JPS6112874B2 - - Google Patents

Info

Publication number
JPS6112874B2
JPS6112874B2 JP52128599A JP12859977A JPS6112874B2 JP S6112874 B2 JPS6112874 B2 JP S6112874B2 JP 52128599 A JP52128599 A JP 52128599A JP 12859977 A JP12859977 A JP 12859977A JP S6112874 B2 JPS6112874 B2 JP S6112874B2
Authority
JP
Japan
Prior art keywords
foaming
bubbles
absorbing material
foaming liquid
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52128599A
Other languages
Japanese (ja)
Other versions
JPS5462220A (en
Inventor
Eiji Komada
Fumio Matsui
Takeshi Onoda
Katsuhide Yomogida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12859977A priority Critical patent/JPS5462220A/en
Publication of JPS5462220A publication Critical patent/JPS5462220A/en
Publication of JPS6112874B2 publication Critical patent/JPS6112874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多孔質吸音材、特に低周波音域で高い
吸音率を示す気泡の貫通化した多孔質吸音材の製
造方法に関するものである。 近年、たとえば交通騒音に代表される騒音公害
は大きな社会問題の一つになつており、種々の防
止対策が企図されている。この騒音防止対策を材
料開発の面から観察すると、今日、耐候性に優れ
かつ低周波音域で高い吸音率を有する吸音材料の
出現が強く望まれている。 本発明はこのような社会的要請に鑑み、上記し
た性質を有する吸音材の製造方法を提供すること
を目的としている。 この目的にしたがつて、本発明に係る吸音材の
製造方法は、界面活性剤を含む水溶液を気泡させ
た後、すみやかにこの起泡液と水硬性物質を混合
して気泡スラリーを調製し、この気泡スラリーを
硬化させることによつて多孔質吸音材を製造する
方法において、前記起泡液として、該起泡後5分
間静置したときの離液率が20%以上かつ75%以下
の範囲にある性質のものを用いて多孔質吸音材の
気泡を貫通孔とすることを特徴としている。 界面活性剤を含む起泡液と水硬性物質とを混合
して得られた気泡スラリーにおいて、水硬性物質
は混合直後には起泡液中の独立気泡の泡膜の表面
に均一に分散されている。しかしながら、この気
泡スラリーを静置しておくと、時間の経過ととも
に水硬性物質の一部は重力の作用によつて沈降す
る一方、気泡はその泡膜の表面張力により集合、
破膜及び粗大化し、一定の大きさの気泡に成長す
るとガスが大気中に逃げて消泡してしまう。しか
し、これらの現象は水硬性物質の凝固に基づく組
織の固定化現象によつて妨げられる。この組織の
固定化時期によつて、気泡の貫通化した種々の構
造の多孔体が形成される。 多孔質吸音材の吸音性能は、一般に組織の空孔
率が高くかつ独立空孔に対する貫通した連続空孔
の割合が高い程優れていることが知られている。
そして、本発明者は多孔体組織に関する長年の研
究に基づき、特に低周波音域で高い吸音性能が発
揮されるためには、上記の条件のほかさらに空孔
径400ないし2000μの範囲の気泡の貫通した連続
空孔の含有割合が高いことが望ましく、かかる貫
通した連続空孔の形成が気泡スラリー中の気泡の
集合、破膜及び粗大化と密接な関係を有すること
を見出し、本発明を完成したものである。 上記した構造の多孔体を製造する上で最も重要
な点は気泡の集合、破膜と水硬性物質の凝固との
タイミングが適切であるということである。仮
に、気泡の集合が不十分な段階で水硬性物質の凝
固が起ると細かい独立気泡の組織が形成され、こ
れとは逆に水硬性物質の凝固が気泡の集合、破膜
及び粗大化の時期より大幅に遅れた場合には組織
内に大きな空孔が形成されたり或はさらに消泡現
象により空孔含有量が著るしく少ない組織体とな
つてしまい、いずれの場合も吸音性能が非常に劣
る多孔体となる。気泡の貫通化した連続空孔を有
する多孔体組織を形成するには気泡スラリーが静
置された状態で気泡が活発に集合、破膜及び粗大
化することが必要であり、水硬性物質の凝固によ
る組織の固定化前に数百ないし数千個の泡の集
合、破膜が起こることによつて空孔の貫通化即ち
連通化が達成される。したがつて、気泡スラリー
を構成する起泡液は適度の消泡性、換言すれば気
泡の集合、破膜及び粗大化性をもつていなければ
ならず、その消泡速度に適合して水硬性物質が凝
固することが必要である。 気泡スラリー中の気泡の集合、破膜等の特性
は、用いられる起泡液単味の離液率によつて表わ
されることが判明した。ここで離液率とは、界面
活性剤を含む水溶液を、気泡スラリー調製時と同
一の条件下で起泡せしめ、この起泡液を静置した
とき分離してくる気泡を含まない液体部分の体積
割合をいう。したがつて、離液率は起泡液の消泡
性を表わす指標でもある。離液率の測定は、たと
えば次のようにして行う:容量100のメスシリ
ンダーに起泡液100mlを入れて静置し、その底部
に分離した気泡を含まない液体の体積を経時的に
読み取る。 本発明者等による多数の実験から、気泡スラリ
ー中の気泡の集合、破膜等の特性は水硬性物質や
界面活性剤の種類にはほとんど影響されず、専ら
用いた起泡液単味の離液特性に依存していること
が判つた。そして、離液の初期段階では微細な気
泡が活発に集合し、破膜し、粗大化するが、この
過程が気泡の貫通化した連続空孔多孔体の形成に
極めて重要である。本発明の企図する吸音材とし
て有効な400〜2000μの空孔径を有する気泡貫通
化連続空孔多孔体の形成には、起泡後の初期段階
での泡の活発な集合、破膜、粗大化が必要であ
り、具体的には5分間静置後の離液率が20ないし
75容量%の範囲内にある起泡液を用いることが必
要であることが判明した。即ち、この値が20容量
%未満の起泡液を用いると、初期段階における気
泡の集合、破膜、粗大化が不活発すぎ、このよう
な気泡スラリーを硬化すると空孔含有率の高い小
気泡の多孔体が得られる反面、そこに含まれる空
孔の多くが独立気泡であつて気泡の貫通化した連
続空孔の含有割合は非常に少ない多孔体となる。
このため吸音性能の高い多孔体とはならない。こ
れとは反対に、5分間静置後の離液率が75容量%
を越えるような起泡液を用いると、初期段階にお
ける気泡の集合、破膜、粗大化が活発すぎるた
め、得られる多孔体は空孔含有率が小さく、また
空孔の分布も不均一であつて吸音性能も劣る。 本発明において使用される水硬性物質の代表的
な例としては、ポルトランドセメント、アルミナ
セメント、セツコウなどがある。そして、気泡ス
ラリー中の気泡の活発な集合、破膜、粗大化の時
期とマトリツクスの凝固時期とのタイミングを図
るため、凝結始発時間が2時間以内のものを選択
することが好ましい。また、使用される界面活性
剤は、叙述した起泡液の条件を満足するようなも
のであれば、その種類を問わない。勿論、水硬性
物質の硬化反応に悪影響を及ぼすものであつては
ならない。本発明で使用される界面活性剤の具体
的な例としてはドデシルベンゼンスルホン酸ソー
ダ、ノニルフエノキシジエトキシエチル硫酸ナト
リウムがある。これらの界面活性剤は必要に応じ
てポリビニルアルコールやメチルセルローズのよ
うな気泡安定剤と併用されてもよい。 以下、本発明の実施例について説明する。 〔実施例 1〕 第1表に記載した組成の水溶液を内容積500
のバツチミキサーに入れ、直径300mmの撹拌羽根
を用い3分間撹拌(回転数:750r・P・m)して
起泡させた。この起泡液の離液特性は第1図の曲
線Aの通りであり、起泡後5分間静置したときの
離液率は44%であつた。 次に、この起泡液を上記条件と同じ条件で撹拌
しながら第1表に示した組成の水硬性物質混合物
50Kgをセメント定量フイーダーを用いて2分間の
間に定量供給して気泡スラリーを調製し、さらに
そのまま1分間撹拌を継続した。 撹拌終了後直ちに気泡スラリーを容量350mm
の金型に注型した。起泡液に水硬性物質混合物を
投入した後16分で凝固が開始し、約40分で脱型可
能なほどの強度となつた。 脱型後、55℃の温度で蒸気養生し、気泡の貫通
化した多孔体が得られた。この多孔体の物性は第
1表に示すように、平均空孔径は1200μ,500Hz
垂直入射吸音率は93%、圧力勾配法(ここで圧力
勾配法とは、底面積Scm2,高さHcmの円柱の軸方
向にΔpg/cm2の圧力差で、粘度μポイズなる空
気を流速Qcm3/secで流して空気透過率 Kp=H・Q・μ/ΔP・Sを求める方法をいう。但し20
℃にお けるμ=181×10-6ポイズ)により測定した空気
透過率は4.3×10-3cm3/sec-2であつた。 〔比較例 1〕 起泡液の組成を除いて、実施例1と同じ方法で
多孔体を調製した。 この例では起泡液の離液性が大きい(5分値が
77%)ため、空孔の連続粗大化が活発に起つた
が、その反面泡のセメント保持力が低下し、セメ
ント組織の凝結過程で成形品の中央部に大きな孔
が形成し、また各所にクラツクが見られ実用に供
し難いものであつた。 〔比較例 2〕 起泡液の組成を除いて、実施例1と同じ方法に
より多孔体を調製した。 この例の起泡液は離液性が小さいため(5分値
で3%)、気泡スラリー中の空孔の破膜に伴う連
続粗大化が不十分な段階で組織の固定化が起る。
このため多孔体中の空孔は均一に分散している
が、その多くは独立気泡であり、吸音率は低く吸
音材としては実用性に乏しいものであつた。 〔実施例 2〜5、比較例 3〜6〕 実施例1で説明した方法に準じて、第1表に示
すように、異なる種類の水硬性物質及び界面活性
剤を用いて気泡の貫通した種々の多孔体を調製し
た。 得られた多孔体の物性を表に示した。
The present invention relates to a porous sound-absorbing material, particularly a method for manufacturing a porous sound-absorbing material with permeable air bubbles that exhibits a high sound absorption coefficient in a low frequency sound range. In recent years, noise pollution represented by, for example, traffic noise has become one of the major social problems, and various preventive measures are being planned. Looking at this noise prevention measure from the viewpoint of material development, there is a strong desire today for the emergence of sound absorbing materials that have excellent weather resistance and a high sound absorption coefficient in the low frequency sound range. In view of such social demands, the present invention aims to provide a method for manufacturing a sound absorbing material having the above-described properties. In accordance with this objective, the method for producing a sound absorbing material according to the present invention includes bubbling an aqueous solution containing a surfactant, and then immediately mixing the foaming liquid with a hydraulic substance to prepare a foam slurry. In the method of manufacturing a porous sound absorbing material by curing this foam slurry, the foaming liquid has a syneresis rate of 20% or more and 75% or less when left standing for 5 minutes after foaming. The feature is that the air bubbles of the porous sound absorbing material are made into through holes by using a material having certain properties. In the foam slurry obtained by mixing a foaming liquid containing a surfactant and a hydraulic substance, the hydraulic substance is uniformly dispersed on the surface of the foam film of closed cells in the foaming liquid immediately after mixing. There is. However, if this foam slurry is left to stand still, some of the hydraulic substances will settle due to the action of gravity over time, while the air bubbles will aggregate due to the surface tension of the foam film.
When the membrane ruptures and becomes coarser and grows into bubbles of a certain size, gas escapes into the atmosphere and the bubbles disappear. However, these phenomena are hindered by tissue immobilization phenomena based on the coagulation of hydraulic substances. Depending on the time of immobilization of this tissue, porous bodies with various structures in which air bubbles penetrate are formed. It is known that the sound absorption performance of a porous sound absorbing material is generally better as the porosity of the structure is higher and the ratio of continuous pores to independent pores is higher.
Based on many years of research on porous structures, the present inventor has found that in order to exhibit high sound absorption performance, especially in the low frequency sound range, in addition to the above conditions, it is necessary to The present invention was completed based on the discovery that it is desirable to have a high content of continuous pores, and that the formation of such penetrating continuous pores is closely related to the aggregation, membrane rupture, and coarsening of bubbles in the foam slurry. It is. The most important point in producing a porous body having the above-described structure is that the timing of the gathering of bubbles, the rupture of the membrane, and the coagulation of the hydraulic material is appropriate. If the solidification of the hydraulic material occurs at a stage where the bubbles are insufficiently assembled, a fine closed-cell structure will be formed; If the timing is significantly delayed, large pores will be formed within the structure, or the foaming phenomenon will further result in a tissue with significantly less pore content, and in either case, the sound absorption performance will be extremely poor. The material becomes porous. In order to form a porous structure with continuous pores penetrated by air bubbles, it is necessary for the air bubbles to actively aggregate, rupture, and coarsen while the air bubble slurry is left standing, which leads to the solidification of the hydraulic material. Before fixation of the tissue, hundreds to thousands of bubbles gather and the membrane ruptures, thereby achieving penetration of the pores, that is, communication. Therefore, the foaming liquid constituting the foam slurry must have appropriate defoaming properties, in other words, the ability to aggregate bubbles, rupture membranes, and coarsen the foam, and must have hydraulic properties suited to the defoaming rate. It is necessary for the substance to solidify. It has been found that characteristics such as bubble aggregation and membrane rupture in a foam slurry are expressed by the syneresis rate of the foaming liquid used. Here, the syneresis rate refers to the amount of liquid that separates when an aqueous solution containing a surfactant is foamed under the same conditions as when preparing the foamed slurry and is allowed to stand still. Refers to volume ratio. Therefore, the syneresis rate is also an index representing the defoaming property of the foaming liquid. The syneresis rate is measured, for example, as follows: 100 ml of foaming liquid is placed in a measuring cylinder with a capacity of 100, left to stand, and the volume of the liquid that does not contain bubbles separated at the bottom is read over time. From numerous experiments conducted by the present inventors, we have found that characteristics such as bubble aggregation and membrane rupture in a foam slurry are hardly affected by the type of hydraulic substance or surfactant; It was found that it depends on the liquid properties. At the initial stage of syneresis, fine air bubbles actively gather, the membrane ruptures, and the membrane becomes coarse, and this process is extremely important for the formation of a porous body with continuous pores penetrated by air bubbles. In order to form a continuous pore porous body with a pore size of 400 to 2000 μm that is effective as a sound absorbing material contemplated by the present invention, active aggregation of bubbles, membrane rupture, and coarsening occur in the initial stage after foaming. Specifically, the syneresis rate after standing for 5 minutes is 20 or more.
It has been found necessary to use a foaming liquid in the range of 75% by volume. In other words, if a foaming liquid with this value of less than 20% by volume is used, the aggregation, membrane rupture, and coarsening of bubbles in the initial stage will be too inactive, and when such a foam slurry is cured, small bubbles with a high pore content will be formed. On the other hand, most of the pores contained therein are closed cells, and the content of continuous pores penetrated by cells is very small.
Therefore, a porous body with high sound absorption performance cannot be obtained. On the contrary, the syneresis rate after standing for 5 minutes was 75% by volume.
If a foaming liquid exceeding The sound absorption performance is also poor. Typical examples of hydraulic substances used in the present invention include portland cement, alumina cement, and slag. In order to adjust the timing between the active aggregation, membrane rupture, and coarsening of the bubbles in the foam slurry and the solidification of the matrix, it is preferable to select a slurry whose initial solidification time is within 2 hours. Further, the type of surfactant used is not limited as long as it satisfies the conditions for the foaming liquid described above. Of course, it must not have an adverse effect on the curing reaction of the hydraulic material. Specific examples of surfactants used in the present invention include sodium dodecylbenzenesulfonate and sodium nonylphenoxydiethoxyethyl sulfate. These surfactants may be used in combination with a foam stabilizer such as polyvinyl alcohol or methyl cellulose, if necessary. Examples of the present invention will be described below. [Example 1] An aqueous solution having the composition listed in Table 1 was prepared with an internal volume of 500
The mixture was placed in a batch mixer and stirred for 3 minutes using a stirring blade with a diameter of 300 mm (rotation speed: 750 r.P.m) to foam. The syneresis characteristics of this foamed liquid were as shown by curve A in FIG. 1, and the syneresis rate was 44% when it was allowed to stand for 5 minutes after foaming. Next, while stirring this foaming liquid under the same conditions as above, a hydraulic substance mixture having the composition shown in Table 1 is added.
A foam slurry was prepared by quantitatively feeding 50 kg using a cement metering feeder over a period of 2 minutes, and stirring was continued for 1 minute. Immediately after stirring, add bubble slurry to a volume of 350mm 3
It was cast into a mold. After adding the hydraulic substance mixture to the foaming solution, solidification started 16 minutes later, and it reached a strength sufficient to be demolded in about 40 minutes. After demolding, steam curing was carried out at a temperature of 55°C, and a porous body with permeable air bubbles was obtained. As shown in Table 1, the physical properties of this porous body are as follows: the average pore diameter is 1200μ, 500Hz
The normal incidence sound absorption coefficient is 93%, and the pressure gradient method (here, the pressure gradient method refers to the flow rate of air with a viscosity of μpoise with a pressure difference of Δpg/cm 2 in the axial direction of a cylinder with a base area of Scm 2 and a height of Hcm). It is a method to calculate air permeability Kp=H・Q・μ/ΔP・S by flowing at Qcm 3 /sec. However, 20
The air permeability measured by μ=181×10 −6 poise at °C was 4.3×10 −3 cm 3 /sec −2 . [Comparative Example 1] A porous body was prepared in the same manner as in Example 1 except for the composition of the foaming liquid. In this example, the foaming liquid has high syneresis (the 5-minute value is
77%), the continuous coarsening of pores occurred actively, but on the other hand, the cement holding power of the foam decreased, and large pores were formed in the center of the molded product during the solidification process of the cement structure, and large pores were formed in various places. Cracks were observed and it was difficult to put it into practical use. [Comparative Example 2] A porous body was prepared in the same manner as in Example 1 except for the composition of the foaming liquid. Since the foaming liquid in this example has low syneresis (3% in 5 minutes), tissue immobilization occurs at a stage where continuous coarsening due to membrane rupture of the pores in the foam slurry is insufficient.
Therefore, although the pores in the porous body are uniformly dispersed, most of them are closed cells, and the sound absorption coefficient is low, making it impractical as a sound absorbing material. [Examples 2 to 5, Comparative Examples 3 to 6] According to the method described in Example 1, different types of hydraulic substances and surfactants were used to create various bubble-pierced samples as shown in Table 1. A porous body was prepared. The physical properties of the obtained porous body are shown in the table.

【表】【table】

【表】 叙述した実験結果から、起泡後5分間静置した
ときの離液率が20%以上、75%以下の範囲にある
界面活性剤水溶液から調製した多孔体はいずれも
低周波音域において優れた吸音率を示しているこ
とが判る。
[Table] From the experimental results described above, all porous materials prepared from surfactant aqueous solutions with syneresis rates in the range of 20% or more and 75% or less when left to stand for 5 minutes after foaming have a negative impact in the low frequency sound range. It can be seen that it exhibits excellent sound absorption coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種の起泡液の離液特性を示すグラフ
である。
FIG. 1 is a graph showing the syneresis characteristics of various foaming liquids.

Claims (1)

【特許請求の範囲】[Claims] 1 界面活性剤を含む水溶液を起泡させた後、す
みやかにこの起泡液と水硬性物質を混合して気泡
スラリーを調製し、この気泡スラリーを硬化させ
ることによつて多孔質吸音材を製造する方法にお
いて、前記起泡液として、該起泡後5分間静置し
たときの離液率が20%以上かつ75%以下の範囲に
ある性質のものを用いて多孔質吸音材の気泡を貫
通孔とすることを特徴とする多孔質吸音材の製造
方法。
1. After foaming an aqueous solution containing a surfactant, immediately mix this foaming liquid with a hydraulic substance to prepare a foam slurry, and manufacture a porous sound absorbing material by hardening this foam slurry. In this method, the foaming liquid has a property of having a syneresis rate of 20% or more and 75% or less when left standing for 5 minutes after foaming to penetrate the bubbles of the porous sound absorbing material. A method for producing a porous sound absorbing material characterized by having pores.
JP12859977A 1977-10-28 1977-10-28 Method of making porous sound absorber Granted JPS5462220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12859977A JPS5462220A (en) 1977-10-28 1977-10-28 Method of making porous sound absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12859977A JPS5462220A (en) 1977-10-28 1977-10-28 Method of making porous sound absorber

Publications (2)

Publication Number Publication Date
JPS5462220A JPS5462220A (en) 1979-05-19
JPS6112874B2 true JPS6112874B2 (en) 1986-04-10

Family

ID=14988747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12859977A Granted JPS5462220A (en) 1977-10-28 1977-10-28 Method of making porous sound absorber

Country Status (1)

Country Link
JP (1) JPS5462220A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ457099A0 (en) * 1999-12-10 2000-01-13 James Hardie Research Pty Limited Lightweight wall construction

Also Published As

Publication number Publication date
JPS5462220A (en) 1979-05-19

Similar Documents

Publication Publication Date Title
EP0181868B1 (en) Stabilization of extremely lightweight aggregate concrete
CN107902947B (en) Concrete foaming agent and preparation method thereof
JPS6119581B2 (en)
Jalalian et al. Mechanically whipped phenolic froths as versatile templates for manufacturing phenolic and carbon foams
Leng et al. Microstructure and permeability of porous zirconia ceramic foams prepared via direct foaming with mixed surfactants
Okpala Pore structure of hardened cement paste and mortar
CN108395232B (en) Preparation method of cordierite-based porous ceramic with high seepage rate
JPS6112874B2 (en)
US3103406A (en) Method of making low density epoxy
Huang et al. Preparation and properties of alumina foams via thermally induced foaming of molten d-glucose monohydrate
JP2010132487A (en) Method for producing ceramic porous body
CN108863435B (en) Method for preparing alumina foamed ceramic by alumina sol self-gel forming
JP4952484B2 (en) Method for producing ceramic porous body and ceramic porous body and structure produced using the same
Chang et al. Permeability of coating in the lost foam casting process
Chen Experimental study on application performance of foamed concrete prepared based on a colloidal NanoSiO2-stabilized foam
US6358345B1 (en) Method for producing porous sponge like metal of which density of pores is controllable
US2635052A (en) Production of cellular concrete blocks
CN115894073B (en) Lightweight foamed concrete and preparation method thereof
SU948949A1 (en) Method for making light-weight ceramic products
JPH0147430B2 (en)
JP2980828B2 (en) Method for producing porous sound absorbing material
JP2001233683A (en) Porous material and method for producing the same
JP2001302327A (en) Production process of alc(autoclaved lightweight concrete) excellent in water repellency
JPS62878B2 (en)
US2236988A (en) Cellular concrete