JPS61126460A - Cell for coulometric analysis - Google Patents

Cell for coulometric analysis

Info

Publication number
JPS61126460A
JPS61126460A JP24764384A JP24764384A JPS61126460A JP S61126460 A JPS61126460 A JP S61126460A JP 24764384 A JP24764384 A JP 24764384A JP 24764384 A JP24764384 A JP 24764384A JP S61126460 A JPS61126460 A JP S61126460A
Authority
JP
Japan
Prior art keywords
measured
liquid
chamber
electrode
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24764384A
Other languages
Japanese (ja)
Other versions
JPH0623730B2 (en
Inventor
Yukio Nakamura
幸夫 中村
Akira Kidoguchi
晃 木戸口
Osamu Hamamoto
修 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59247643A priority Critical patent/JPH0623730B2/en
Publication of JPS61126460A publication Critical patent/JPS61126460A/en
Publication of JPH0623730B2 publication Critical patent/JPH0623730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry

Abstract

PURPOSE:To speed up analysis by packing a porous electrode of a liquid permeation type into an electrode chamber, specifying the bore of an inflow and outflow hole for a liquid contg. a material to be measured communicating with the inside and outside of the electrode chamber at <=5mm and electrolyzing the soln. to be measured in a static state after the supply of the soln. CONSTITUTION:The titled device is constituted of an electrolytic chamber 1 for the soln. to be measured, a counter electrode chamber 2 provided therefrom with a diaphragm 3 therebetween, the inflow and outflow holes 4A, 4B for the soln. to be measured, the inflow and outflow holes 5A, 5B for the counter electrode liquid and plates 6A, 6B for current collection, etc. The pipe bore of the holes 4A, 4B is set at <=5mm. The prescribed quantity of the soln. to be measured is supplied by a pump 8A into the chamber 1 in the stage of the measurement, then the pump 8A is stopped and while a counter electrode liquid pump 8B is kept operated, the electrolysis is executed with the stationary liquid by a constant potential method or constant current method. The quick automatic quantitative determination is thus made possible with the smaller amt. of the supply liquid and the time for one quantitative determination is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電量分析用セルに関し、さらに詳しくは迅速か
つ容易に自動定量を行なうことができる溶液静止型の電
量分析用セルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cell for coulometric analysis, and more particularly to a cell for coulometric analysis of a static solution type that can perform automatic quantitative determination quickly and easily.

(従来の技術) 電量分析は、重量分析とともに一次標準となり得る分析
法の一つであり、極めて微量の成分を高精度で定量する
ことが原理的に可能である。すなわち、酸化または還元
に関与する電子数が明らかな被定量物質の電解電気量を
求めることにより、沈殿生成物の秤量により定量を行な
う重量分析法と同様に標準液などの標準物質を準備して
比較する必要がなく、正確な定量値を得ることができる
(Prior Art) Coulometric analysis is one of the analytical methods that can serve as a primary standard along with gravimetric analysis, and it is theoretically possible to quantify extremely trace amounts of components with high precision. In other words, by determining the amount of electrolytic electricity of a substance to be quantified for which the number of electrons involved in oxidation or reduction is clear, standard materials such as standard solutions are prepared, similar to gravimetric analysis, which performs quantification by weighing the precipitated product. Accurate quantitative values can be obtained without the need for comparison.

電量分析においては、1/100クーロンないし1/1
000ク一ロン程度の電気量を極めて高精度に測定する
ことができ、この値はモル数に換算すると10−7〜1
0−8モルという微量に相当する。
In coulometric analysis, 1/100 coulomb to 1/1
It is possible to measure the amount of electricity of about 1,000 corons with extremely high precision, and when converted to the number of moles, this value is 10-7 to 1
This corresponds to a trace amount of 0-8 moles.

(発明が解決しようとする問題点) しかしながら、このように原理的に優れた電量分析法も
、次に揚げる問題点により、一般に広く普及するまでに
は到っていない。
(Problems to be Solved by the Invention) However, even the coulometric analysis method, which is excellent in principle, has not been widely used in general due to the following problems.

(1)被定量物質が容易に電解し得るものとは限らず、
また電解し得るものでも酸化ないし還元電子数が安定し
ない場合がある。特に電解生成物が一種類でなく、二種
類以上の場合、電解反応が複数になり、このような場合
には、温度や水素イオン濃度などのわずかな反応条件の
変化で、被定量物質の各電解反応に寄与する割合が変化
し、通常酸化ないし還元電子数を正確に把握することが
できなくなり、分析精度が極端に悪化することが多い。
(1) The substance to be quantified may not be easily electrolyzed;
Furthermore, even if it can be electrolyzed, the number of oxidation or reduction electrons may not be stable. In particular, when there is not just one type of electrolytic product but two or more types, multiple electrolytic reactions occur. The proportion contributing to the electrolytic reaction changes, and the number of oxidized or reduced electrons usually cannot be accurately determined, often resulting in extremely poor analytical accuracy.

(2)ポルタンメトリーなどの他の電気化学分析法と同
様に、微量分析では残余電流のためにS/N比(S i
 gna ]/No i s e比、この場合は電解電
流/残余電流)が小さくなり、分析精度に大きな影響を
及ぼす。残余電流が一定の値に安定している場合は、残
余電流値を補正して分析精度を上げることは比較的容易
であるが、いかにして残余電流を安定化させるかが問題
となる。
(2) Similar to other electrochemical analysis methods such as portammetry, in trace analysis the signal-to-noise ratio (Si
gna]/Noise ratio (in this case, electrolytic current/residual current) becomes small, which has a large effect on analysis accuracy. When the residual current is stable at a constant value, it is relatively easy to correct the residual current value to improve analysis accuracy, but the problem is how to stabilize the residual current.

本発明の目的は、上記従来技術の問題をなくし、電解時
間が短かく、迅速かつ容易に自動定量を行なうことがで
きる電量分析用セルを提供することにある。
It is an object of the present invention to provide a coulometric analysis cell that eliminates the problems of the prior art described above, allows short electrolysis time, and allows quick and easy automatic quantitative determination.

(問題点を解決するための手段) 本発明者は、電量分析用セルの電極室内に液透過型の多
孔質電極を充填し、かつ該電極質内外に通じる被測定物
質含有液の流入出孔の内径を51璽以下とし、静止状態
の被測定溶液を電解することにより、少量の溶液を多孔
質電極内でほぼ一次に電解することができるため、電解
時間が大きく短縮されることを見出し、本発明に到達し
たものである。
(Means for Solving the Problems) The present inventor has filled an electrode chamber of a coulometric analysis cell with a liquid permeable porous electrode, and has an inlet and an outlet for a liquid containing a substance to be measured that communicates with the inside and outside of the electrode material. We have discovered that by electrolyzing a stationary solution to be measured by setting the inner diameter of the electrode to 51 mm or less, a small amount of solution can be electrolyzed almost linearly within the porous electrode, and the electrolysis time can be greatly shortened. This has led to the present invention.

すなわち、本発明は、電極室内に被測定物質を含有する
溶液を所定量供給し、電解を行って測定される電気量ま
たは時間に対して減衰する電流値から被測定物質の定量
を行う電量分析用セルにおいて、電極室内に液透過型の
多孔質電極を充填し、かつ該電極室内外に通じる被測定
物質含有液の流入出孔の内径を5龍以下とし、前記溶液
を供給後、静止状態として電解を行わせるようにしたこ
とを特徴とする。
That is, the present invention provides coulometric analysis in which a predetermined amount of a solution containing a substance to be measured is supplied into an electrode chamber, electrolysis is performed, and the quantity of electricity measured or a current value that decays over time is used to quantify the substance to be measured. In this cell, the electrode chamber is filled with a liquid-permeable porous electrode, and the inner diameter of the inlet and outlet holes for the liquid containing the analyte that communicate with the outside and outside of the electrode chamber is set to 5 mm or less, and after the solution is supplied, the cell is placed in a stationary state. It is characterized in that electrolysis is performed as follows.

本発明において、電極室内に多孔室電極を充填しない場
合は短時間に高効率で電解を行なうことできず、また溶
液流人出孔の内径が5nを越えると、セルの内外に液の
拡散(混合)が起こり、分析精度が低下する。なお、孔
長については、ある程度長いことが望ましく、例えば溶
液流人出孔の管内径が111の場合は数nの管長を有す
ることが好ましい。
In the present invention, if the electrode chamber is not filled with a porous chamber electrode, electrolysis cannot be carried out in a short time with high efficiency, and if the inner diameter of the solution flow hole exceeds 5n, the liquid will not diffuse into and out of the cell. (mixing) occurs, reducing analytical accuracy. Note that the length of the hole is desirably long to some extent; for example, when the inner diameter of the tube of the solution flow hole is 111, it is preferable to have a tube length of several n.

上記の構成とすれば、従来のセル内溶液撹拌型(H型セ
ル)の電解セルや多孔質電極を用いても溶液流通式の電
解定量法をとる装置と比べて、分析時間が短かくなり、
迅速な測定が可能になる。
With the above configuration, the analysis time is shorter than the conventional electrolytic cell with a solution stirring type (H-type cell) or a device that uses a solution flow type electrolytic determination method even if a porous electrode is used. ,
Enables rapid measurement.

また短い周期で同一条件の定量操作を繰り返し行なうこ
とができるので、−回の定量における残余電流の変動は
ほとんどなくなる。さらに高い精度の繰返し分析による
ため、酸化ないし還元電子数も一連の定量を通して一定
に保たれ、極めて高精度の定量°分析が可能になる。ま
た電極反応速度が小さい被定量物質の場合でも、短時間
で安定した定量が可能になる。
Furthermore, since the quantitative operation under the same conditions can be repeated in a short period, there is almost no fluctuation in the residual current during the -times of quantitative determination. Furthermore, due to the repeated analysis with high accuracy, the number of oxidized or reduced electrons is kept constant throughout the series of quantification, making extremely highly accurate quantitative analysis possible. Furthermore, even in the case of a substance to be quantified that has a low electrode reaction rate, stable quantification is possible in a short period of time.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図および第2図は、本発明の実施例を示す電量分析
用セルの説明図である。
FIG. 1 and FIG. 2 are explanatory diagrams of a coulometric analysis cell showing an embodiment of the present invention.

第1図において、この装置は、被測定溶液の電解室lと
、これに隔膜3を隔てて設けられた対極室2と、該電解
室1および対極室2にそれぞれ設けられた被測定溶液流
人出孔4A、4Bおよび対極液流人出孔5A、5Bと、
該電解室1および対極室1の側面に設けられた集電用プ
レート6Aおよび6Bと、該集電用プレートに接続され
たリード線7Aおよび7Bと、該電解室1および対極室
2にそれぞれ被測定溶液および対極液を送給するだめの
送液ポンプ8A、8Bおよび送液ライン9Aおよび9B
とから主として構成される。上記電解室1内には多孔質
電極IAが充填されており、また該電解室1の被測定溶
液流人出孔4Aおよび4Bの管内径は5fi以下に設定
されている。測定に際しては、被測定溶液電解室1側の
ポンプ8Aを作動させ、所定量の被測定溶液を電解室1
内に供給した後、ポンプ8Aを停止し、静止の液につつ
いて電解定量を行なう。なお、対極液は対極液   ゛
ポンプ8Bを常に作動して対極液を流通させておく。
In FIG. 1, this device includes an electrolytic chamber 1 for a solution to be measured, a counter electrode chamber 2 provided with a diaphragm 3 between the electrolytic chamber 1, and a flow of the solution to be measured provided in the electrolytic chamber 1 and the counter electrode chamber 2, respectively. Human extraction holes 4A, 4B and counter electrode liquid flow human extraction holes 5A, 5B,
Current collecting plates 6A and 6B provided on the side surfaces of the electrolytic chamber 1 and counter electrode chamber 1, lead wires 7A and 7B connected to the current collecting plates, and wires covered with the electrolytic chamber 1 and counter electrode chamber 2, respectively. Liquid feeding pumps 8A and 8B and liquid feeding lines 9A and 9B for feeding the measurement solution and counter electrode liquid
It mainly consists of. The electrolytic chamber 1 is filled with a porous electrode IA, and the inner diameter of the test solution flow holes 4A and 4B of the electrolytic chamber 1 is set to 5 fi or less. During measurement, the pump 8A on the electrolytic chamber 1 side of the solution to be measured is operated to pump a predetermined amount of the solution to be measured into the electrolytic chamber 1.
After supplying the solution to the solution, the pump 8A is stopped, and the electrolytic amount is determined by pricking the solution into a stationary solution. Note that the counter electrode liquid is kept flowing by constantly operating the counter electrode pump 8B.

第1図は、対極反応の同時に行なう、いわゆる二電極法
の電解を行い、電極電位を安定させたものであるが、被
測定溶液電解室側の電極電位をより精度よく測定しよう
とする場合は、参照電極を用いる三電極法とする電解を
行ってもよい。本発明における電解方法は、定電位(定
電圧)ないし定電流の電量分析であり、その電解は完全
に行わなくても、電解初期のある時間内の電流ないし電
圧を測定し、それにより外挿法等によって全被測定物質
量を求めてもよい。
Figure 1 shows the electrolysis using the so-called two-electrode method, in which the counter electrode reaction is carried out at the same time, and the electrode potential is stabilized. , electrolysis may be performed using a three-electrode method using a reference electrode. The electrolysis method in the present invention is constant potential (constant voltage) or constant current coulometric analysis, and even if the electrolysis is not completely carried out, the current or voltage within a certain period of time in the initial stage of electrolysis is measured, and extrapolation is performed based on this. The total amount of the substance to be measured may be determined by the method.

第2図は、本発明の他の実施例を示すもので、分析時間
中、被測定溶液の電解室1および対極室2の両極液の送
液を停止するようにしたものであり、この場合送液ポン
プ8は両極とも共通のものでよく、装置を簡略化できる
利点がある。
FIG. 2 shows another embodiment of the present invention, in which the delivery of both electrode solutions to the electrolytic chamber 1 and the counter electrode chamber 2 of the solution to be measured is stopped during the analysis time. The liquid sending pump 8 may be common to both electrodes, which has the advantage of simplifying the device.

(発明の効果) 本発明によれば、電極室内に多孔質電極を充填し、電極
液の流入出孔を5顛以下とし、静止状態で電解すること
により、少ない供給液で、再理性の高い、より迅速な自
動定量が可fiヒになる。このため、従来の溶液撹拌型
または/8液循環型の重囲分析用セルに比べ、−回の定
量時間が短縮され、また操作も極めて簡単になり、故障
等のトラブルを少なくすることができる。また他の分析
法、例えば、光学的分析法、電磁波等を用いる分析法な
どと比べても、検出器および電気回路等の構成が簡単に
なるので、非常に安価に装作することができる。
(Effects of the Invention) According to the present invention, the electrode chamber is filled with porous electrodes, the number of inflow and outflow holes for the electrode solution is set to 5 or less, and electrolysis is carried out in a static state. , enabling faster automatic quantification. Therefore, compared to conventional solution stirring type or /8 liquid circulation type enclosed analysis cells, the time required for quantification is shortened, the operation is extremely simple, and troubles such as breakdowns can be reduced. . Furthermore, compared to other analysis methods, such as optical analysis methods and analysis methods using electromagnetic waves, etc., the configuration of the detector, electric circuit, etc. is simpler, so it can be installed at a very low cost.

以下、本発明の具体的実施例を述べる。Hereinafter, specific examples of the present invention will be described.

(実施例) 実施例1〜3、比較例1.2 第1図に示した電解セルにおいて、電解室の被測定溶液
流入出孔4Aおよび4Bとして、それぞれ内径7關(比
較例1)、5in+(実施例1)、3III+1(実施
例2)、1叩〈実施例3)の塩化ビニルチューブを用い
、その他下記の条件で電解セルを4組試作した。またこ
の他に被測定溶液の流入出孔として内径llll11の
ポリ塩化ビニルチューブを用いているが、電解室1内に
多孔質電極(炭素フェルト)を充填していないセル(比
較例2)を−組試作した。
(Example) Examples 1 to 3, Comparative Example 1.2 In the electrolytic cell shown in FIG. (Example 1), 3III+1 (Example 2), and 1-stroke (Example 3) vinyl chloride tubes were used to make four sets of electrolytic cells under the following conditions. In addition, a cell (comparative example 2) in which a polyvinyl chloride tube with an inner diameter of 1111 is used as the inflow and outflow hole for the solution to be measured, but in which the electrolytic chamber 1 is not filled with a porous electrode (carbon felt) is used. I made a prototype.

被測定/8液電解室内充填電極IA: 炭素フェルト 集電用プレー)7A、7B:フェノール樹脂結着炭素板
(内側)十銅板(外側) 隔膜3:陽イオン交換膜 被測定溶液中弱リン酸酸性ヨウ素、ヨウ素カリウム水溶
液 対極液:被測定溶液と同し。
Measurement target / 8-liquid electrolyte chamber filled electrode IA: Carbon felt current collector plate) 7A, 7B: Phenol resin bound carbon plate (inside) Ten copper plate (outside) Diaphragm 3: Cation exchange membrane Weak phosphoric acid in the solution to be measured Acidic iodine, potassium iodine aqueous solution counter electrode: Same as the solution to be measured.

なお対極室側の構造は被測定溶液電解室側と同様とした
The structure of the counter electrode chamber side was the same as that of the electrolysis chamber side of the solution to be measured.

上記装置において、まずヨウ素イオン標準液を前記5組
のセルの各被測定溶液電解室1に送液し、その容量を測
定した。次いで各被測定溶液中のヨウ素、ヨウ素イオン
の電解定量を±0.4Vの定電位法で行った。また別に
チオ硫酸すトリウム水熔液滴定法等により、被測定溶液
中のヨウ素およびヨウ素イオン濃度を測定した。結果を
第1表に示す。
In the above apparatus, first, an iodine ion standard solution was sent to each of the test solution electrolysis chambers 1 of the five sets of cells, and its capacity was measured. Next, electrolytic determination of iodine and iodine ions in each solution to be measured was carried out using a constant potential method at ±0.4V. Separately, iodine and iodine ion concentrations in the solution to be measured were measured by thorium thiosulfate water titration method. The results are shown in Table 1.

第1表 絶倒1と同じ標準液、被測定溶液を使用して定電圧電解
(定電位)および定電流電解を行い、被測定溶液中のヨ
ウ素、ヨウ素イオン濃度濃度を求めた。結果を第2表に
示したが、充分満足の得るものであった。
Constant voltage electrolysis (constant potential) and constant current electrolysis were performed using the same standard solution and solution to be measured as in Table 1, Absolute 1, to determine the iodine and iodine ion concentrations in the solution to be measured. The results are shown in Table 2 and were fully satisfactory.

第2表 比較例3 実施例1および2における被測定溶液中のヨウ素、ヨウ
素イオンの定量を従来の白金網電極人H型セルによって
行った。その結果を第3表に示す。
Table 2 Comparative Example 3 Iodine and iodine ions in the solutions to be measured in Examples 1 and 2 were determined using a conventional H-type cell with a platinum mesh electrode. The results are shown in Table 3.

第3表 第3表から明らかなように、従来の電量分析では測定時
間を要し、また測定値のばらつきが太きいことが分かる
Table 3 As is clear from Table 3, it can be seen that the conventional coulometric analysis takes a long time to measure, and the variation in the measured values is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の実施例を示す電量分析
セルの説明図である。 1・・・被測定溶液電解室、IA・・・多孔室電極、2
・・・対極室、3・・・隔膜、4A、4B・・・被測定
溶液流人出孔、5A、5B・・・対極液流人出孔、6A
、6B・・・集電用プレート、7a、7b・・・リード
線、8.8a、8b・・・送液ポンプ、9a、9b・・
・送液ライン。 代理人 弁理士 川 北 武 長 ぜ
FIG. 1 and FIG. 2 are explanatory diagrams of a coulometric analysis cell showing an embodiment of the present invention. 1...Measurement solution electrolysis chamber, IA...Porous chamber electrode, 2
...Counter electrode chamber, 3...Diaphragm, 4A, 4B...Measurement solution outflow hole, 5A, 5B...Counter electrode outflow hole, 6A
, 6B...Current collecting plate, 7a, 7b...Lead wire, 8.8a, 8b...Liquid pump, 9a, 9b...
・Liquid delivery line. Agent Patent Attorney Takeshi Kawakita

Claims (2)

【特許請求の範囲】[Claims] (1)電極室内に被測定物質を含有する溶液を所定量供
給し、電解を行って測定される電気量または時間に対し
て減衰する電流値から被測定物質の定量を行う電量分析
用セルにおいて、電極室内に液透過型の多孔質電極を充
填し、かつ該電極室内外に通じる被測定物質含有液の流
入出孔の内径を5mm以下とし、前記溶液を供給後、静
止状態として電解を行わせるようにしたことを特徴とす
る電量分析用セル。
(1) In a coulometric analysis cell in which a predetermined amount of a solution containing a analyte is supplied into an electrode chamber, electrolysis is performed, and the amount of electricity measured or a current value that decays over time is used to quantify the analyte. A liquid-permeable porous electrode is filled in the electrode chamber, and the inner diameter of the inlet and outlet holes for the liquid containing the substance to be measured that communicate into and outside the electrode chamber is 5 mm or less, and after the solution is supplied, electrolysis is performed in a static state. A cell for coulometric analysis characterized by being made to
(2)特許請求の範囲第1項において、前記電解が定電
流法または定電位法で行われることを特徴とする電量分
析用セル。
(2) The cell for coulometric analysis according to claim 1, wherein the electrolysis is performed by a constant current method or a constant potential method.
JP59247643A 1984-11-22 1984-11-22 Coulometric method Expired - Lifetime JPH0623730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247643A JPH0623730B2 (en) 1984-11-22 1984-11-22 Coulometric method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247643A JPH0623730B2 (en) 1984-11-22 1984-11-22 Coulometric method

Publications (2)

Publication Number Publication Date
JPS61126460A true JPS61126460A (en) 1986-06-13
JPH0623730B2 JPH0623730B2 (en) 1994-03-30

Family

ID=17166543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247643A Expired - Lifetime JPH0623730B2 (en) 1984-11-22 1984-11-22 Coulometric method

Country Status (1)

Country Link
JP (1) JPH0623730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195358A (en) * 1988-01-29 1989-08-07 Mitsui Eng & Shipbuild Co Ltd Electroanalysis
US7999878B2 (en) 2005-06-15 2011-08-16 Denso Corporation Vehicle mounted apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114040A (en) * 1974-07-26 1976-02-04 Tokico Ltd BINKAITENSOCHI
JPS5636053A (en) * 1979-08-28 1981-04-09 Bifok Ab Method of continuous flowing analysis
JPS58108462A (en) * 1981-12-23 1983-06-28 Hitachi Ltd Flow injection analysis system by pulse flow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114040A (en) * 1974-07-26 1976-02-04 Tokico Ltd BINKAITENSOCHI
JPS5636053A (en) * 1979-08-28 1981-04-09 Bifok Ab Method of continuous flowing analysis
JPS58108462A (en) * 1981-12-23 1983-06-28 Hitachi Ltd Flow injection analysis system by pulse flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195358A (en) * 1988-01-29 1989-08-07 Mitsui Eng & Shipbuild Co Ltd Electroanalysis
US7999878B2 (en) 2005-06-15 2011-08-16 Denso Corporation Vehicle mounted apparatus

Also Published As

Publication number Publication date
JPH0623730B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US6454922B1 (en) Corrosion test cell for bipolar plates
US3223597A (en) Method and means for oxygen analysis of gases
JPH08507369A (en) Improvements in or relating to electrochemical reactions
US4227974A (en) Electrochemical cell having a polarographic device with ion selective electrode as working electrode and method of use
JP5686602B2 (en) Titration apparatus and method
JPH09101286A (en) Method and instrument for measuring atomicity and concentration of vanadium ion of electrolyte for vanadium redox flow battery
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
JP2633280B2 (en) Electrical analysis method
JPS638423B2 (en)
US3022241A (en) Method and apparatus for measurement of dissolved oxygen
US5334295A (en) Micro fuel-cell oxygen gas sensor
JPS61126460A (en) Cell for coulometric analysis
US3315270A (en) Dissolved oxidant analysis
US4960497A (en) Apparatus and method for minimizing the effect of an electrolyte&#39;s dissolved oxygen content in low range oxygen analyzers
US5300207A (en) High current coulometric KF titrator
US3764508A (en) Electrochemical oxygen demand measuring system
CN110243914A (en) A kind of all solid state electrochemistry macromolecule sensor measuring dissolved oxygen
EP0903580A1 (en) Liquid chromatography electrochemical detector, liquid chromatograph, and analyzing method using the chromatograph
US20040222107A1 (en) Sensor for analysing oxidising gas, method for producing said gas and method for determining the concentration of the oxidising gas
JP3069671B2 (en) Acid and alkalinity measurement methods
RU2817409C2 (en) Method of measuring average oxidation degree and concentration of vanadium ions in electrolyte of vanadium flowing redox battery and installation for implementation thereof
Helms et al. A reactive electrode (reactrode) for the voltammetric determination of heavy metals in laboratories and for use as a passive monitor in remote analysis
RU193033U1 (en) A device for measuring the crossover of electroactive substances through a membrane
JP2974551B2 (en) Battery cell for electrical analysis and electrical analyzer
JP2002184424A (en) Column type electrochemical cell