JPS6177360A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6177360A
JPS6177360A JP59198812A JP19881284A JPS6177360A JP S6177360 A JPS6177360 A JP S6177360A JP 59198812 A JP59198812 A JP 59198812A JP 19881284 A JP19881284 A JP 19881284A JP S6177360 A JPS6177360 A JP S6177360A
Authority
JP
Japan
Prior art keywords
diodes
diode
substrate
ccd11
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59198812A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kajiwara
梶原 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59198812A priority Critical patent/JPS6177360A/en
Publication of JPS6177360A publication Critical patent/JPS6177360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers
    • H01L27/14881Infrared CCD or CID imagers of the hybrid type

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To prevent the generation of blooming by a method wherein a series connection of the first and second diodes receives reverse biases from the CCD and then generates a photo bias voltage that weakens reverse bias voltages hung on the first and second diodes through carriers accumulated in the first diode. CONSTITUTION:The second diodes 9,9... of p-n junction made of indium phosphorus (InP) are epitaxially grown beneath a substrate 8 which is permeable to infrared rays 7, and the first diodes 10 are epitaxially grown on the second diodes 9: that is, the first diodes form p-n junctions made out of indium-gallium- arsenic-phosphide (InGaAsP). A plurality of these series-diodes are arranged on the substrate in array form. The n-regions of the first diodes 10 are connected to the n<+> regions 12, 12, ... of the CCD11, and the p-regions of the second diodes 9, 9, ... are connected in common to the p<+> region 13 of the CCD11; thus, the n-p-n-p diodes receive reverse biases from the CCD11 input part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特にダイオードアレイと電
荷結合素子(Charge Couppled Dev
ice。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a diode array and a charge coupled device.
ice.

以下CCDと記す)からなるハイブリッド型赤外線検出
器のブルーミングを防止するようにした半導体装置に関
する。
The present invention relates to a semiconductor device that prevents blooming of a hybrid infrared detector (hereinafter referred to as CCD).

近年、光照射によって生じたPN結合付近の小数キャリ
アがPN接合部を横切って光電流を生ずるダイオードは
広く利用され、特に■−■属化金化合物いた発光ダイオ
ードや半導体レーザが実用化され近赤外域あるいは赤外
域に高い感度を持つ光検出器が期待されている。
In recent years, diodes in which minority carriers near the PN junction generated by light irradiation cross the PN junction and generate a photocurrent have been widely used, and in particular, light-emitting diodes and semiconductor lasers with ■-■ metal compounds have been put into practical use, and near-infrared Photodetectors with high sensitivity in the outer or infrared region are expected.

一方、シリコン基板上に絶縁層を設けて該絶縁層上に伝
導性の電極を一列に並べて2相または3和動作するよう
にしたSi −CCDも撮像計算機メモリ等に多く利用
されている。
On the other hand, Si-CCDs in which an insulating layer is provided on a silicon substrate and conductive electrodes are arranged in a line on the insulating layer to perform two-phase or ternary operation are also widely used in imaging computer memories and the like.

本発明では赤外線検出装置を構成するダイオードアレイ
とSt −CCDをハイブリッド化してダイオードアレ
イで入力光量に比例した量の電子を発生させSt −C
ODマルチプレクサのポテンシャル井戸内に電荷を蓄積
するようにした半導体装置を提供するにある。
In the present invention, a diode array constituting an infrared detection device and a St-CCD are hybridized, and the diode array generates an amount of electrons proportional to the amount of input light.
An object of the present invention is to provide a semiconductor device in which charge is accumulated in a potential well of an OD multiplexer.

〔従来の技術〕[Conventional technology]

上述の如きハイブリッド化されたダイオードアレイとS
i −CCDからなる半導体装置の従来の一実施例を第
4図について説明する。
Hybridized diode array as described above and S
A conventional example of a semiconductor device comprising an i-CCD will be described with reference to FIG.

第4図において、1は通常のPN接合よりなるダイオー
ドで赤外線検出器を構成していて実際には基板上にダイ
オードアレイの型で形成されている。2は上記基板とは
異なるSi基板上に形成されたCODであり、入出力部
3.4感光体にたとえばΦ1.Φ2.φ3の3相クロツ
クの与えられるクロック電極5を有する。6はCODの
出力端子であり赤外線検出器1はCODからバイアスさ
れている。上記構成において赤外線検出器1に入射した
光をCCD2のポテンシャル井戸内に蓄積して行く場合
に赤外線検出器を構成しているダイオードに多量の過剰
光が照射されると、該ダイオードで発生した多量の電荷
がC0D2の入力に与えられ、ブルーミングが発生して
出力端子6に連なる撮像系の特性を著しく阻害する欠点
がある。
In FIG. 4, reference numeral 1 denotes a diode made of an ordinary PN junction, which constitutes an infrared detector, and is actually formed in the form of a diode array on a substrate. 2 is a COD formed on a Si substrate different from the above substrate, and the input/output section 3.4 has a photoreceptor, for example, Φ1. Φ2. It has a clock electrode 5 to which a three-phase clock of φ3 is applied. 6 is an output terminal of the COD, and the infrared detector 1 is biased from the COD. In the above configuration, when the light incident on the infrared detector 1 is accumulated in the potential well of the CCD 2, if a large amount of excess light is irradiated to the diode making up the infrared detector, a large amount of light generated in the diode charge is applied to the input of C0D2, causing blooming, which has the drawback of significantly impairing the characteristics of the imaging system connected to the output terminal 6.

〔発明が解決しようとする問題点) このような欠点を除くために従来では図示しないがCG
’D内に過剰電荷を捨て去るためのブルーミング防止回
路を付加することが行われていた。
[Problems to be solved by the invention] In order to eliminate such drawbacks, although not shown in the conventional art, CG
A blooming prevention circuit was added to the 'D to discard excess charge.

しかしCCD2内に一体化してこれら回路を形成するた
めのスペースは極めて小さく、その形成が極めて困難で
ある欠点を有する。
However, the space for forming these circuits integrally within the CCD 2 is extremely small, and the disadvantage is that it is extremely difficult to form them.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解消した半導体装置を提供するも
ので、その手段は、第1の基板に形成されたダイオード
群と、第2の基板に形成されたマルチプレクサ電荷結合
素子とをハイブリッド化した赤外線検出装置において、
上記ダイオード群は検出しようとする波長のバンドギャ
ップを有する第1のダイオードと該第1のダイオードの
バンドギャップより広いバンドギャップの第2のダイオ
ードを直列接続した4、Mのエピタキシャル層からなる
ことを特徴とする半導体装置によってなされる。
The present invention provides a semiconductor device that solves the above-mentioned problems, and its means include hybridizing a group of diodes formed on a first substrate and a multiplexer charge-coupled device formed on a second substrate. In an infrared detection device,
The above diode group consists of 4.M epitaxial layers in which a first diode having a bandgap of the wavelength to be detected and a second diode having a bandgap wider than the first diode are connected in series. This is achieved using a semiconductor device having the following characteristics.

〔作  用〕[For production]

上記第1および第2のダイオードの直列接続はCODに
より逆バイアスを受け、上記第1のダイオードに蓄積さ
れたキャリアによって第1および第2に掛っている逆バ
イアス電圧を弱める光バイアス電圧を発生させるように
したものである。
The series connection of the first and second diodes is reverse biased by the COD, and the carriers accumulated in the first diode generate an optical bias voltage that weakens the reverse bias voltage applied to the first and second diodes. This is how it was done.

〔実 施 例〕〔Example〕

以下1図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to one drawing.

第1図は本発明の模式的構成を示す図であり。FIG. 1 is a diagram showing a schematic configuration of the present invention.

7は赤外光で8は赤外光7を透過する基板で、該基板の
下面にインジウム・燐(InP)からなるPN接合の第
2のダイオード9,9.・・・をエピタキシャル成長さ
せ該第2のダイオード9上に第1のダイオード10をエ
ピタキシャル成長させる。
Reference numeral 7 denotes a substrate that transmits infrared light, and 8 a substrate that transmits the infrared light 7. On the bottom surface of the substrate are second diodes 9, 9 . ... is epitaxially grown, and the first diode 10 is epitaxially grown on the second diode 9.

すなわち第1のダイオードはインジウム・ガリウム・ヒ
素・燐(TnGaAsP)からなるPN接合を形成する
。これらInPおよびInGaAsPからなる直列ダイ
オードを基板8にアレイ状に複数配設する。
That is, the first diode forms a PN junction made of indium-gallium-arsenic-phosphorus (TnGaAsP). A plurality of series diodes made of InP and InGaAsP are arranged in an array on the substrate 8.

11は5i−CCDマルチプレクサでダイオードからの
電子を並列〜直列変換するものであり、該CcD11の
N“領域12,12.  ・・・に第1のダイオード1
0のN領域を接続し、第2のダイオード9.9・・・の
P領域を共通接続しCCD11のP−領域13と接続し
てヘテロ構成よりなるN−P−N−PダイオードはCC
D11の入力5一 部より逆バイアスを受けている。
11 is a 5i-CCD multiplexer that converts electrons from diodes from parallel to series, and a first diode 1 is connected to the N'' region 12, 12, . . . of the CcD 11.
0, the P regions of the second diodes 9, 9... are commonly connected, and the P-region 13 of the CCD 11 is connected to form a heterostructure N-P-N-P diode.
It receives a reverse bias from part of the input 5 of D11.

上記構成における動作を第2図のP−N−P。The operation in the above configuration is shown in PNP of FIG.

N接合の、エネルギー帯図によって説明する。This will be explained using an energy band diagram of an N junction.

第2図で14は伝導帯、15は禁制帯、16は価電子帯
、17a、17b、17cはそれぞれ空乏層を示し、 
 InPのPN接合でエピタキシャル成長された第2の
ダイオード9のバンドギャップはInGaAsPのPN
接合でエピタキシャル成長した第1のダイオードよりも
広いために基板8を通過した赤外光7は第2のダイオー
ド9部分を通過して赤外線領域の波長のバンドギャップ
に設計されたInGaAsPのP−N接合で吸収され、
電子18はP−N接合を介しCCD11へ流入するが正
孔19はP −InAsP iit内に蓄積される。こ
れは、P−InGaAsP iiの両側に形成された空
乏Fi#17a。
In FIG. 2, 14 is a conduction band, 15 is a forbidden band, 16 is a valence band, and 17a, 17b, and 17c are depletion layers, respectively.
The band gap of the second diode 9 epitaxially grown with the PN junction of InP is that of the PN junction of InGaAsP.
Since the junction is wider than the first diode that is epitaxially grown, the infrared light 7 that passes through the substrate 8 passes through the second diode 9, and the InGaAsP P-N junction is designed to have a bandgap of wavelength in the infrared region. is absorbed by
Electrons 18 flow into the CCD 11 via the PN junction, but holes 19 are accumulated in the P-InAsP iit. This is a depletion Fi#17a formed on both sides of P-InGaAsP ii.

17bによってポテンシャルの井戸が形成されているた
めに正孔は蓄積される。この正孔はCCD11の逆方向
バイアスをキャンセルするような順バイアスする方向に
動作する。すなわち赤外光が過剰に入射されるとその分
圧孔がP −InGaAsP眉6一 に多く蓄積されて順バイアス値を高めて逆方向バイアス
を弱めることになる。
Since a potential well is formed by 17b, holes are accumulated. These holes operate in a forward bias direction that cancels the reverse bias of the CCD 11. In other words, when an excessive amount of infrared light is incident, a large amount of the partial pressure hole is accumulated in the P-InGaAsP eyebrow 61, increasing the forward bias value and weakening the reverse bias.

第3図は上記した動作の効果を説明するためのPN接合
の電流−電圧特性を示すものであり2曲線23はたとえ
ば赤外光が通常の光量で第1のダイオードに照射された
場合の電流−電圧特性曲線で20で示す点をバイアス点
とする。いま、赤外検出器の第1のダイオード10に入
射される赤外光が過剰になって上記第1のダイオードで
検出される電子が多くなってCCD内にあふれるような
光電流の増加21があると、電流−電圧特性は曲線24
で示す如くなるが、符号22で示す分だけ自己バイアス
によって電流が減少しバイアス点は見掛は上25位置に
来ることになる。
FIG. 3 shows the current-voltage characteristics of the PN junction to explain the effect of the above-mentioned operation, and curve 23 shows the current when the first diode is irradiated with a normal amount of infrared light, for example. - The point indicated by 20 on the voltage characteristic curve is the bias point. Now, the infrared light incident on the first diode 10 of the infrared detector becomes excessive, and the number of electrons detected by the first diode increases, causing an increase in photocurrent 21 that overflows into the CCD. If there is, the current-voltage characteristic will be curve 24
As shown, the current decreases due to the self-bias by an amount indicated by 22, and the bias point appears to be at the upper 25 position.

上記実施例では光電変換装置の赤外線検出器をP−N−
P−N接合で構成したInPとInGaAsPでエピタ
キシャル成長させたがPb、 Snx Te、 l1g
+−xCdxTe等で形成してX値を変化させてバンド
構造をコントロールするようにしてもよい。
In the above embodiment, the infrared detector of the photoelectric conversion device is
Epitaxial growth was performed using InP and InGaAsP composed of P-N junctions, but Pb, Snx Te, l1g
It may be formed of +-xCdxTe, etc., and the band structure may be controlled by changing the X value.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の如く構成し、かつ動作するので過剰な光
電流を抑えることができるのでプルーミングの発生を防
止でき、光電流の増減に応じて順方向バイアスを自動的
に制御できる。またブルーミング防止回路をCODに設
ける必要がないためにCODの回路パターンを簡略化で
きる効果を有する。
Since the present invention is constructed and operated as described above, excessive photocurrent can be suppressed, thereby preventing the occurrence of pluming, and forward bias can be automatically controlled in accordance with increases and decreases in photocurrent. Further, since there is no need to provide a blooming prevention circuit in the COD, there is an effect that the circuit pattern of the COD can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の模式図、第2図は本発明
の半導体装置の原理を説明するためのエネルギー帯図、
第3図は本発明の半導体装置の効果を説明するための電
流−電圧特性図、第4図は従来の半導体装置の路線的構
成図である。 1・・・PN接合ダイオード等の赤外線検出器。 2.11・・・CCD、     3・・・入力部。 4・・・出力部、    5・・・クロック電極。 7・・・赤外光、    8・・・基板、    9゜
10・・・第2及び第1のダイオード。 12・・・n+領領域    13・・・P+領域。 14・・・伝導帯、    15・・・禁制帯。 16・・・価電子帯、     17a、17b。 17C・・・空乏層、    18・・・電子。 19・・・正孔。
FIG. 1 is a schematic diagram of the semiconductor device of the present invention, and FIG. 2 is an energy band diagram for explaining the principle of the semiconductor device of the present invention.
FIG. 3 is a current-voltage characteristic diagram for explaining the effects of the semiconductor device of the present invention, and FIG. 4 is a schematic diagram of the conventional semiconductor device. 1...Infrared detector such as PN junction diode. 2.11...CCD, 3...Input section. 4... Output part, 5... Clock electrode. 7... Infrared light, 8... Substrate, 9°10... Second and first diodes. 12...n+ area 13...P+ area. 14... Conduction band, 15... Forbidden band. 16...Valence band, 17a, 17b. 17C...depletion layer, 18...electron. 19...hole.

Claims (1)

【特許請求の範囲】[Claims]  第1の基板に形成されたダイオード群と、第2の基板
に形成されたマルチプレクサ電荷結合素子とをハイブリ
ッド化した赤外線検出装置において、上記ダイオード群
は検出しようとする波長のバンドギャップを有する第1
のダイオードと該第1のダイオードのバンドギャップよ
り広いバンドギャップの第2のダイオードを直列接続し
た4層のエピタキシャル層からなることを特徴とする半
導体装置。
In an infrared detection device that is a hybrid of a group of diodes formed on a first substrate and a multiplexer charge-coupled device formed on a second substrate, the group of diodes has a bandgap of a wavelength to be detected.
1. A semiconductor device comprising four epitaxial layers in which a diode and a second diode having a bandgap wider than that of the first diode are connected in series.
JP59198812A 1984-09-21 1984-09-21 Semiconductor device Pending JPS6177360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198812A JPS6177360A (en) 1984-09-21 1984-09-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198812A JPS6177360A (en) 1984-09-21 1984-09-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6177360A true JPS6177360A (en) 1986-04-19

Family

ID=16397317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198812A Pending JPS6177360A (en) 1984-09-21 1984-09-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6177360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353665A2 (en) * 1988-07-30 1990-02-07 Sony Corporation CCD imager
JPH11354762A (en) * 1998-06-03 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> Image sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353665A2 (en) * 1988-07-30 1990-02-07 Sony Corporation CCD imager
JPH11354762A (en) * 1998-06-03 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> Image sensor

Similar Documents

Publication Publication Date Title
US5049962A (en) Control of optical crosstalk between adjacent photodetecting regions
EP0156156A1 (en) Avalanche photodiodes
US6015721A (en) Method of manufacturing an avalanche photodiode
US5061977A (en) Semiconductor photodetector device
JPH04256376A (en) Avalanche photodiode and its manufacture
JPH03148869A (en) Photo-detector
US4816890A (en) Optoelectronic device
JPS6177360A (en) Semiconductor device
JPH0513798A (en) Semiconductor photodetection device
JPH07105522B2 (en) Semiconductor device
JPH07226532A (en) Multidivision avalanche photodiode
JPH02291180A (en) Photodiode
JPS60182764A (en) Semiconductor light receiving device
JPS5833373A (en) Semiconductor image pickup device
JPS6138872B2 (en)
JPH0196968A (en) Infrared ray detector
JP2706180B2 (en) Photoelectric conversion device
JPS6237553B2 (en)
JPS6138208Y2 (en)
JPS622575A (en) Semiconductor photo detector
JPH0296383A (en) Photoelectric transducer and photoelectric conversion element using same transducer
IL272417B1 (en) Barrier photodetectors matrix with pixellation by local depletions
JPS62186574A (en) Semiconductor light receiving device
JP2007109686A (en) Semiconductor light receiving element
JPH0228907B2 (en)