JPS61127165A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61127165A
JPS61127165A JP59248352A JP24835284A JPS61127165A JP S61127165 A JPS61127165 A JP S61127165A JP 59248352 A JP59248352 A JP 59248352A JP 24835284 A JP24835284 A JP 24835284A JP S61127165 A JPS61127165 A JP S61127165A
Authority
JP
Japan
Prior art keywords
region
layer
transistor
light
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59248352A
Other languages
Japanese (ja)
Other versions
JPH0527990B2 (en
Inventor
Hisao Nagao
長尾 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59248352A priority Critical patent/JPS61127165A/en
Publication of JPS61127165A publication Critical patent/JPS61127165A/en
Publication of JPH0527990B2 publication Critical patent/JPH0527990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To eliminate the effect of light entering into an end part of transistor by a method wherein a transistor comprising a bypolar IC utilized for photoelectric conversion is covered with a shielding metal while a dummy photodiode is arranged on the part outside the transistor to shortcircuit the output thereof by another shielding metal. CONSTITUTION:An N<+> type buried layer corresponding to a transistor region 3 and a resistor region 4 is formed on the surface layer of P type Si substrate 1 and then an N type layer 9 is epitaxially grown on overall surface including the buried layer while the layer 9 is divided by a P<+> type region into two regions i.e. one region comprising the transistor region 3 and the resistor region 4 and the other region as a dummy photodiode region 10 adjoining the region 3. Next, a shielding metal 2 extending to the middle point of diode region 10 is formed on the transistor region 3 and the resistor region 4 while another shielding metal 11 for shortcircuiting the output from diode region 10 is arranged on the N<+> type region and separating P<+> type region provided on the diode region 10 to shield the light 6 entering into the end part.

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野〕 この発明は、充電変換に使用されるバイポーラ型半導体
装置に関し、殊に、その周辺部等から入射した光が光電
変換してこれによって生じる光電流が基本素子の作動に
影響を与えることを防ぐように、ダミーホトダイオード
が形成されてなる半導体装置に関する。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention relates to a bipolar semiconductor device used for charge conversion, and in particular, the present invention relates to a bipolar semiconductor device used for charge conversion. The present invention relates to a semiconductor device in which a dummy photodiode is formed to prevent photocurrent generated thereby from affecting the operation of basic elements.

〔従来の技術〕[Conventional technology]

従来、光電変換に使用されるバイポーラIC素子やホト
ダイオードとバイポーラICを一体化した素子のバイポ
ーラ形半導体装置(Ia)の構造は、その要部の構成断
面を第4図に示すように、P型基板(1a)上に、N+
層、N8、P”層、配線メタルである一層メタル、一層
絶縁°膜、二層絶縁膜及び遮光作用をする二層メタル(
2a)を設けたものであり、トランジスタ(3a)や抵
抗(4a)などの基本素子を形成していた。尚、集積回
路(Ia)の仕上げ時に、その周辺部(5a)で、ダイ
ヤモンド粉をつけた特殊な回転砥石で分割カットする、
いわゆるダイシングが行われる。このダイシング時に、
回転砥石が柔らかいメタルによって目づまりすることを
防ぐために、二層メタル(2a)を周辺部(5a)まで
は届かせず、二層メタル(2a)が周辺部(5a)を覆
わないようにされていた。
Conventionally, the structure of a bipolar semiconductor device (Ia), which is a bipolar IC element used for photoelectric conversion or an element that integrates a photodiode and a bipolar IC, is a P-type semiconductor device (Ia), as shown in FIG. On the substrate (1a), N+
layer, N8, P'' layer, single layer metal that is wiring metal, single layer insulation film, double layer insulation film, and double layer metal that has a light shielding effect (
2a), forming basic elements such as a transistor (3a) and a resistor (4a). In addition, when finishing the integrated circuit (Ia), the peripheral part (5a) is cut into parts using a special rotating grindstone coated with diamond powder.
So-called dicing is performed. During this dicing,
In order to prevent the rotating grindstone from being clogged with soft metal, the two-layer metal (2a) does not reach the peripheral part (5a), and the two-layer metal (2a) does not cover the peripheral part (5a). was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

トランジスタ(3a)や抵抗(4a)などの基本素子は
、二層メタル層(2a)方向からは光がさえぎられてい
て、その動作が光によって影響を受けることはない。
Basic elements such as the transistor (3a) and the resistor (4a) are blocked from light from the direction of the two-layer metal layer (2a), and their operations are not affected by light.

しかし、光(6a)は、二層メタル層(2a)で覆われ
ていない部分である周辺部(5a)から吸収され、ここ
で光電変換が行われて、その結果、充電変換で発生した
少数キャリア(光電流)の一部が再結合せずに移動して
トランジスタ(3a)、抵抗(4a)等の基本素子の動
作に影響を与え、不安定なものにさせるという問題があ
った。
However, the light (6a) is absorbed from the peripheral part (5a), which is the part not covered by the double metal layer (2a), and photoelectric conversion occurs here, resulting in a small number of There is a problem in that some of the carriers (photocurrent) move without being recombined and affect the operation of basic elements such as the transistor (3a) and the resistor (4a), making them unstable.

ところで、少数キャリア(光電流)の移動距離は拡散長
に比例し、例えば、P型半導体中における拡散長は、 L=854(比抵抗P=1Ω−am) である。よって、光(6a)の入射位置からトランジス
タ(3a)、抵抗(4a)等の基本素子までの距離が拡
散長しより小さければ、入射した光が光電変換を起こし
、これによって発生した少数キャリア(光電流)は、上
記基本素子のところまで移動し、上記基本素子は動作に
影響を受けることになる。例えば、トランジスタ(3a
)の場合では、光(6a)からトランジスタ(3a)の
動作が影響を受ける有効領域(1a)は斜線部分で示し
た部分である。
By the way, the moving distance of minority carriers (photocurrent) is proportional to the diffusion length, and for example, the diffusion length in a P-type semiconductor is L=854 (specific resistance P=1 Ω-am). Therefore, if the distance from the incident position of light (6a) to basic elements such as transistors (3a) and resistors (4a) is smaller than the diffusion length, the incident light will cause photoelectric conversion, and the minority carriers ( photocurrent) will travel to the elementary element, and the operation of the elementary element will be affected. For example, a transistor (3a
), the effective area (1a) where the operation of the transistor (3a) is affected by the light (6a) is the shaded area.

ある基本素子と隣り合うもう一つの基本素子との光に感
じる有効領域の境界は、両者の中央部で近似される。こ
こでは、トランジスタ(3a)と抵抗(4a)との有効
領域の境界は、(8a)となる。
The boundary of the effective light-sensing area between one basic element and another adjacent basic element is approximated by the center of the two. Here, the boundary of the effective area between the transistor (3a) and the resistor (4a) is (8a).

また、PfJ!l板(1)である例えばシリコン中では
、光の強度が減衰する。よって、光の入射位置に近い基
本素子はど、光電変換された光電流による影響を多く受
けることになる。
Also, PfJ! The intensity of light is attenuated in, for example, silicon, which is the l plate (1). Therefore, basic elements close to the light incident position are more affected by the photoelectrically converted photocurrent.

以上より、基本素子の動作が光電変換して生じた光電流
による影響を回避するように、基本素子であるトランジ
スタ(3a)の動作が影響を受ける有効領域(1a)ま
で遮光性の二層メタル(2a)で覆い、更に入射する光
の減衰を考慮して周辺部(5a)を有効領域(7a)か
ら十分な距離の位置となるようにしていた。しかし、こ
れでは、集積回路は容積が小さいという特長が損なわれ
、かつ少数キャリア(光電流)からの影響が矢張りおこ
るという問題があった。
From the above, in order to avoid the influence of the photocurrent generated by photoelectric conversion on the operation of the basic element, a light-shielding double-layer metal layer is used up to the effective area (1a) where the operation of the transistor (3a), which is the basic element, is affected. (2a), and in consideration of attenuation of incident light, the peripheral portion (5a) was positioned at a sufficient distance from the effective area (7a). However, with this, the advantage of integrated circuits having a small volume is lost, and there is a problem in that they are heavily influenced by minority carriers (photocurrent).

(ロ)発明の構成 この発明の構成は、半導体基板にバイポーラ集積回路を
形成する半導体装置において、外部から光が入射しうる
半導体基板部分に形成されPN接合する、前記半導体基
板とは逆の4電型を有する半導体層と、 前記PN接合する両生導体層を短絡する短絡手段と、を
備えたことを特徴とする半導体装置である。
(B) Structure of the Invention The structure of the present invention is that in a semiconductor device in which a bipolar integrated circuit is formed on a semiconductor substrate, a PN junction is formed in a portion of the semiconductor substrate into which light can enter from the outside, and a four-layer A semiconductor device comprising: a semiconductor layer having an electric type; and shorting means for shorting the amphibic conductor layer forming the PN junction.

つまり、この発明は、遮光メタルの被覆のない部分にダ
ミーホトダイオードを形成させ、ここから入射した光は
充電変換により光電流に変わるが、この光電流が」二層
ダミーホトダイオードによって消費され、他の基本素子
の動作に影響を及ぼさないようにさせたものである。
In other words, in this invention, a dummy photodiode is formed in the uncovered part of the light-shielding metal, and the light incident thereon is converted into a photocurrent by charge conversion, but this photocurrent is consumed by the double-layer dummy photodiode and other This is done so that it does not affect the operation of the basic elements.

(実施例) 以下、第1〜3図に示づ実施例によってこの発明を説明
するが、これによってこの発明が限定されるものではな
い。
(Examples) The present invention will be described below with reference to Examples shown in FIGS. 1 to 3, but the present invention is not limited thereto.

本発明の光が照射されて使用されるバイポーラ型半導体
装1(1)の構造は、その要部の構成断面を第1図に示
すように、P型基板(1)上に、N’層、Nil!ff
、P+層、一層絶縁膜、一層メタル、二層絶縁膜、及び
二層メタル(′2Jを設けたもので、これによってこの
半導体装置(1)をつくっている基本素子のトランジス
タ(3)や抵抗(4)と、更にダミーホトダイオード■
が形成されている。
The structure of the bipolar semiconductor device 1 (1) used by being irradiated with the light of the present invention is as shown in FIG. , Nil! ff
, P+ layer, single-layer insulating film, single-layer metal, double-layer insulating film, and double-layer metal ('2J), which make up the basic elements such as transistors (3) and resistors that make up this semiconductor device (1). (4) and a dummy photodiode■
is formed.

尚、P型基板(1)、N奎層、NWJ及びP+層は例え
ばシリコンからできていて光に感応し、−1W絶縁膜は
例えばシリコンを熱酸化させて、二層絶縁膜は例えばポ
リイミド樹脂がコーティングさせることでつくられてお
り、一層メタルは集積回路で配線の働きをし二層メタル
(′2Jは遮光の働きをして宋梢回路周辺部(5)を除
いて遮光が必要な部分を覆っており、共に例えばアルミ
ニュウムから出来ている。
The P-type substrate (1), the N-layer, the NWJ, and the P+ layer are made of, for example, silicon and are sensitive to light, the -1W insulating film is made of, for example, silicon thermally oxidized, and the two-layer insulating film is made of, for example, polyimide resin. The first layer of metal acts as a wiring in the integrated circuit, and the second layer of metal ('2J acts as a light shield, and covers areas that require light shielding except for the peripheral area of the Song Jue circuit (5). , both of which are made of aluminum, for example.

二層メタル(2は、もし光が入射すると光電変換を起こ
し、これによって光電流が発生し、この光電流が少数キ
ャリアによって運ばれることよりトランジスタ(3)の
動作に影響を及ぼす有効領域(8)まで、集積回路(1
)を覆い遮光するようになっている。尚、入射光による
光電変換とは、pn接合を形成させた半導体に、この半
導体に固有なある値以上のエネルギーを持った光が当た
ると、電子−正孔の対が形成され、接合まで到達した電
子や正孔は電界により振り分けられて光電流となるが、
この先→電気の変換をいう。
The double-layer metal (2) is an effective area (8) where, if light is incident, it causes photoelectric conversion, which generates a photocurrent, and this photocurrent is carried by minority carriers, thereby affecting the operation of the transistor (3). ) up to integrated circuit (1
) to block light. Photoelectric conversion by incident light is when a semiconductor with a pn junction formed is hit by light with energy above a certain value unique to this semiconductor, electron-hole pairs are formed and reach the junction. The generated electrons and holes are distributed by the electric field and become photocurrent,
From here on → refers to the conversion of electricity.

さて、この半導体装置(1)は、一枚のP型基板(ウェ
ハ)(1)上に一度に多くの回路を作り込み、その後一
つ一つの集積回路(1)に分割カットする。つまりダイ
シングされることでつくられる。
Now, in this semiconductor device (1), many circuits are fabricated at once on one P-type substrate (wafer) (1), and then the semiconductor device (1) is cut into individual integrated circuits (1). In other words, it is made by dicing.

このダイシング時に、半導体装置(1)の周辺部(5)
が二層メタル(例えばアルミニウム)(21が覆われて
いないから、回転砥石にメタルが目づまりすることもな
く、又、分割カットが容易に正確になされる。
During this dicing, the peripheral part (5) of the semiconductor device (1)
Since the two-layer metal (for example, aluminum) (21) is not covered, the rotating grindstone will not be clogged with metal, and division cuts can be easily and accurately made.

この分割カットされてつくられた半導体装置(1)の遮
光されていない周辺部(5)に、P型基板(1)とN型
エピタキシャル層(9)によってダミーホトダイオード
(10)は形成されている。更に、これらP型基板(1
)とN型エピタキシャル層(9)は一層メタル(11)
で短絡する構造となっている。又、ダミーホトダイオー
ド(10)とトランジスタ(3)との光に感応する有効
領域の境界(8)は、両者の中央部で近似される。
A dummy photodiode (10) is formed by a P-type substrate (1) and an N-type epitaxial layer (9) in the unshielded peripheral area (5) of the semiconductor device (1) produced by dividing and cutting. . Furthermore, these P-type substrates (1
) and the N-type epitaxial layer (9) is a single layer metal (11).
The structure is short-circuited. Furthermore, the boundary (8) of the effective area sensitive to light between the dummy photodiode (10) and the transistor (3) is approximated by the center of both.

ここで、半導体装置N)に光が照射されると、二層メタ
ル(2)で覆われているトランジスタ(3)と抵抗(4
)は遮光されており、この部分から光が入射することは
なく、光電変換は起きない。二層メタル(2Jで覆われ
ていないダミーホトダイオード色に光(6)が入射する
と、ここで光電変換が行われることによってP型基板(
1)からN層(9)へと光電流が流れる。しかし、P型
基板(1)とN層(9)との接合が一層メタル0υによ
って短絡されており、よって、ダミーホトダイオード(
10)の隣にあるトランジスタ(3)は、その動作に光
照射による影響を受けることはない。
Here, when the semiconductor device N) is irradiated with light, the transistor (3) covered with the two-layer metal (2) and the resistor (4) are exposed.
) is shielded from light, no light enters from this part, and no photoelectric conversion occurs. When light (6) enters the dummy photodiode color that is not covered with the double-layer metal (2J), photoelectric conversion is performed here and the P-type substrate (
A photocurrent flows from 1) to the N layer (9). However, the junction between the P-type substrate (1) and the N-layer (9) is short-circuited by a layer of metal 0υ, and therefore the dummy photodiode (
The operation of the transistor (3) next to the transistor (10) is not affected by the light irradiation.

又、周辺部(5)をダイシング等によってカットすると
、P型基板(1)とN型エピタキシャル層(9)とのP
N接合はダメージを受はリーク電流が発生するが、PN
接合が一層メタルで短絡され同電位となっていることか
ら回路動作上の不具合はない。
Moreover, when the peripheral part (5) is cut by dicing etc., the P between the P type substrate (1) and the N type epitaxial layer (9) is removed.
The N junction is damaged and leakage current occurs, but the PN junction
Since the junctions are short-circuited with a layer of metal and have the same potential, there are no problems with circuit operation.

他の実施例は、その要部の構成断面を第2図に示すとお
り、ポンディングパッド(2)の五部にダミーホトダイ
オードMを形成している半導体装置(1′)である。ポ
ンディングパッド周辺部(財)は、ワイヤボンディング
時にポンディングパッドを構成するメタル以外のメタル
とワイヤが短絡するのを防止するため、一層・二層メタ
ルで覆うことができない。この部分面に光(ωが入射す
ると、光電変換が行なわれ、P層(1′)からN層(印
へと光電流が流れても、本実施例ではp m (1’)
からN層(印との接合が一層メタル(Inによって短絡
されているため、電流はここで短絡し他へ流れない。よ
って、この遮光がなされていない部分面の隣りにあるト
ランジスタ(群は、その動作に光照射による影響を受け
ることはない。
Another embodiment is a semiconductor device (1') in which dummy photodiodes M are formed in five parts of a bonding pad (2), as shown in FIG. The area around the bonding pad cannot be covered with a single or double layer metal to prevent the wire from shorting with metal other than the metal that makes up the bonding pad during wire bonding. When light (ω) is incident on this partial surface, photoelectric conversion is performed, and even if a photocurrent flows from the P layer (1') to the N layer (marked), in this example, p m (1')
Since the junction between the N layer and the mark is short-circuited by a layer of metal (In), the current is short-circuited here and does not flow elsewhere. Its operation is not affected by light irradiation.

更に、上記以外の実施例は、その要部の構成断面を第3
図に示すとおり、基本素子(ここではトランジスタ(3
″))が二層メタルによる遮光がなされていない場合、
トランジスタ(3″)の隣りに、ダミ上ホトダイオード
I (10” ’) 、If(10”)を形成している
半導体装置(1″)である。ここで、光が入射すると、
光電変換が行なわれ、PI(1″)からN層(9” )
へと光電流が流れても、ダミーホトダイオードI (1
0” ) 、IT(10”)の各々の一層メタルI (
11” ’) 、II(11″)によって電流は短絡し
、他へ流れない。
Furthermore, in embodiments other than the above, the cross section of the main part is
As shown in the figure, the basic elements (here transistors (3
″)) is not shielded by double layer metal,
This is a semiconductor device (1'') in which a dummy photodiode I (10'') and If (10'') are formed next to a transistor (3''). Here, when light enters,
Photoelectric conversion is performed from PI (1″) to N layer (9″)
Even if the photocurrent flows to the dummy photodiode I (1
0”), IT (10”), each of the single layer metal I (
11'''), II (11''), the current is short-circuited and does not flow elsewhere.

よって、トランジスタ(3″)の動作において光照射に
よる影響を低減することができる。
Therefore, the influence of light irradiation on the operation of the transistor (3'') can be reduced.

(ハ)発明の効果 この発明は、遮光性メタルが覆われず、光が入射し、光
電変換して光電流が生じるが、この光電流が発生するバ
イポーラ形半導体装置の部分に、ダミーホトダイオード
を形成し、このダミーホトダオードが発生した上記光電
流を短絡させることで、光電流が他の基本素子の動作に
影響を与えることを防ぐという効果を奏している。
(c) Effects of the Invention This invention provides a dummy photodiode in the part of the bipolar semiconductor device where the light-shielding metal is not covered and light enters and undergoes photoelectric conversion to generate a photocurrent. By forming a dummy photodiode and short-circuiting the generated photocurrent, this dummy photodiode has the effect of preventing the photocurrent from affecting the operations of other basic elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る半導体装置の一実施例を示す要
部の構成説明図、第2図は他の実施例を示す要部の構成
説明図、第3図は更に他の実施例を示す要部の構成説明
図、第4図は従来の半導体装置を示すvc811の構成
説明図である。 工・・・・・・半導体装置、 (1)・・・・・・P型基板(1層)、[21・・・・
・・二面メタル、(3)・・・・・・トランジスタ、(
4)・・・・・・抵抗、(5)・・・・・・周辺部、(
6)・・・・・・光、(刀・・・・・・有効領域、(8
)・・・・・・有効領域の境界、(9)・・・・・・N
型エピタキシャルIiM (N層)、(ト))・・・・
・・ダミーホトダイオード、(11)・・・・・・一層
メタル、面・・・・・・ポンディングパッド、 [13+・・・・・・ポンディングパッド周辺部。
FIG. 1 is an explanatory diagram of the main part of a semiconductor device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the main part of another embodiment, and FIG. 3 is an explanatory diagram of the main part of another embodiment. FIG. 4 is an explanatory diagram of the configuration of a vc811 showing a conventional semiconductor device. Engineering...Semiconductor device, (1)...P-type substrate (1 layer), [21...
...Two-sided metal, (3)...Transistor, (
4)...Resistance, (5)...Periphery, (
6) ... light, (sword ... effective area, (8
)...Boundary of effective area, (9)...N
Type epitaxial IiM (N layer), (g))...
...Dummy photodiode, (11)...More metal layer, surface...Ponding pad, [13+...Pounding pad periphery.

Claims (1)

【特許請求の範囲】 1、半導体基板にバイポーラ集積回路を形成する半導体
装置において、 外部から光が入射しうる半導体基板部分に形成されPN
接合する、前記半導体基板とは逆の導電型を有する半導
体層と、 前記PN接合する両半導体層を短絡する短絡手段と、を
備えたことを特徴とする半導体装置。
[Claims] 1. In a semiconductor device in which a bipolar integrated circuit is formed on a semiconductor substrate, a PN is formed in a portion of the semiconductor substrate where light can enter from the outside.
A semiconductor device comprising: a semiconductor layer having a conductivity type opposite to that of the semiconductor substrate to be bonded to each other; and shorting means for shorting both semiconductor layers to be PN-junctioned.
JP59248352A 1984-11-24 1984-11-24 Semiconductor device Granted JPS61127165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248352A JPS61127165A (en) 1984-11-24 1984-11-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248352A JPS61127165A (en) 1984-11-24 1984-11-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61127165A true JPS61127165A (en) 1986-06-14
JPH0527990B2 JPH0527990B2 (en) 1993-04-22

Family

ID=17176816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248352A Granted JPS61127165A (en) 1984-11-24 1984-11-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61127165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164270A (en) * 1986-12-26 1988-07-07 Toshiba Corp Laminated type solid-state image sensing device
CN109346496A (en) * 2018-11-23 2019-02-15 德淮半导体有限公司 Pixel unit, imaging sensor and its manufacturing method
JP2021097056A (en) * 2019-12-13 2021-06-24 コーデンシ株式会社 Semiconductor integrated circuit device and optical sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123083A (en) * 1975-04-03 1976-10-27 Ibm Integrated semiconductor device
JPS5645086A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Photosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123083A (en) * 1975-04-03 1976-10-27 Ibm Integrated semiconductor device
JPS5645086A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Photosensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164270A (en) * 1986-12-26 1988-07-07 Toshiba Corp Laminated type solid-state image sensing device
CN109346496A (en) * 2018-11-23 2019-02-15 德淮半导体有限公司 Pixel unit, imaging sensor and its manufacturing method
JP2021097056A (en) * 2019-12-13 2021-06-24 コーデンシ株式会社 Semiconductor integrated circuit device and optical sensor
JP2021097208A (en) * 2019-12-13 2021-06-24 コーデンシ株式会社 Semiconductor integrated circuit device and optical sensor

Also Published As

Publication number Publication date
JPH0527990B2 (en) 1993-04-22

Similar Documents

Publication Publication Date Title
US4318115A (en) Dual junction photoelectric semiconductor device
US3436548A (en) Combination p-n junction light emitter and photocell having electrostatic shielding
JPH0799782B2 (en) Semiconductor photodetector
JP2925943B2 (en) Semiconductor device with built-in photodiode
JPS61127165A (en) Semiconductor device
US4903103A (en) Semiconductor photodiode device
JP2998646B2 (en) Light receiving operation element
JPS6286756A (en) Optoelectric transducer
JPS5912034B2 (en) Light receiving semiconductor device
JP2852222B2 (en) Optical semiconductor integrated circuit device
JPS5914180B2 (en) photodetector cell
JPS58193B2 (en) Semiconductor optical detection device
JPS5833881A (en) Photoelectric converter
JP3364989B2 (en) Avalanche photodiode for split optical sensor
JPS622673A (en) Semiconductor light receiving device
JPS622575A (en) Semiconductor photo detector
JPH05235394A (en) Phototransistor
JPS6177360A (en) Semiconductor device
JPH0541533A (en) Semiconductor device
JP2002217448A (en) Semiconductor light illuminance sensor
JPH043473A (en) Photoelectric conversion device
JPH0521353B2 (en)
JPH0581060B2 (en)
JPH04258178A (en) Integrated photodetector
JPH03286565A (en) Bonding pad of ic with photosensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term