JPS62878B2 - - Google Patents

Info

Publication number
JPS62878B2
JPS62878B2 JP54015411A JP1541179A JPS62878B2 JP S62878 B2 JPS62878 B2 JP S62878B2 JP 54015411 A JP54015411 A JP 54015411A JP 1541179 A JP1541179 A JP 1541179A JP S62878 B2 JPS62878 B2 JP S62878B2
Authority
JP
Japan
Prior art keywords
water absorption
freeze
resistance
average particle
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54015411A
Other languages
Japanese (ja)
Other versions
JPS55109257A (en
Inventor
Hiroshi Okazaki
Haruo Nunokawa
Hiroshi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1541179A priority Critical patent/JPS55109257A/en
Publication of JPS55109257A publication Critical patent/JPS55109257A/en
Publication of JPS62878B2 publication Critical patent/JPS62878B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特に耐凍性に優れたオートクレーブ養
生する軽量気泡コンクリート(以下ALCと称す
る。)の製造方法に関するものである。 ALC(Autoclaved Lightweight concrete)と
は、一般に微粉砕した硅酸物質・石灰物質を主成
分とするスラリーに金属アルミニウム粉末などの
発泡剤を混合して型枠に注入し、半硬化状態に達
したのち脱型して所定の形状に切断分割し、さら
にオートクレーブ中にて高温高圧下で養生して得
られる建築材料であつて、軽量性・断熱耐火性・
加工性にすぐれ外壁材・屋根材などとしても広く
賞用されている。しかしながらコンクリート系製
品の一般の傾向として耐凍性に難点があり、寒冷
地で使用する場合は、空気連行剤混入コンクリー
トと比較しても凍結融解試験でその性能が劣り、
この解決が急務とされていた。 従来、耐凍性は開封気孔率:すなわち吸水率と
密接な関係があるものとされ、耐凍性を向上させ
るためには吸水率を減少させることが最も効果的
であるとの見地から、シリコンオイルなどの撥水
剤や防水剤を原料スラリー中に混入したり、ある
いは養生後の製品に高分子物質を塗布または含浸
せしめることにより吸水性を低下せしめ、もつて
耐凍性を向上させることが各種検討されている
が、後記するように、その効果は思わしくなく、
経済性にも難点があつた。 本発明者は、ALCの凍結融解性状について鋭
意検討を重ねた結果、ALC製品の耐凍性と吸水
性とは何等の関連もなく、驚くべきことに平均粒
子径が実質的に15μm以下なる金属アルミニウム
を発泡剤として硅酸物質石灰物質を主成分とする
スラリーに混合してALCを製造すると、耐凍性
の著しくすぐれた製品の得られることを見出し
た。従来用いられていた金属アルミニウムは、そ
の平均粒径は30〜40μm程度であり、これを更に
微粉細しても何等効果がないものとして全くかえ
りみられなかつた。ところが、実質的に15μm以
下に微粉砕した金属アルミニウムを添加して製造
すると、その製品は自然吸水試験では従来のもの
と比較して大差はないが、煮沸吸水試験ではむし
ろ吸水量が大となりその性能は悪化するにも拘ら
ず、凍結融解に対する抵抗性が著しく向上する。
この事実は後述の比較実施例において極めて明瞭
である。本発明はALCの版、板その他あらゆる
形状の製品の製造に適用することができる。
ALCの製造方法にはJIS―A―5416に規定される
方法が最も標準的なものとして適用することがで
きる他、本発明で規定する条件の金属アルミニウ
ムがスラリーに混合される限り、ALC製造条件
のあらゆるバリエイシヨンの下においても適用す
ることができる。 本発明でいう金属アルミニウムとは箔状の粒子
からなる粉末若しくは粉末をペーストしたもので
あり、平均粒子径が実質的に15μm以以下のもの
である。湿式フルイ法による重量平均粒子径が15
μm以下のものが使用できる。この条件の金属ア
ルミニウムを主たる発泡剤の成分とする限り、金
属アルミニウムの粒子径が15μmを越えるものが
混合されていてもよい。金属アルミニウムの添加
量、態様、条件、及び原料への混合条件は公知の
手法をそのまま適用してもよく、適当な助剤を添
加しうることも許容できる。 以下本発明の実施例を比較例と対比して説明す
る。 比較実施例 後記する方法で調製した軽量コンクリート各試
料の自然吸水量(vol.%)、煮沸吸水量(vol
%)、及び繰返し凍結融解による体積残在率をそ
れぞれ次の方法により求めた。 自然吸水量の測定 50mm立方の供試体を30mmの水面下に置き、24時
間放置したのち、重量増加率を求めた。 煮沸吸水量の測定 50mm立方の供試体を水面下に置き、1時間煮沸
したのち、そのまま水面下で24時間放置してか
ら、自然吸水量の測定と同じ手法により吸水量を
測つた。 耐凍性評価試験 50mm立方の供試体にASTM―C―666の方法に
準じた気中凍結水中融解を繰返して体積残存率
(%)を求めた。凍結は―18℃、融解は+5℃の
周囲温度で行い、10サイクル/日の割合で凍結融
解をくり返した。 各試料は、調製時に用いる金属アルミニウムの
粒子径について異なる比重約0.5の軽量気泡コン
クリートで、生石灰10重量部(以下全て重量部で
表示)、セメント40部、硅石50部、金属アルミニ
ウム0.07部(但し、生石灰とセメントに対する純
分の割合)、及び水70部とからなる原料割合で調
合したスラリーを用いJIS―A―5416に記載され
る方法に準じた方法、条件を用い製造した。オー
トクレーブ養生条件180℃、12時間とした。試料
A,B,及びCは湿式フイル法による重量平均粒
子径が32.4μmを有する金属アルミニウムを発泡
剤として使用して調製した比較対照用試料であ
り、特に試料Bは上記原料スラリー中にスラリー
全固形分に対し1重量%の合成脂肪酸系の防水剤
IE(三菱石油株式会社製)を添加して調製され
たものであり、試料Cは、試料Aの表面の供試体
に水溶性シリコーン撥水剤 TSW870(東芝シリコーン株式会社製)の5倍希
釈液を0.5Kg/m2塗布して作製したものである。 各試料の自然吸水試験及び煮沸試験結果を第1
表に耐凍性評価試験結果を第1図に示す。
The present invention particularly relates to a method for producing autoclave-cured lightweight cellular concrete (hereinafter referred to as ALC), which has excellent freeze resistance. ALC (Autoclaved Lightweight Concrete) is generally a slurry whose main components are finely ground silicic acid and lime, mixed with a foaming agent such as metal aluminum powder, and injected into a formwork, and after reaching a semi-hardened state. It is a building material obtained by demolding, cutting into predetermined shapes, and curing it in an autoclave under high temperature and pressure.It is lightweight, heat-insulating and fire-resistant.
It has excellent workability and is widely used as exterior wall and roofing materials. However, as a general trend of concrete-based products, there is a problem with freeze resistance, and when used in cold regions, the performance is inferior in freeze-thaw tests compared to concrete containing air entraining agents.
There was an urgent need to resolve this issue. Conventionally, freezing resistance was considered to be closely related to open porosity, that is, water absorption rate, and from the viewpoint that reducing water absorption rate was the most effective way to improve freezing resistance, silicone oil etc. Various studies have been conducted to reduce water absorption and improve freeze resistance by mixing water repellents and waterproofing agents into raw material slurry, or by coating or impregnating products with polymeric substances after curing. However, as mentioned later, the effect is not as expected.
Economics was also a problem. As a result of intensive studies on the freeze-thaw properties of ALC, the inventors found that there is no relationship between the freeze resistance and water absorption properties of ALC products, and surprisingly, it was found that metal aluminum with an average particle size of substantially 15 μm or less It has been found that when ALC is produced by mixing silicic acid and lime as a foaming agent into a slurry whose main component is a silicic acid lime substance, a product with extremely good freeze resistance can be obtained. The average particle size of conventionally used metal aluminum is about 30 to 40 μm, and even if it is made into a finer powder, it has no effect at all, and has not been considered at all. However, when manufactured by adding metallic aluminum that has been pulverized to a size of 15 μm or less, the resulting product shows no significant difference compared to conventional products in the natural water absorption test, but in the boiling water absorption test, the amount of water absorbed is rather large. Freeze-thaw resistance is significantly improved, although performance deteriorates.
This fact is very clear in the comparative examples described below. The present invention can be applied to the production of ALC plates, plates, and other products of any shape.
The method specified in JIS-A-5416 can be applied as the most standard method for manufacturing ALC, and as long as metal aluminum under the conditions specified in the present invention is mixed into the slurry, the ALC manufacturing conditions It can also be applied under any variation of. The metal aluminum referred to in the present invention is a powder made of foil-like particles or a paste of powder, and has an average particle diameter of substantially 15 μm or less. Weight average particle size by wet sieving method is 15
A material of μm or less can be used. As long as metallic aluminum under these conditions is used as the main blowing agent component, metallic aluminum having a particle size exceeding 15 μm may be mixed. As to the amount of metal aluminum added, its form, conditions, and mixing conditions to the raw materials, known methods may be applied as they are, and it is also permissible to add appropriate auxiliaries. Examples of the present invention will be described below in comparison with comparative examples. Comparative Example Natural water absorption (vol.%) and boiling water absorption (vol.%) of each lightweight concrete sample prepared by the method described later.
%) and the volumetric residual rate by repeated freezing and thawing were determined by the following methods. Measurement of natural water absorption A 50 mm cubic specimen was placed under 30 mm of water and left for 24 hours, after which the weight increase rate was determined. Measurement of boiling water absorption A 50 mm cubic specimen was placed under the water surface, boiled for 1 hour, then left under the water for 24 hours, and the water absorption was measured using the same method used to measure natural water absorption. Freezing Resistance Evaluation Test A 50 mm cubic specimen was repeatedly thawed in air freezing water according to the method of ASTM-C-666 to determine the volumetric survival rate (%). Freezing was performed at an ambient temperature of -18°C and thawing was performed at an ambient temperature of +5°C, and freezing and thawing were repeated at a rate of 10 cycles/day. Each sample was made of lightweight aerated concrete with a specific gravity of approximately 0.5, which differed in particle size of metal aluminum used during preparation, consisting of 10 parts by weight of quicklime (all parts by weight below), 40 parts of cement, 50 parts of silica, and 0.07 parts of metal aluminum (however, It was manufactured using a method and conditions according to the method described in JIS-A-5416 using a slurry prepared with a raw material ratio of 70 parts of quicklime and cement) and 70 parts of water. Autoclave curing conditions were 180°C for 12 hours. Samples A, B, and C are comparison samples prepared using metallic aluminum having a weight average particle size of 32.4 μm as a blowing agent by a wet film method. Synthetic fatty acid waterproofing agent containing 1% by weight based on solid content
Sample C was prepared by adding IE (manufactured by Mitsubishi Oil Corporation), and sample C was prepared by adding a 5-fold dilution of water-soluble silicone water repellent TSW870 (manufactured by Toshiba Silicone Corporation) to the surface of sample A. It was made by applying 0.5Kg/ m2 of The natural water absorption test and boiling test results of each sample are
The results of the freezing resistance evaluation test are shown in the table in Figure 1.

【表】 * 湿式フルイ法による重量平均粒子
径(μm)
第1表と第1図とから明らかなように、試料A
に対して、試料B及び試料Cの吸水量は低下して
吸水能が低下しているものの耐凍性の向上は僅か
である。 試料E,F,G,H,及びIの体積残存率は第
1図に示されるように凍結融解サイクル90回のの
ちでも体積残存率が100%を示している。 以上のおり、従来品A,B,C,Jは凍結融解
試験において50〜60サイクルで体積残在率が約50
%となり第1図のようにこの曲線は直線的に崩壊
(残存率=0)に向うのに対し、本発明によるも
のは、吸水量が従来品より多いのにもかかわら
ず、100回のサイクルでも実施例5件のうち4件
までが何等変化がなく、その優れた耐凍性は注目
に値するものである。
[Table] * Weight average particle diameter (μm) by wet sieve method
As is clear from Table 1 and Figure 1, sample A
On the other hand, although the amount of water absorbed by Samples B and C was decreased and the water absorption capacity was decreased, the improvement in freezing resistance was slight. As shown in FIG. 1, the volume survival rates of Samples E, F, G, H, and I are 100% even after 90 freeze-thaw cycles. As described above, conventional products A, B, C, and J have a volume residual rate of approximately 50 after 50 to 60 cycles in the freeze-thaw test.
%, and as shown in Figure 1, this curve tends to collapse linearly (residual rate = 0), whereas the product according to the present invention has a higher water absorption amount than the conventional product, but it can be used for 100 cycles. However, there was no change in up to four of the five examples, and their excellent freeze resistance is noteworthy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料の耐凍性評価試験の結果を表わ
す。図において縦軸は体積残存率(%)、横軸は
凍結融解のサイクル数を示す。
Figure 1 shows the results of the freezing resistance evaluation test of the samples. In the figure, the vertical axis shows the volume residual rate (%), and the horizontal axis shows the number of freeze-thaw cycles.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒子径が実質的に15μm以下なる金属ア
ルミニウムを発泡剤として、硅酸物質、石灰物質
を主成分とする原料スラリーに混合することを特
徴とする耐凍性に優えたオートクレーブ養生する
軽量気泡コンクリートの製造方法。
1. Autoclave-cured lightweight cellular concrete with excellent freeze resistance, characterized by mixing aluminum metal with an average particle diameter of substantially 15 μm or less as a foaming agent into a raw material slurry whose main components are silicic acid and lime. manufacturing method.
JP1541179A 1979-02-15 1979-02-15 Manufacture of antifreezing lightweight foamed concrete Granted JPS55109257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1541179A JPS55109257A (en) 1979-02-15 1979-02-15 Manufacture of antifreezing lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1541179A JPS55109257A (en) 1979-02-15 1979-02-15 Manufacture of antifreezing lightweight foamed concrete

Publications (2)

Publication Number Publication Date
JPS55109257A JPS55109257A (en) 1980-08-22
JPS62878B2 true JPS62878B2 (en) 1987-01-09

Family

ID=11887991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1541179A Granted JPS55109257A (en) 1979-02-15 1979-02-15 Manufacture of antifreezing lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPS55109257A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511528B2 (en) * 1989-08-09 1996-06-26 住友金属鉱山株式会社 ALC manufacturing method
JP2562850B2 (en) * 1991-05-09 1996-12-11 旭化成工業株式会社 Large ALC panel manufacturing method
PL3033313T3 (en) * 2013-08-15 2022-09-05 Sika Technology Ag Air-entraining agents for mineral binder compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369216A (en) * 1976-11-30 1978-06-20 Ugine Kuhlmann Manufacture of gas concrete
JPS5585449A (en) * 1978-12-15 1980-06-27 Sumitomo Metal Mining Co Manufacture of lightweight foamed concrete by steam curing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369216A (en) * 1976-11-30 1978-06-20 Ugine Kuhlmann Manufacture of gas concrete
JPS5585449A (en) * 1978-12-15 1980-06-27 Sumitomo Metal Mining Co Manufacture of lightweight foamed concrete by steam curing

Also Published As

Publication number Publication date
JPS55109257A (en) 1980-08-22

Similar Documents

Publication Publication Date Title
Lura et al. Pumice aggregates for internal water curing
CA1078099A (en) Gas-filled flexible microspheres in concrete
Duan et al. Thermal behavior of portland cement and fly ash–metakaolin-based geopolymer cement pastes
US4518431A (en) Light weight insulating building blocks and method of making same
US4555448A (en) Biogenetic silica insulation
US4412863A (en) Inorganic cement compositions having controlled thermal expansion coefficients
US4356271A (en) Noncollapsible ceramic foam
JP3386225B2 (en) Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product
Litvan et al. Particulate admixture for enhanced freeze-thaw resistance of concrete
Wild et al. Relation between pore size distribution, permeability, and cementitious gel formation in cured clay–lime systems
US4082562A (en) Porous particles in frost-resistant cementitious materials
US3729328A (en) Cellular foamed material and method for the manufacture thereof
US4245054A (en) Process for the manufacture of a dry mixture for insulating stucco or plaster
JPS62878B2 (en)
US3086898A (en) Light-weight structural unit
RU2255920C1 (en) Raw mixture for making light concrete
US3278660A (en) Light-weight structural units and method for producing the same
WO1993013032A1 (en) Lightweight gas concrete
JP2765322B2 (en) Lightweight cellular concrete
JP3805839B2 (en) Lightweight concrete manufacturing method
JPH11199346A (en) Floating block
CA1258746A (en) Biogenetic silica insulation
Beaudoin et al. Use of compacts to study the mechanical properties of sulfur
JPS62212275A (en) High strength lightweight concrete heat insulator and manufacture
JPS62235277A (en) Super lightweight cement set body and manufacture