JPH0623730B2 - Coulometric method - Google Patents
Coulometric methodInfo
- Publication number
- JPH0623730B2 JPH0623730B2 JP59247643A JP24764384A JPH0623730B2 JP H0623730 B2 JPH0623730 B2 JP H0623730B2 JP 59247643 A JP59247643 A JP 59247643A JP 24764384 A JP24764384 A JP 24764384A JP H0623730 B2 JPH0623730 B2 JP H0623730B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- solution
- electrolysis
- chamber
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/423—Coulometry
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- External Artificial Organs (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は電量分析法に関し、さらに詳しくは迅速かつ容
易に自動定量を行なうことができる溶液静止型の電量分
析法に関するものである。TECHNICAL FIELD The present invention relates to a coulometric method, and more particularly to a solution static coulometric method capable of performing rapid and easy automatic quantification.
(従来の技術) 電量分析は、重量分析とともに一次標準となり得る分析
法の一つであり、極めて微量の成分を高精度で定量する
ことが原理的に可能である。すなわち、酸化または還元
に関与する電子数が明らかな被定量物質の電解電気量を
求めることにより、沈殿生成物の秤量により定量を行な
う重量分析法と同様に標準液などの標準物質を準備して
比較する必要がなく、正確な定量値を得ることができ
る。電量分析においては、1/100クーロンないし1
/1000クーロン程度の電気量を極めて高精度に測定
することができ、この値はモル数に換算すると10-7〜
10-8モルという微量に相当する。(Prior Art) Coulometric analysis is one of the analytical methods that can be used as a primary standard together with gravimetric analysis, and it is theoretically possible to quantify extremely minute amounts of components with high accuracy. That is, a standard substance such as a standard solution is prepared in the same manner as the gravimetric method in which the quantity of the precipitated product is weighed to determine the amount of electrolysis of the substance to be quantified whose number of electrons involved in oxidation or reduction is clear. Accurate quantitative values can be obtained without the need for comparison. In coulometric analysis, 1/100 coulomb to 1
It is possible to measure an electric quantity of about / 1000 coulomb with extremely high accuracy, and this value is 10 -7 〜 when converted to the number of moles.
This corresponds to a very small amount of 10 -8 mol.
(発明が解決しようとする問題点) しかしながら、このように原理的に優れた電量分析法
も、次に掲げる問題点により、一般に広く普及するまで
には到っていない。(Problems to be Solved by the Invention) However, the coulometric analysis method, which is excellent in principle as described above, has not come into widespread use due to the following problems.
(1)被定量物質が容易に電解し得るものとは限らず、
また電解し得るものでも酸化ないし還元電子数が安定し
ない場合がある。特に電解生成物が一種類でなく、二種
類以上の場合、電解反応が複数になり、このような場合
には、温度や水素イオン濃度などのわずかな反応条件の
変化で、被定量物質の各電解反応に寄与する割合が変化
し、通常酸化ないし還元電子数を正確に把握することが
できなくなり、分析精度が極端に悪化することが多い。(1) The substance to be quantified may not be easily electrolyzed,
Even if it can be electrolyzed, the number of oxidation or reduction electrons may not be stable. In particular, when the number of electrolysis products is not one, but two or more, there are multiple electrolysis reactions.In such cases, slight changes in reaction conditions such as temperature and hydrogen ion concentration cause each of the substances to be quantified to change. Since the ratio of contribution to the electrolytic reaction changes, it is usually impossible to accurately grasp the number of oxidation or reduction electrons, and the analysis accuracy often deteriorates extremely.
(2)ボルタンメトリーなどの他の電気化学分析法と同
様に、微量分析では残余電流のためにS/N比(Sig
nal/Noise比、この場合は電解電流/残余電
流)が小さくなり、分析精度に大きな影響を及ぼす。残
余電流が一定の値に安定している場合は、残余電流値を
補正して分析精度を上げることは比較的容易であるが、
いかにして残余電流を安定化させるかが問題となる。(2) Like other electrochemical analysis methods such as voltammetry, in trace analysis, the S / N ratio (Sig
The nal / Noise ratio, in this case the electrolysis current / residual current) becomes small, which greatly affects the analysis accuracy. When the residual current is stable at a constant value, it is relatively easy to correct the residual current value and improve the analysis accuracy.
The problem is how to stabilize the residual current.
本発明の目的は、上記従来技術の問題をなくし、電解時
間が短かく、迅速かつ容易に自動定量を行なうことがで
きる電量分析法を提供することにある。An object of the present invention is to provide a coulometric analysis method which eliminates the above-mentioned problems of the prior art, has a short electrolysis time, and can perform automatic quantification quickly and easily.
(問題点を解決するための手段) 本発明者は、電量分析用セルの電極室内に液透過型の炭
素フェルトからなる多孔質電極を充填し、かつ該電極質
内外に通じる被測定物質含有液の流入出孔の内径を5mm
以下、好ましくは3mm以下、より好ましくは1mm程度と
し、静止状態の被測定溶液を電解することにより、少量
の溶液を多孔質電極内でほぼ同時に電解することができ
るため、電解時間が大きく短縮されることを見出し、本
発明に到達したものである。(Means for Solving Problems) The present inventor filled a porous electrode made of a liquid-permeable carbon felt in the electrode chamber of a coulometric cell, and a liquid containing a substance to be measured which communicates with the inside and outside of the electrode. The inner diameter of the inlet and outlet holes of
Below, preferably 3 mm or less, more preferably about 1 mm, and by electrolyzing the solution to be measured in a stationary state, a small amount of the solution can be electrolyzed almost simultaneously in the porous electrode, so that the electrolysis time is greatly shortened. It was found that the present invention has been achieved.
すなわち、本発明は、電極室内に液透過型の炭素フェル
トからなる多孔質電極を充填し、かつ該電極室内外に通
じる被測定物質含有液の流入出孔の内径を5mm以下とし
た電量分析セルに、前記溶液を供給後、静止状態として
電解を行わせ、測定される電流を積算して求める電気量
から被測定物質の定量を行うことを特徴とする。That is, the present invention is a coulometric analysis cell in which an electrode chamber is filled with a porous electrode made of a liquid permeable carbon felt, and the inner diameter of the inflow / outflow hole of the liquid containing the substance to be measured, which communicates with the inside and outside of the electrode chamber, is 5 mm or less. In addition, after the solution is supplied, electrolysis is performed in a stationary state, and the measured current is integrated to quantify the substance to be measured from the obtained electric quantity.
本発明において、作用極室としての電極室内に液透過型
の多孔質電極が完全に充填されていることが必要であ
り、該電極室内に多孔質電極を充填しない場合は、短時
間に高効率で電解を行うことができない。本発明におい
て、多孔質電極として用いられる炭素フェルトは、炭素
繊維を織らずにからみ合わせて分離しないように縮充さ
せて得られる高密度の多孔質シートである。また溶液流
入出孔の内径が5mmを越えると、セルの内外に液の拡散
(混合)が起こり、分析精度が低下する。なお、孔長に
ついては、ある程度長いことが望ましく、例えば溶液流
入出孔の管内径が1mmの場合は数mmの管長を有すること
が好ましい。In the present invention, it is necessary that the liquid-permeable type porous electrode is completely filled in the electrode chamber as the working electrode chamber, and when the porous electrode is not filled in the electrode chamber, high efficiency is achieved in a short time. Electrolysis cannot be performed at. In the present invention, the carbon felt used as the porous electrode is a high density porous sheet obtained by filling the carbon fibers without weaving them so as not to separate them so as not to separate them. Further, when the inner diameter of the solution inlet / outlet hole exceeds 5 mm, the liquid diffuses (mixes) inside and outside the cell, which lowers the analysis accuracy. The hole length is preferably long to some extent, and for example, when the inner diameter of the solution inflow / outflow hole is 1 mm, it is preferable that the hole length is several mm.
上記の構成とすれば、従来のセル内溶液攪拌型(H型セ
ル)の電解セルや多孔質電極を用いても溶融流通式の電
解定量法をとる装置と比べて、分析時間が短かくなり、
迅速な測定が可能になる。また短い周期で同一条件の定
量操作を繰り返し行なうことができるので、一回の定量
における残余電流の変動はほとんどなくなる。さらに高
い精度の繰返し分析によるため、酸化ないし還元電子数
も一連の定量を通して一定に保たれ、極めて高精度の定
量分析が可能になる。また電極反応速度が小さい被定量
物質の場合でも、短時間で安定した定量が可能になる。With the above-mentioned configuration, the analysis time is shorter than that of the conventional apparatus using the solution stirring type (H-type cell) electrolytic cell or the porous electrode for the melt flow type electrolytic quantification method. ,
It enables quick measurement. Further, since the quantitative operation under the same condition can be repeatedly performed in a short cycle, there is almost no fluctuation in the residual current in one quantitative determination. Since highly accurate repetitive analysis is performed, the number of oxidation or reduction electrons is also kept constant throughout a series of quantifications, enabling extremely highly accurate quantitative analysis. Further, even in the case of a substance to be quantified having a low electrode reaction rate, stable quantification can be achieved in a short time.
以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be described in more detail with reference to the drawings.
第1図および第2図は、本発明の方法を採用した一実施
例を示す電量分析用セルの説明図である。FIG. 1 and FIG. 2 are explanatory views of a cell for coulometric analysis showing an embodiment adopting the method of the present invention.
第1図において、この装置は、被測定溶液の電解質1
と、これに隔膜3を隔てて設けられた対極室2と、該電
解室1および対極室2にそれぞれ設けられた被測定溶液
流入出孔4A、4Bおよび対極液流入出孔5A、5B
と、該電解室1および対極室1の側面に設けられた集電
用プレート6Aおよび6Bと、該集電用プレートに接続
されたリード線7Aおよび7Bと、該電解室1および対
極室2にそれぞれ被測定溶液および対極液を送給するた
めの送液ポンプ8A、8Bおよび送液ライン9Aおよび
9Bとから主として構成される。上記電解室1内には多
孔室電極1Aが充填されており、また該電解室1の被測
定溶液流入出孔4Aおよび4Bの管内径は5mm以下に設
定されている。測定に際しては、被測定溶液電解室1側
のポンプ8Aを作動させ、所定量の被測定溶液を電解室
1内に供給した後、ポンプ8Aを停止し、静止の液につ
ついて電解定量を行なう。なお、対極液は対極液ポンプ
8Bを常に作動して対極液を流通させておく。In FIG. 1, this device is shown as an electrolyte 1 of a solution to be measured.
And a counter electrode chamber 2 provided with a diaphragm 3 therebetween, and solution inlets / outlets 4A, 4B and counter solution inlets / outlets 5A, 5B provided in the electrolytic chamber 1 and the counter electrode chamber 2, respectively.
The current collecting plates 6A and 6B provided on the side surfaces of the electrolytic chamber 1 and the counter electrode chamber 1, the lead wires 7A and 7B connected to the current collecting plate, and the electrolytic chamber 1 and the counter electrode chamber 2. It mainly comprises liquid feed pumps 8A and 8B and liquid feed lines 9A and 9B for feeding the solution to be measured and the counter electrode liquid, respectively. The electrolytic chamber 1 is filled with a porous chamber electrode 1A, and the inner diameters of the measured solution inflow / outflow holes 4A and 4B of the electrolytic chamber 1 are set to 5 mm or less. At the time of measurement, the pump 8A on the side of the measured solution electrolysis chamber 1 is operated to supply a predetermined amount of the measured solution into the electrolysis chamber 1, and then the pump 8A is stopped to perform electrolytic quantification by pouring into a stationary solution. . For the counter electrode liquid, the counter electrode liquid pump 8B is always operated to allow the counter electrode liquid to flow.
第1図は、対極反応と同時に行なう、いわゆる二電極法
の電解を行い、電極電位を安定させたものであるが、被
測定溶液電解室側の電極電位をより精度よく測定しよう
とする場合は、参照電極を用いる三電極法とする電解を
行ってもよい。本発明における電解方法は、定電位(定
電圧)ないし定電流の電量分析であり、その電解は完全
に行わなくても、電解初期のある時間内の電流ないし電
圧を測定し、それにより外挿法等によって全被測定物質
量を求めてもよい。FIG. 1 shows the so-called two-electrode method electrolysis that is carried out at the same time as the counter electrode reaction to stabilize the electrode potential. However, when it is desired to measure the electrode potential of the measured solution electrolysis chamber side more accurately, Alternatively, electrolysis may be performed using a three-electrode method using a reference electrode. The electrolysis method in the present invention is a constant potential (constant voltage) or constant current coulometric analysis. Even if the electrolysis is not completely performed, the current or voltage within a certain period of the initial stage of electrolysis is measured, and extrapolation is thereby performed. The total amount of substance to be measured may be determined by a method or the like.
第2図は、本発明の他の実施例を示すもので、分析時間
中、被測定溶液の電解室1および対極室2の両極液の送
液を停止するようにしたものであり、この場合送液ポン
プ8は両極とも共通のものでよく、装置を簡略化できる
利点がある。FIG. 2 shows another embodiment of the present invention, in which the feeding of the bipolar solutions of the solution to be measured in the electrolytic chamber 1 and the counter chamber 2 is stopped during the analysis time. The liquid feed pump 8 may be common to both electrodes, which has the advantage of simplifying the device.
(発明の効果) 本発明によれば、電極室内に多孔質電極を充填し、電極
液の流入出孔を5mm以下とし、静止状態で電解すること
により、少ない供給液で、再現性高い、より迅速な自動
定量が可能になる。このため、従来の溶液攪拌型または
溶液循環型の電量分析用セルに比べ、一回の定量時間が
短縮され、また操作も極めて簡単になり、故障等のトラ
ブルを少なくすることができる。また他の分析法、例え
ば、光学的分析法、電磁波等を用いる分析法などと比べ
ても、検出器および電気回路等の構成が簡単になるの
で、非常に安価に製作することができる。(Effects of the Invention) According to the present invention, a porous electrode is filled in the electrode chamber, the inflow and outflow holes of the electrode solution are set to 5 mm or less, and electrolysis is performed in a static state, so that a small amount of the supply solution and high reproducibility are obtained. Enables rapid automatic quantification. Therefore, compared with the conventional solution stirring type or solution circulation type coulometric cell, the quantification time for one time is shortened, the operation becomes extremely simple, and troubles such as breakdown can be reduced. Further, compared with other analysis methods, such as optical analysis methods and analysis methods using electromagnetic waves, etc., the structure of the detector and the electric circuit etc. becomes simpler, so that it can be manufactured at a very low cost.
以下、本発明の具体的実施例を述べる。Hereinafter, specific examples of the present invention will be described.
(実施例) 実施例1〜3、比較例1、2 第1図に示した電解セルにおいて、電解室の被測定溶液
流入出孔4Aおよび4Bとして、それぞれ内径7mm(比
較例1)、5mm(実施例1)、3mm(実施例2)、1mm
(実施例3)の塩化ビニルチューブを用い、その他下記
の条件で電解セルを4組試作した。電解セルの電解室お
よび対極室の寸法はともにタテ100mm、ヨコ10mm、
厚さ3mmである。またこの他に被測定溶液の流入出孔と
して内径1mmのポリ塩化ビニルチューブを用いている
が、電解室1内に多孔室電極(炭素フェルト)を充填し
ていないセル(比較例2)を一組試作した。(Examples) Examples 1 to 3 and Comparative Examples 1 and 2 In the electrolysis cells shown in FIG. 1, inner diameters of 7 mm (Comparative Example 1) and 5 mm (Comparative Example 1) were used as the measured solution inflow / outflow holes 4A and 4B of the electrolysis chamber, respectively. Example 1), 3 mm (Example 2), 1 mm
Using the vinyl chloride tube of (Example 3), four sets of electrolytic cells were prototyped under the following other conditions. The dimensions of the electrolysis chamber and the counter chamber of the electrolysis cell are 100 mm vertically and 10 mm horizontally,
It has a thickness of 3 mm. In addition to this, a polyvinyl chloride tube having an inner diameter of 1 mm is used as an inflow / outflow hole for the solution to be measured, but a cell (Comparative Example 2) in which the porous chamber electrode (carbon felt) is not filled in the electrolytic chamber 1 is used. I made a prototype.
被測定溶液電解室内充填電極1A: 炭素フェルト(寸法:タテ100mm、ヨコ10mm、厚さ
3mm) 集電用プレート7A、7B:フェノール樹脂結着炭素板
(内側)+銅板(外側) 隔膜3:陽イオン交換膜 被測定溶液:弱リン酸酸性ヨウ素、ヨウ素カリウム水溶
液 対極液:被測定溶液と同じ。Solution to be measured Electrolysis chamber filling electrode 1A: carbon felt (dimensions: vertical 100 mm, horizontal 10 mm, thickness 3 mm) collector plates 7A, 7B: phenol resin-bonded carbon plate (inner) + copper plate (outer) diaphragm 3: positive Ion-exchange membrane Solution to be measured: weak acidic phosphate iodine, potassium iodine aqueous solution Counter electrode: Same as solution to be measured.
なお対極室側の構造は被測定溶液電解室側と同様とし
た。The structure of the counter electrode chamber side was the same as that of the measured solution electrolytic chamber side.
上記装置において、まずヨウ素イオン標準液を前記5組
のセルの各被測定溶液電解室1に送液し、その容量を測
定した。次いで各被測定溶液中のヨウ素、ヨウ素イオン
の電解定量を±0.4Vの定電位法で行った。また別に
チオ硫酸ナトリウム水溶液滴定法等により、被測定溶液
中のヨウ素およびヨウ素イオン濃度を測定した。結果を
第1表に示す。In the above apparatus, first, the iodine ion standard solution was sent to each of the measured solution electrolysis chambers 1 of the five sets of cells, and the capacity thereof was measured. Then, electrolytic determination of iodine and iodine ions in each solution to be measured was performed by a constant potential method of ± 0.4V. Separately, the concentrations of iodine and iodide ions in the solution to be measured were measured by an aqueous sodium thiosulfate titration method or the like. The results are shown in Table 1.
実施例4 第2図に示した構造の電量分析セルを用い、実施例1と
同じ標準液、被測定溶液を使用して定電圧電解(定電
位)および定電流電解を行い、被測定溶液中のヨウ素、
ヨウ素イオン濃度を求めた。なお、電量分析セルの寸法
は、電解室がタテ100mm、ヨコ10mm、厚さ3mm、対
極室がタテ100mm、ヨコ10mm、厚さ10mmであり、
電解室の多孔多孔質電極にはタテ100mm、ヨコ10m
m、厚さ3mmの炭素フェルトを、対極室の電極には銀メ
ッシュを用いた。結果を第2表に示したが、充分満足の
得るものであった。 Example 4 In the solution to be measured, constant voltage electrolysis (constant potential) and constant current electrolysis were performed using the same standard solution and solution to be measured as in Example 1 using the coulometric cell having the structure shown in FIG. Of iodine,
The iodine ion concentration was determined. The dimensions of the coulometric analysis cell are 100 mm vertically, 10 mm horizontally, 3 mm thick, and 100 mm vertically, 10 mm horizontally, and 10 mm thick in the counter electrode chamber.
Porous electrode in the electrolysis chamber is 100mm vertically and 10m horizontally
A carbon felt having a thickness of 3 mm and a thickness of 3 mm was used, and a silver mesh was used as an electrode in the counter electrode chamber. The results are shown in Table 2 and were sufficiently satisfactory.
比較例3 実施例1および2における被測定溶液中のヨウ素、ヨウ
素イオンの定量を従来の白金網電極入H型セルによって
行った。その結果を第3表に示す。 Comparative Example 3 Iodine and iodine ions in the solutions to be measured in Examples 1 and 2 were quantified by a conventional platinum mesh electrode-containing H-type cell. The results are shown in Table 3.
第3表から明らかなように、従来の電量分析では測定時
間を要し、また測定値のばらつきが大きいことが分か
る。 As is apparent from Table 3, it is understood that the conventional coulometric analysis requires a measurement time and has a large variation in the measured values.
第1図および第2図は、本発明の実施例を示す電量分析
セルの説明図である。 1……被測定溶液電解室、1A……多孔室電極、2……
対極室、3……隔膜、4A、4B……被測定溶液流入出
孔、5A、5B……対極液流入出孔、6A、6B……集
電用プレート、7a、7b……リード線、8、8a、8
b……送液ポンプ、9a、9b……送液ライン。1 and 2 are explanatory views of a coulometric analysis cell showing an embodiment of the present invention. 1 ... Measured solution electrolysis chamber, 1A ... Porous chamber electrode, 2 ...
Counter electrode chamber, 3 ... Diaphragm, 4A, 4B ... Measured solution inlet / outlet hole, 5A, 5B ... Counter electrode liquid inlet / outlet hole, 6A, 6B ... Current collecting plate, 7a, 7b ... Lead wire, 8 , 8a, 8
b ... liquid feed pump, 9a, 9b ... liquid feed line.
Claims (2)
る多孔質電極を充填し、かつ該電極室内外に通じる被測
定物質含有液の流入出孔の内径を5mm以下とした電量分
析セルに、前記溶液を供給後、静止状態として電解を行
わせ、測定される電流を積算して求める電気量から被測
定物質の定量を行うことを特徴とする電量分析法。1. A coulometric analysis cell in which a porous electrode made of a liquid-permeable carbon felt is filled in an electrode chamber, and an inner diameter of an inflow / outflow hole of a liquid containing a substance to be measured leading to the inside and outside of the electrode chamber is 5 mm or less. A coulometric analysis method, characterized in that after the solution is supplied, electrolysis is performed in a stationary state, and the measured current is integrated to determine the quantity of the substance to be measured from the obtained electric quantity.
が定電流法または定電位法で行われることを特徴とする
電量分析法。2. The coulometric analysis method according to claim 1, wherein the electrolysis is performed by a constant current method or a constant potential method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59247643A JPH0623730B2 (en) | 1984-11-22 | 1984-11-22 | Coulometric method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59247643A JPH0623730B2 (en) | 1984-11-22 | 1984-11-22 | Coulometric method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61126460A JPS61126460A (en) | 1986-06-13 |
JPH0623730B2 true JPH0623730B2 (en) | 1994-03-30 |
Family
ID=17166543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59247643A Expired - Lifetime JPH0623730B2 (en) | 1984-11-22 | 1984-11-22 | Coulometric method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0623730B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2633280B2 (en) * | 1988-01-29 | 1997-07-23 | 三井造船株式会社 | Electrical analysis method |
JP4389845B2 (en) | 2005-06-15 | 2009-12-24 | 株式会社デンソー | In-vehicle device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5114040A (en) * | 1974-07-26 | 1976-02-04 | Tokico Ltd | BINKAITENSOCHI |
US4315754A (en) * | 1979-08-28 | 1982-02-16 | Bifok Ab | Flow injection analysis with intermittent flow |
JPS58108462A (en) * | 1981-12-23 | 1983-06-28 | Hitachi Ltd | Flow injection analysis system by pulse flow |
-
1984
- 1984-11-22 JP JP59247643A patent/JPH0623730B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61126460A (en) | 1986-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Carbon paste electrodes modified with cation-exchange resin in differential pulse voltammetry | |
JP3499872B2 (en) | Improvements in or relating to electrochemical reactions | |
US4227974A (en) | Electrochemical cell having a polarographic device with ion selective electrode as working electrode and method of use | |
US3223597A (en) | Method and means for oxygen analysis of gases | |
Kastening et al. | Electrochemical polarization of activated carbon and graphite powder suspensions: Part II. Exchange of ions between electrolyte and pores | |
JP5686602B2 (en) | Titration apparatus and method | |
JPH09101286A (en) | Method and instrument for measuring atomicity and concentration of vanadium ion of electrolyte for vanadium redox flow battery | |
US3022241A (en) | Method and apparatus for measurement of dissolved oxygen | |
JPH01195358A (en) | Electroanalysis | |
US5334295A (en) | Micro fuel-cell oxygen gas sensor | |
JPH0623730B2 (en) | Coulometric method | |
US4235689A (en) | Apparatus for detecting traces of a gas | |
US3315270A (en) | Dissolved oxidant analysis | |
US4090924A (en) | Method to determine the suitability of diaphragm for use in an electrolytic cell | |
Bazán et al. | Ionic mass transfer on fixed disk and conical electrodes under streaming solutions-III. A second experimental approach and kinetic application | |
US5300207A (en) | High current coulometric KF titrator | |
DE1186656B (en) | Measuring cell of a device for displaying the oxygen concentration of a gas mixture | |
Feldman et al. | Direct Coulometric Titration of Hydrogen Peroxide with Electrogenerated Hypobromite. | |
GB2253910A (en) | Detecting a gaseous, vaporous or colloidal component of a gaseous medium. | |
GB1098653A (en) | Gas analysis | |
JP3069671B2 (en) | Acid and alkalinity measurement methods | |
JP3650919B2 (en) | Electrochemical sensor | |
CN216525577U (en) | Electrolytic cell device for potential control coulometer | |
JP2002184424A (en) | Column type electrochemical cell | |
JPH0725689Y2 (en) | Coulometric analyzer |