JPS58108462A - Flow injection analysis system by pulse flow - Google Patents

Flow injection analysis system by pulse flow

Info

Publication number
JPS58108462A
JPS58108462A JP20706881A JP20706881A JPS58108462A JP S58108462 A JPS58108462 A JP S58108462A JP 20706881 A JP20706881 A JP 20706881A JP 20706881 A JP20706881 A JP 20706881A JP S58108462 A JPS58108462 A JP S58108462A
Authority
JP
Japan
Prior art keywords
sample
reaction
flow
conduit
carriers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20706881A
Other languages
Japanese (ja)
Inventor
Hideo Uchiki
打木 英夫
Kasumi Yoshida
吉田 霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20706881A priority Critical patent/JPS58108462A/en
Publication of JPS58108462A publication Critical patent/JPS58108462A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • G01N35/085Flow Injection Analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To prevent the lowering of sensitivity and waste of carriers with limited diffusion of a sample zone due to unnecessary transfer thereof by halting or retaining the sample zone in a reaction pipe during the reaction with a structure of feeding carriers intermittently into a conduit. CONSTITUTION:An intermittent pump 8 sends a sufficient amount of carriers into a conduit 3 to allow feeding of all of a sample in a sample measuring tube 5 into a reaction pipe 6 and then, stops in preparation of the subsequent operation. Consequently, the sample is halted and retained in the reaction pipe 6, a condition under which a specified time elapses. Then, the intermittent pump 8 starts to work to discharge a reactant produced in the reaction pipe 6 passing through a detector 7 and stops. This permits the proceeding of the reaction halting the sample, eliminating lowered concentration due to diffusion occuring during the movement thereof in a long passage as seen in the past. A highly sensitive detection of the reactant can be done.

Description

【発明の詳細な説明】 本発明はパルス流によるフローインジェクションアナリ
シスシステムに係ル、特に流れ式自動分析装置において
、反応中の試料ゾーンを反応パイプ中に停留、保持させ
、不必要な移送による試料ゾーンの拡散を少なくして感
度の低下を防止し、また、キャリヤの無駄な消耗を防止
するのに好轡なパルス流によるフローインジェクション
アナリシスシステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow injection analysis system using a pulsed flow, and in particular, in a flow type automatic analyzer, a sample zone undergoing reaction is retained and held in a reaction pipe, and the sample is prevented from being transferred unnecessarily. The present invention relates to a flow injection analysis system using pulsed flow, which is suitable for reducing zone diffusion to prevent a decrease in sensitivity and for preventing wasteful consumption of carriers.

まず、第1図、第2図を用いて従来技術について説明す
る。第1図は連続流を用いた基本的なフローインジェク
ションアナリシスシステムの構成説明図である。第1図
において、1はキャリヤ容器で、内容物はポンプ2によ
り連続した安定な流れとして、導管3、サンプリングパ
ルプ4および反応バイブロを通して検出器7へ送られる
。5は試料計量管で、サンプリングツ(ルブ4の操作に
より試料計量管5に保持されていた試料がキャリヤ中に
導入され、(キャリヤが反応液でない場合は反応液も同
時に導入される。)反応ノ(イブ5を通過する間に反応
して検出器7へ移送される。ところで、一般に化学反応
にはある程度の時間が必要であるため、反バイブロは、
その時間の間移動を続ける試料ゾーンを反応)(イブ6
の中に保持しておくのに十分な長さのものとする仁とが
必要である(例えば2〜10m)。
First, the prior art will be explained using FIG. 1 and FIG. 2. FIG. 1 is an explanatory diagram of the configuration of a basic flow injection analysis system using continuous flow. In FIG. 1, 1 is a carrier vessel whose contents are conveyed in a continuous steady stream by a pump 2 through a conduit 3, a sampling pulp 4 and a reaction vibro to a detector 7. Reference numeral 5 denotes a sample measuring tube, in which the sample held in the sample measuring tube 5 is introduced into the carrier by operation of the sampling tube 4 (if the carrier is not the reaction liquid, the reaction liquid is also introduced at the same time). The anti-vibro reacts while passing through the vibro 5 and is transferred to the detector 7. By the way, since chemical reactions generally require a certain amount of time, anti-vibro
(react sample zone that continues to move during that time) (Eve 6
The length must be sufficient to hold it in the container (e.g. 2-10 m).

第2図はその間における試料の濃度分布の変化を示した
線図である。第2図の烏は導入直後の濃度分布、bは反
応バイブロの中央付近における濃度分布、C#′i反応
バイブロの管束における濃度分布である。このように、
試料は移動中に拡散作用を受けるので、管束においては
、最高濃度が著し、く低下し、当然の結果として、検出
感度の低下をきたすことは避けられない。iた、その間
Φヤリャは連続して流れているため、キャリヤが無駄に
消費されることになる。
FIG. 2 is a diagram showing changes in the concentration distribution of the sample during that period. The crow in FIG. 2 is the concentration distribution immediately after introduction, b is the concentration distribution near the center of the reaction vibro, and the concentration distribution in the tube bundle of the C#'i reaction vibro. in this way,
Since the sample is subjected to diffusion during movement, the maximum concentration in the tube bundle is significantly reduced, which inevitably results in a decrease in detection sensitivity. Additionally, since Φyaya is flowing continuously during that time, carriers are wasted.

本発明は上記に鑑みてなされ九もので、その目的とする
ところは、感度の低下およびキャリヤの無駄な消費を防
止できるパルス流によるフローインジェクションアナリ
シスシステムを提供することにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a flow injection analysis system using a pulsed flow that can prevent a decrease in sensitivity and wasteful consumption of carriers.

本発明の特徴は、導管内にキャリヤ流体または反応流体
をキャリヤとして送入する送入手段を上記導管内に上記
キャリヤを断続的に送入する構成のものとし要点にある
A key feature of the present invention is that the feeding means for feeding carrier fluid or reaction fluid as a carrier into the conduit is configured to intermittently feed the carrier into the conduit.

以下本発明を第3図に示し九実施例および第4図、第5
図を用いて詳細に説明する。
The present invention will be described below with reference to FIG. 3, nine embodiments, and FIGS. 4 and 5.
This will be explained in detail using figures.

第3図は本発明のパルス流によるフローインジェクショ
ンアナリシスシステムの一実施例を示す構成説明図で、
第1図と同一部分は同じ符号で示し、ここでは説明金省
略する。第3図においては、第1図のポンプ2をキャリ
ヤ容器1内のキャリヤ(キャリヤ液または反応液)を導
管3内に断続的に送入する断続ポンプ8としである。し
かも、断続ポンプaは、試料計量管5中の試料を反応7
くイブ6内に全部送入しても差し支えない十分な量だけ
のキャリヤを導管3内に送入したらそのまま停止し、次
に備える。これにより、試料は反応ノくイブ6中に停止
、保持され、この状態で所定時間経過後、再び断続ポン
プ8が動作を始め、反応ノくイブ6で生成された反応生
成物を検出器7を通過後排出させ、その後停止、する。
FIG. 3 is a configuration explanatory diagram showing an embodiment of the flow injection analysis system using pulsed flow of the present invention.
The same parts as in FIG. 1 are indicated by the same reference numerals, and the explanation will be omitted here. In FIG. 3, the pump 2 of FIG. 1 is replaced by an intermittent pump 8 that intermittently pumps the carrier (carrier liquid or reaction liquid) in the carrier container 1 into the conduit 3. Moreover, the intermittent pump a moves the sample in the sample measuring tube 5 to the reaction 7.
Once a sufficient amount of carrier is fed into the conduit 3, the carrier is stopped and ready for the next step. As a result, the sample is stopped and held in the reaction tube 6, and after a predetermined period of time in this state, the intermittent pump 8 starts operating again, and the reaction products generated in the reaction tube 6 are transferred to the detector 7. After passing through, it is discharged and then stopped.

これら断続ボ/ブ8の動作は、図示しない制御装置によ
って制御する。
The operation of these intermittent bobbins 8 is controlled by a control device (not shown).

上記した本発明の実施例によれば、反応ノ(イブ6は、
反応中の試料ゾーンをその中に停止、保持するだけの長
さであればよく、シかも、試料は停止状態で反♂が進行
するので、従来のような長い流路を移動中に起る拡散に
よる濃度の低下がなく、高感度の反応生成物の検出が可
能になる。
According to the embodiment of the present invention described above, reaction no.
It only needs to be long enough to stop and hold the sample zone during the reaction, but since the reaction progresses while the sample is stopped, it will not occur while moving through a long flow path like in the past. There is no decrease in concentration due to diffusion, making it possible to detect reaction products with high sensitivity.

第4図は第3図による場合の試料の濃度分布の変化を示
す線図で、dは試料導入直後の濃度分布、elj反応反
応比検出器7過する際の濃度分布である。これを第2図
のCと比較すると、濃度の低下が著しく少ないことがわ
かる。
FIG. 4 is a diagram showing changes in the concentration distribution of the sample in the case of FIG. 3, where d is the concentration distribution immediately after the sample is introduced and the concentration distribution when it passes through the ELJ reaction ratio detector 7. Comparing this with C in FIG. 2, it can be seen that the decrease in density is extremely small.

第5図は本発明に係る場合のキャリヤの送液状態を示す
説明図である。
FIG. 5 is an explanatory view showing the state of liquid feeding of the carrier according to the present invention.

なお、キャリヤが反応液である場合は、サンプリングパ
ルプ4によって試料のみを添加するようにするが、キャ
リヤが反応液を含まないキャリヤ液の場合は、試料と同
時に反応液をも添加するようにすることは従来と同様で
おる。また、キャリヤは気体であってもよいことはいう
までもない。
Note that if the carrier is a reaction liquid, only the sample is added using the sampling pulp 4, but if the carrier is a carrier liquid that does not contain the reaction liquid, the reaction liquid is also added at the same time as the sample. This is the same as before. Furthermore, it goes without saying that the carrier may be a gas.

以上説明゛したように、本発明によれば、反応中の試料
ゾーンを反応パイプ中に停留、保持させることができ、
不必要な移送による試料ゾーンの拡散を少なくシ、感度
の低下およびキャリヤの無吠な消費を防止できるという
効果がある。
As explained above, according to the present invention, the sample zone undergoing reaction can be retained and retained in the reaction pipe.
This has the effect of reducing the spread of the sample zone due to unnecessary transport, thereby preventing a decrease in sensitivity and unnecessary consumption of carriers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の連続流を用いたフローインジェクション
アナリシスシステムの構成説明図、第2図は第1図の場
合の試料の濃度分布の変化を示す線図、第3図は本発明
のパルス流によるフローインジェクションアナリシスシ
ステムの一実施例を示す構成説明図、第4図はl183
図の場合の試料の濃度の変化を示す線図、第5図は本発
明に係る場合のキャリヤの送液状態を示す説明図である
。 1・・・キャリヤ容器、3・・・導管、4・・・サンプ
リングパルプ、5・・・試料計量管、6・・・反応)z
イブ、7・・・第 /Z 第 2図 第 3 図 坂府lマ4アの表情方向411 第 5z 吟   rt+  −
Figure 1 is an explanatory diagram of the configuration of a conventional flow injection analysis system using continuous flow, Figure 2 is a diagram showing changes in the concentration distribution of the sample in the case of Figure 1, and Figure 3 is a diagram showing the pulse flow of the present invention. A configuration explanatory diagram showing an example of a flow injection analysis system by
FIG. 5 is a diagram showing the change in the concentration of the sample in the case shown in FIG. 5, and FIG. 1...Carrier container, 3...Conduit, 4...Sampling pulp, 5...Sample measuring tube, 6...Reaction)z
Eve, 7th... /Z Fig. 2 Fig. 3 Sakafu lma4a's facial expression direction 411 No. 5z Gin rt+ -

Claims (1)

【特許請求の範囲】[Claims] 1、導管内にキャリヤ流体ま九は反応流体をキャリヤと
して送入する送入手段と、前記導管内の流体の流れ中に
所定量の試料または所定量の試料と反応流体とを添加す
るサンプリングバルブと、前記試料と反応流体とを混合
反応させる反応パイプと、該反ろパイプ内での反応にと
もなって生じ喪化学”的または物理的変化量を測定する
検出手段とよりなるフローインジェクションアナリシス
システムにおいて、前記送入手段が前記導管内に前記キ
ャリヤを継続的に送入するように構成しであることを特
徴とするパルス流によるフローインジェクションアナリ
シスシステム。
1. A feeding means for feeding a carrier fluid or a reaction fluid into the conduit as a carrier, and a sampling valve for adding a predetermined amount of sample or a predetermined amount of sample and reaction fluid to the flow of fluid in the conduit. A flow injection analysis system comprising: a reaction pipe for mixing and reacting the sample and a reaction fluid; and a detection means for measuring the amount of chemical or physical change that occurs due to the reaction within the reaction pipe. . A flow injection analysis system using pulsed flow, characterized in that the feeding means is configured to continuously feed the carrier into the conduit.
JP20706881A 1981-12-23 1981-12-23 Flow injection analysis system by pulse flow Pending JPS58108462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20706881A JPS58108462A (en) 1981-12-23 1981-12-23 Flow injection analysis system by pulse flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20706881A JPS58108462A (en) 1981-12-23 1981-12-23 Flow injection analysis system by pulse flow

Publications (1)

Publication Number Publication Date
JPS58108462A true JPS58108462A (en) 1983-06-28

Family

ID=16533662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20706881A Pending JPS58108462A (en) 1981-12-23 1981-12-23 Flow injection analysis system by pulse flow

Country Status (1)

Country Link
JP (1) JPS58108462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126460A (en) * 1984-11-22 1986-06-13 Mitsui Eng & Shipbuild Co Ltd Cell for coulometric analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126460A (en) * 1984-11-22 1986-06-13 Mitsui Eng & Shipbuild Co Ltd Cell for coulometric analysis

Similar Documents

Publication Publication Date Title
US5334492A (en) Photographic processing method and apparatus
US5221521A (en) Sample liquid dilution system for analytical measurements
GB1335860A (en) Method and apparatus for sample analysis on a continuous flow basis
Zhou et al. Chemiluminescence determination of vitamin B12 by a flow-injection method
JPS58108462A (en) Flow injection analysis system by pulse flow
US3028224A (en) Analysis or other processing of gaseous fluids
Riley et al. Controlled dispersion analysis: flow-injection analysis without injection.
GB989424A (en) Method and apparatus to effect reactions in an automatic manner
JPH11230970A (en) Method for dispensing sample and automatic analyzer
JP2002148193A (en) Chemiluminescence type nitrogen oxide concentration meter
Testa et al. Chemical Kinetic Parameters from Chronopotentiometric Potential-Time Measurements
KR102414181B1 (en) Total organic carbon analyzer
US8900873B2 (en) Method for continuously determining the concentration of at least one CN compound in an aqueous solution
JPH1164343A (en) Flow injection analyzing apparatus
FI117276B (en) Fluid Treatment System
JPH06201677A (en) Device and method for obtaining content of no
JP2002031628A (en) Element analyzer
JPS5558461A (en) Oxygen utilizing analysis device
JPS63132170A (en) Method for co-cleaning of pipeline of analysis instrument of the like
JPH0377459B2 (en)
JPS586903B2 (en) Sampling method
US3627467A (en) Continuous detection method and apparatus
GB1169373A (en) Method and apparatus for Determining the Oxygen Demand of Oxidizable Materials
JP2936289B2 (en) Sample solution dilution method
JPH0152697B2 (en)