducing method and introducing device for prestress concrete
KR200215054Y1 (en) Composite beam made by using the additional compressive materials
JPH07324378A (en) Unbonded steel brace
Nakahara et al. Self-centering capacity of a structural Frame composed of steel-jacketed concrete columns and steel beams
JPS61229018A (en) Pile head securing high strength concrete composite pile
JP3470697B2 (en) Exposed column base
JPH0430046A (en) Earthquake-proof reinforced k-type brace
JPS6223715A (en) Manufacture of false prestressed sc pile
JPH0598638A (en) Ultra-high-bending tenacity pc pile
JPH01268947A (en) Beam with reinforced concrete end and steel central structure
KR930002646B1 (en) Steel frame column base
JPS58117135A (en) Reinforcement of concrete supporting point
JPH0674620B2 (en) Reinforced concrete columns covered with steel pipes
JPH0544299A (en) Reinforcing structure of structural steel reinforced concrete structure column member
JPH0742760B2 (en) How to construct a prestressed truss beam
JPH05321399A (en) Steel-pipe concrete pole
JP2929117B2 (en) Manufacturing method of metal tube concrete column
JP2699112B2 (en) Precast composite beams