JPS61124538A - Method for evaluating performance of concentration burner for flash smelting furnace - Google Patents

Method for evaluating performance of concentration burner for flash smelting furnace

Info

Publication number
JPS61124538A
JPS61124538A JP59242989A JP24298984A JPS61124538A JP S61124538 A JPS61124538 A JP S61124538A JP 59242989 A JP59242989 A JP 59242989A JP 24298984 A JP24298984 A JP 24298984A JP S61124538 A JPS61124538 A JP S61124538A
Authority
JP
Japan
Prior art keywords
oxygen
partial pressure
concentrate
burner
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59242989A
Other languages
Japanese (ja)
Other versions
JPH0377858B2 (en
Inventor
Nobumasa Iemori
伸正 家守
Yukio Shibata
柴田 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP59242989A priority Critical patent/JPS61124538A/en
Publication of JPS61124538A publication Critical patent/JPS61124538A/en
Publication of JPH0377858B2 publication Critical patent/JPH0377858B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate quantitatively and economically the performance of a concentration burner for a flash smelting furnace in a short period by using the partial pressure of oxygen in a melt as an index expressing a degree of progress of a metallurgical oxidation reaction at a high temp. in the furnace. CONSTITUTION:The partial pressure of oxygen in droplets of a melt dropping in the lower space of the shaft part of a flash smelting furnace and the partial pressure of oxygen in matte drawn out of a matte drawing hole in the settler part just below the shaft part are measured with oxygen probes each having a built-in oxygen concn. cell. These values are standardized on the basis of the partial pressure of oxygen at a fixed temp., and the ratio between the logarithms of the two standardized partial pressures of oxygen is calculated. The resulting value is used as a value for evaluating the performance of a concentrate burner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自溶製錬炉において、精鉱と反応用空気又は酸
素富化空気(以下反応用気体と記す)を吹き込み溶錬反
応をさせる精鉱バーナーの性能の評価方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves blowing concentrate and reaction air or oxygen-enriched air (hereinafter referred to as reaction gas) into a flash smelting furnace to cause a smelting reaction. Concerning a method for evaluating the performance of a concentrate burner.

〔従来の技術〕[Conventional technology]

自溶炉においては乾燥した精鉱、例えば銅精鉱を反応用
気体と共にリアクションシャフトの上部に設けられた精
鉱バーナーから吹き込み、瞬間的に精鉱を酸化熔融し銅
等の有価金属を鋏として濃縮する。この場合、精鉱と反
応用気体とが均一に混合し、リアクシコンシャフト中を
落下する極めて短時間のうちに均一な酸化反応が進行す
るようにすることが重要である。混合状態が悪く局部的
に未反応未溶解物が生成すると、これがリアクションシ
ャフト下部のセトラーに堆積して鼓の生成を妨げたり、
鋏湛度、鼓品位の大きな変動を生じたりして操炉上の困
難を招くのみならず、反応が集中して起る部分では局部
的加熱が起りリアクションシャフトの煉瓦を損傷するこ
とになり、また精鉱の酸化反応熱が充分利用できないた
め補助燃料の使用量が増加する結果を招く。
In a flash furnace, dry concentrate, such as copper concentrate, is blown in together with a reaction gas from a concentrate burner installed at the top of the reaction shaft, and the concentrate is instantly oxidized and melted, and valuable metals such as copper are used as scissors. Concentrate. In this case, it is important that the concentrate and the reaction gas are uniformly mixed so that a uniform oxidation reaction can proceed within a very short time as they fall through the reactor shaft. If the mixing condition is poor and unreacted and undissolved substances are generated locally, this may accumulate in the settler at the bottom of the reaction shaft and prevent the formation of drums.
This not only causes large fluctuations in the shear filling rate and quality of the drum, causing difficulties in operating the furnace, but also damages the bricks of the reaction shaft due to localized heating in areas where reactions occur in a concentrated manner. Furthermore, since the heat of the oxidation reaction of the concentrate cannot be fully utilized, the amount of auxiliary fuel used increases.

こ\で精鉱の反応用気体との混合の状態は自溶炉に設け
られた精鉱バーナーの構造ならびにその使用状態即ち精
鉱バーナーの性能により大きく支配される。
Here, the state of mixing of the concentrate with the reaction gas is largely controlled by the structure of the concentrate burner provided in the flash furnace and its operating conditions, that is, the performance of the concentrate burner.

従来、精鉱バーナーの性能を評価するには自溶炉の装入
物及び産出物の酸素の物質収支を調べることにより反応
用気体中の酸素の何%が精鉱の酸化反応に寄与したかを
示す酸素効率を求め、この値によって行なってきた。し
かしながらこの方法では装入物及び生成物に含まれる全
ての酸化物を定は評価しなければならず、分析技術、測
定誤差、解析に要する時間及び費用の点などで多くの問
題があり、且つ正確を期することは困難であった。
Conventionally, to evaluate the performance of a concentrate burner, it was possible to determine what percentage of oxygen in the reaction gas contributed to the oxidation reaction of the concentrate by examining the mass balance of oxygen in the charge and output of the flash furnace. We have determined the oxygen efficiency that represents However, this method requires the evaluation of all oxides contained in the charge and the product, and there are many problems in terms of analysis technology, measurement errors, time and cost required for analysis, etc. It was difficult to ensure accuracy.

また煙灰発生率、雛温度と破温度の差等の実操業データ
ーにより精鉱バーナーの性能を評価する方法もあるが、
短期間の操業データーでは正しい結論を得ることは難か
しく、原料精鉱の変動その他操業条件を一定に維持する
ことは事実上不可能であって、バーナー性能の良否の絶
対的定量評価ができない問題点があった。
There is also a method of evaluating the performance of a concentrate burner using actual operational data such as the smoke ash generation rate and the difference between brood temperature and burst temperature.
It is difficult to draw correct conclusions from short-term operational data, and it is virtually impossible to maintain constant operating conditions such as fluctuations in raw material concentrate, making it impossible to make an absolute quantitative evaluation of burner performance. There was a point.

精鉱の装入景が少ない軽負荷操業で精鉱バーナーの性能
に余裕があるときには、シャフト部内の高さ方向の温度
分布を測定することによって、シャフト部の反応に必要
とする最低の高さを求めることによって精鉱バーナーの
性能を評価することも考えられるが、短時間で測定を終
わることが難かしく・またンヤフト内の冶金反応が高温
酸化反応であるため温度分布のみからシャフトの必要高
さ2求めることは非常に危険なことである。
When the performance of the concentrate burner is sufficient during light-load operation with little concentrate charging, the minimum height required for reaction in the shaft can be determined by measuring the temperature distribution in the height direction within the shaft. It is possible to evaluate the performance of the concentrate burner by determining the temperature, but it is difficult to complete the measurement in a short time, and since the metallurgical reaction inside the shaft is a high-temperature oxidation reaction, it is possible to evaluate the required height of the shaft from only the temperature distribution. It is very dangerous to ask for something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は精鉱バーナーの性能及び配置高さを従来のよう
に長期間の操業結果を待たずに判定しつる方法を供せん
とするものである。
The present invention seeks to provide a method for determining the performance and placement height of a concentrate burner without waiting for long-term operating results as in the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

発明者等は自溶炉内部の高温酸化反応度応の進行度を表
わす指標として溶体中の酸素分圧を選び、この酸素分圧
を溶鋼中の酸素量の測定に近年用いられるようになった
安定化ジルコニアを固体電解質として用いた酸素濃淡電
池を内蔵した酸素プローブを用いて、シャフト部及びセ
トラー部の溶体中の酸素分圧を測定し、この値を一定温
度における酸素分圧に補正(以下この補正値を標準化酸
素分圧と云う)して、自溶炉内における標準化酸素分圧
の変化を詳細に検討したところ、シャフト部出口の標準
化酸素分圧の対数値とセトラー部の標準化酸素分圧の対
数値との比を求めることによって精鉱バーナーの性能を
定量評価できることを見出した。
The inventors selected the oxygen partial pressure in the solution as an index to express the progress of the high-temperature oxidation reaction inside the flash furnace, and in recent years this oxygen partial pressure has come to be used to measure the amount of oxygen in molten steel. Using an oxygen probe with a built-in oxygen concentration battery that uses stabilized zirconia as a solid electrolyte, measure the oxygen partial pressure in the solution in the shaft and settler parts, and correct this value to the oxygen partial pressure at a constant temperature (hereinafter referred to as This correction value is called the standardized oxygen partial pressure), and a detailed study of changes in the standardized oxygen partial pressure in the flash furnace revealed that the logarithm of the standardized oxygen partial pressure at the shaft outlet and the standardized oxygen partial pressure at the settler section We have discovered that the performance of a concentrate burner can be quantitatively evaluated by determining the ratio of pressure to logarithm.

しかしながらセトラー部の酸素分圧を測定することは、
後述するようにセトラー部天井より酸素プローブを挿入
する必要があり、測定が困難であること、及びこの値を
シャフト部直下のマット抜口から抜取ったマットの酸素
分圧で代用できることから本発明を次のように構成した
However, measuring the oxygen partial pressure in the settler section is
As will be described later, it is necessary to insert an oxygen probe from the ceiling of the settler section, which makes measurement difficult, and this value can be substituted with the oxygen partial pressure of the mat extracted from the mat outlet directly below the shaft section. was constructed as follows.

即ち、本発明は酸素濃淡電池を内蔵した酸素プローブを
用いて自溶炉内のシャフト下部空間を落下する溶融物液
滴中の酸素分圧及びセトラー部のシャフト直下のマット
抜口から抜取ったマット中の酸素分圧を測定し、これら
の値から標準化酸素分圧を求め、シャフト部の標準化酸
素分圧の値とマット中の標準化酸素分圧値の対数値の比
を求め、これを精鉱バーナーの性能の評価値とするもの
である。
That is, the present invention uses an oxygen probe with a built-in oxygen concentration battery to measure the partial pressure of oxygen in the melt droplets falling through the space below the shaft in a flash furnace, and to extract the oxygen from the mat outlet directly under the shaft of the settler section. Measure the oxygen partial pressure in the mat, find the standardized oxygen partial pressure from these values, find the ratio of the logarithm of the standardized oxygen partial pressure in the shaft and the standardized oxygen partial pressure in the mat, and refine this. This value is used to evaluate the performance of the ore burner.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(イ)酸素分圧の測定方法 自溶炉内の製錬反応の条件下で実質上完全な酸素イオン
伝導を示す酸化物、例えば安定化ジルフニアzro十M
goを固体電解質として用いて酸素濃淡電池(1)を構
成する。
(b) Method for measuring oxygen partial pressure Oxides that exhibit virtually complete oxygen ion conduction under the conditions of smelting reactions in flash furnaces, such as stabilized zilfnia ZRO1M
An oxygen concentration battery (1) is constructed using go as a solid electrolyte.

pt/Pa (+)/zro +Mgo/po (n)
/pt (1)この酸素濃淡電池(1)の起電力Eは次
の(2)式で表わすことができる。
pt/Pa (+)/zro +Mgo/po (n)
/pt (1) The electromotive force E of this oxygen concentration battery (1) can be expressed by the following equation (2).

但し R:ガス定数 T:絶対温度0K F:ファラデ一定数 po2(1):参照電極の示す酸素分圧Po(11):
測定電極の示す酸素分圧こ\で参照電極としては一定温
度において一定の酸素分圧を示すものであれば特に限定
されるものではないが、銅製錬においては精度的にFe
−Fe0が優れている。
However, R: Gas constant T: Absolute temperature 0K F: Faraday constant po2 (1): Oxygen partial pressure indicated by the reference electrode Po (11):
The reference electrode is not particularly limited as long as it exhibits a constant oxygen partial pressure at a constant temperature, but in copper smelting, Fe
-Fe0 is superior.

式(2)から明らかなように酸素a淡電池(1)の起電
力Eと温度Tが測定できれば参照電極の示す酸素分圧P
o (1)の値は既知 〔例えば参照電極がFe−Fe0の場合はRTln、P
o (1)−−526800+ 129.6 T (J
 −mol−’ )となる〕 であるため測定電極の示す酸素分圧po (II)を求
めることができる。
As is clear from equation (2), if the electromotive force E and temperature T of the oxygen-a dilute battery (1) can be measured, the oxygen partial pressure P indicated by the reference electrode can be measured.
o The value of (1) is known [for example, when the reference electrode is Fe-Fe0, RTln, P
o (1) --526800+ 129.6 T (J
-mol-')] Therefore, the oxygen partial pressure po (II) indicated by the measurement electrode can be determined.

(ロ)酸素分圧の標準化方法 酸素濃淡電池によって測定される酸素分圧は温度によっ
て変化するので自溶炉内の各測定場所における酸素分圧
によって反応の進行度を推定しようとしても、各測定場
所における温度は一般的に異なるため、得られた酸素分
圧をある一定の温度(銅製錬においては例えば1200
 tll” 、 1250 t:’など)における酸素
分圧に標準化する必要がある。この標準化方法としては
反応系を構成する化合物成分間に成立する酸化還元反応
式より評価するのが一般的であり、本発明においては曖
および披の構成元素に多量の鉄を含むので次の反応式を
考えるのが良い。
(b) Standardization method for oxygen partial pressure Since the oxygen partial pressure measured by an oxygen concentration cell changes depending on the temperature, even if you try to estimate the progress of the reaction by the oxygen partial pressure at each measurement location in the flash furnace, it will be difficult to estimate the progress of the reaction at each measurement point. Since the temperature at different locations generally differs, the obtained oxygen partial pressure is adjusted to a certain temperature (for example, 1200°C in copper smelting).
It is necessary to standardize the oxygen partial pressure to the oxygen partial pressure at 1250 t:', 1250 t:', etc.).The standard method for this standardization is generally to evaluate from the redox reaction equation established between the compound components that make up the reaction system. In the present invention, since a large amount of iron is included in the constituent elements of ``N'' and ``I'', it is best to consider the following reaction formula.

・シFe0(1)−1−0(g)−2Fe  O(1)
    (31(3)式の標準自由エネルギー変化ΔG
0(T)はFed(ノーとを用いて次式のように表わす
ことができる。
・SiFe0(1)-1-0(g)-2FeO(1)
(31 Standard free energy change ΔG of equation (3)
0(T) can be expressed as follows using Fed(no).

従って測定温度T、における酸素分圧PO□(T、)を
標準温度T2における酸素分圧P02(T2)に標準化
するには、温度で とT との変化では活量αFed’
+2 α  が変化せず一定であると仮定すれば、(5)式か
ら次の(6)式が得られる。
Therefore, in order to standardize the oxygen partial pressure PO□(T, ) at the measurement temperature T, to the oxygen partial pressure P02(T2) at the standard temperature T2, the activity αFed'
Assuming that +2 α remains constant without changing, the following equation (6) can be obtained from equation (5).

従って測定温度T 1その温度における酸素分圧が求め
られれば(3)式の反応自由エネルギーΔG0は既知で
あるから、これらの値を(6)式に代入すると標準温度
T における酸素分圧Po(r)を求めることができる
Therefore, if the oxygen partial pressure at the measurement temperature T1 is found, the reaction free energy ΔG0 in equation (3) is known, so by substituting these values into equation (6), the oxygen partial pressure Po( r) can be obtained.

〔測定実験例〕[Measurement experiment example]

本発明において自溶炉のシャフト部およびセトラー部の
どの点で酸素分圧を測定するのが良いか?調査するため
にシャフト内及びセトラー部の各所で酸素分圧の測定分
試みた。第1図の炉縦断面図及び平面図に酸素分圧の測
定場所を示す。
In the present invention, at what points in the shaft section and settler section of the flash furnace should the oxygen partial pressure be measured? To investigate, we attempted to measure the oxygen partial pressure at various locations within the shaft and settler section. The longitudinal cross-sectional view and plan view of the furnace in FIG. 1 show the locations where the oxygen partial pressure is measured.

自溶炉のシャフト部1の側壁にその高さを変えて上下Φ
ケ所の測定孔2.3.4.5を開け、シャフト内高さ方
向及び半径方向(シャフト半径3mの炉壁より夫々1m
及び2m中心寄りの位置)の標準化酸素分圧の変化を求
めた。またセトラー部6の酸素分圧としてはシャフト部
直下の被接ロア及びそれより下流側の披抜口8〜12及
び暖出口13.14のうち1回の測定につき数個所を選
んで鼓及び媛中の酸素分圧の水平方向の変化を求めた他
、セトラー中央部の天井に設けた測定孔15からセトラ
ー内溶体中の垂直方向の標準化酸素分圧の変化も調べた
The height of the side wall of the shaft part 1 of the flash furnace is changed and the upper and lower Φ
Open measurement holes 2.3.4.5 in the shaft height direction and radial direction (1 m each from the furnace wall with a shaft radius of 3 m)
Changes in the standardized oxygen partial pressure at the 2 m center and 2 m from the center were determined. In addition, as for the oxygen partial pressure in the settler section 6, several locations are selected for each measurement among the lower contact area directly below the shaft section, the openings 8 to 12 downstream from it, and the warming ports 13 and 14. In addition to determining the change in the oxygen partial pressure in the horizontal direction, the change in the standardized oxygen partial pressure in the solution in the settler in the vertical direction was also investigated through the measurement hole 15 provided in the ceiling at the center of the settler.

第1図にシャフト部及び各マットホールでの標準化酸素
分圧の値をシャフト部入口からの距離に対応して示し、
第1表にはシャフト内の測定位置の差異による結果を示
す。士だ第3図には測定孔15で測定したセトラー部の
溶体中の垂直方向の標準化酸素分圧の値企示す。
Figure 1 shows the values of standardized oxygen partial pressure in the shaft part and each mat hole corresponding to the distance from the shaft part entrance,
Table 1 shows the results of different measurement positions within the shaft. FIG. 3 shows the normalized partial pressure of oxygen in the vertical direction in the solution in the settler section, measured through the measurement hole 15.

第  1  表 第1表の結果からシャフト部内では高さが同じであれば
半径方向では標準化酸素分圧には殆んど差がないことが
判る。但し、酸素プローブへの溶融物液滴の衝突毒が不
充分な場合にはPOが高めに測定される。従って、溶融
物液滴の空間密度が高い位置、即ち精鉱バーナーのバー
ナーコーンの直下方向(第1表の例ではシャフト炉壁か
ら半径方向へ2m入った位置)での測定が好ましい。
Table 1 From the results in Table 1, it can be seen that within the shaft portion, if the height is the same, there is almost no difference in the standardized oxygen partial pressure in the radial direction. However, if the impact of the melt droplets on the oxygen probe is insufficient, PO will be measured at a high level. Therefore, it is preferable to measure at a position where the spatial density of melt droplets is high, that is, directly below the burner cone of the concentrate burner (in the example in Table 1, at a position 2 m in the radial direction from the shaft furnace wall).

また第1図のグラフは横軸としてシャフト部中心の頂上
を原点とし、そこから垂線を下し、溶体面からセトラー
部の下流に向って延長した線の距離を示したもので、図
中のマークは測定時期が同じときのものを同マークで示
しているが、シャフト部では下に行く程(図においては
右に行く程)標準化酸素分圧が減少するが、セトラー部
ではシャフト部直下からの距離に拘わらず標準化酸素分
圧はもはや殆んど変化していない。また第2図では第1
図の測定孔15を利用してセトラー部の酸素濃度の深さ
方向変化を4回測定したものであるが、測定時点が同じ
であればセトラー部溶体内の鉛直方向の標準化酸素分圧
が殆んど変化しないことを示している。
The graph in Figure 1 uses the top of the center of the shaft as its origin as the horizontal axis, draws a perpendicular line from there, and shows the distance of the line extending from the solution surface toward the downstream of the settler part. The marks indicate measurements taken at the same time.In the shaft part, the normalized oxygen partial pressure decreases as you go lower (towards the right in the figure), but in the settler part, it decreases from just below the shaft part. Regardless of the distance, the normalized oxygen partial pressure no longer changes much. Also, in Figure 2, the first
The changes in the oxygen concentration in the settler part in the depth direction were measured four times using measurement hole 15 in the figure.If the measurement time points were the same, the normalized oxygen partial pressure in the vertical direction in the solution in the settler part was almost the same. It shows that it never changes.

以上の結果から製錬反応はシャフト部若しくはシャフト
部直下のセトラー部で終了しているものと考えられ、ま
た酸素分圧の測定領分標準化する温度は第1図に示した
ものは1250 C、第2図に示したものは1200 
Cで行なったが、これらの標準化温度を変えても得られ
る傾向は変わるものではない。
From the above results, it is considered that the smelting reaction is completed in the shaft part or the settler part directly below the shaft part, and the temperature at which the measurement area of oxygen partial pressure is standardized is 1250 C and 1250 C in the case shown in Figure 1. The one shown in Figure 2 is 1200
C, but the trends obtained do not change even if these standardized temperatures are changed.

従ってシャフト部下部とセトラー部の標準化酸素分圧の
差が小さい程精鉱バーナーの性能が良い、あるいは性能
に余裕があると判断され、これらの標準化酸素分圧を用
いて精鉱バーナーの性能を定量的に且つ絶対的に評価す
ることができる。セトラー部のマット抜ロア〜12から
抜取られる皺は、抜き始めはその抜口周辺に滞留してい
るセトラー底部に近い破が排出されるが、逐次暖表面に
近い鍼が抜口に向って流れてくる傾向を示す。従って各
タップホールでの抜取後期の破はそのマット抜目位置で
のセトラー中の酸素分圧とほぼ同じ値を示すので直接炉
内セトラー部の溶体の酸素分圧を測定する代わりに抜取
った鼓の酸素分圧を測定することで代用特性とすること
ができる。
Therefore, it is judged that the smaller the difference between the standardized oxygen partial pressures between the lower shaft part and the settler part, the better the performance of the concentrate burner is, or that there is a margin in performance, and these standardized oxygen partial pressures can be used to quantitatively evaluate the performance of the concentrate burner. and can be evaluated absolutely. When removing wrinkles from the mat removal lower part ~ 12 of the settler section, at the beginning of removal, the particles near the bottom of the settler that have accumulated around the removal opening are discharged, but gradually the needles closer to the warm surface flow toward the removal opening. It shows the tendency to Therefore, since the fracture at each tap hole in the latter stage of sampling shows almost the same value as the oxygen partial pressure in the settler at the mat opening position, it was sampled instead of directly measuring the oxygen partial pressure of the solution in the settler part of the furnace. Measuring the partial pressure of oxygen in the drum can be used as a substitute characteristic.

〔バーナー性能の評価〕[Evaluation of burner performance]

例えば第1図のシャフト部の測定孔5から酸素分圧を測
定し、またシャフト部直下の鼓抜ロアから抜取った鼓の
酸素分圧?測定して、夫々の標準化酸素分圧をPO(R
/S)及びPO(S/T)とする。
For example, the oxygen partial pressure is measured from the measurement hole 5 in the shaft part in Figure 1, and the oxygen partial pressure of the drum is extracted from the drum extractor lower directly below the shaft part. and measure each standardized oxygen partial pressure as PO(R
/S) and PO(S/T).

こ−で銅製錬の通常の操業では精鉱バーナーから供給さ
れる銅精鉱中には酸化物を含んだ繰返ダスト、銅滓粉を
含有しており、またシャフトを落下する溶融物液滴は下
に行く程被品位が上昇し、且つ一般には皺品位が高いと
POは高くなるのでシャフト下部に行くほどPOは高く
なるべきだが、実際には溶融物液滴に含まれる破中のF
eSがダスト、鋼滓中の高級酸化物を還元してシャフト
の下部に行くに従ってPOを低下させている。
Therefore, in the normal operation of copper smelting, the copper concentrate supplied from the concentrate burner contains repeated dust containing oxides, copper slag powder, and melt droplets falling down the shaft. The higher the wrinkle quality is, the higher the PO will be.The higher the wrinkle quality, the higher the PO should be.However, in reality, the PO should be higher as you go to the bottom of the shaft.
eS reduces higher oxides in dust and steel slag, and PO decreases as it goes toward the bottom of the shaft.

このような場合精鉱バーナーの性能ηは次のようにして
求める。
In such a case, the performance η of the concentrate burner is determined as follows.

ηの値はθ〜100の値を取り得るが精鉱バーナーの性
能はηの値が大きいほど良く、定量性を有しており、換
言すれば第1図のグラフで横軸のシャフト部上部からシ
ャフト部直下のセトラー部18までの標準化酸素分圧の
傾斜が小さいほど性能が 、良いことになる。
The value of η can take a value of θ to 100, but the performance of the concentrate burner is better as the value of η is larger, and it has quantitative properties.In other words, in the graph of Figure 1, the upper part of the shaft on the horizontal axis The smaller the slope of the standardized oxygen partial pressure from the point to the settler section 18 directly below the shaft section, the better the performance.

ηを求めるときのシャフト部のPOの値Po (R/S
)はシャフト部の下部であって、セトラー部天井煉瓦と
のつなぎ目よりや\上部で測定することが好ましく、ま
たセトラー部のPOの値PO□(S/T)はセトラー部
のどの皺の抜目の値も使用できるが、シャフト直下の被
接ロアの値が好ましい。
When calculating η, the value of PO of the shaft part Po (R/S
) is the lower part of the shaft part, and it is preferable to measure it at the upper part of the settler part than the joint with the ceiling brick, and the value of PO in the settler part PO The value for the lower part directly under the shaft is preferable, although the value for the lower part directly below the shaft can also be used.

このηの望ましい値は標準化酸素分圧をシャフト部下部
及びシャフト部直下の皺抜口で測定した場合95以上で
ある。
A desirable value of η is 95 or more when the standardized oxygen partial pressure is measured at the lower part of the shaft and at the wrinkle outlet directly below the shaft.

また絶対性については(力式で自溶炉における製錬反応
の最終状態を示す熱力学的示強変数logPo□(S/
’I’)で標準化しているため、熱力学上及び操業上の
全ての変数について標準化されていると考えられる。
Regarding absoluteness, the thermodynamic intensive variable logPo□(S/
'I'), it is considered that all thermodynamic and operational variables are standardized.

一方精鉱バーナーから供給される銅精鉱中に繰返ダスト
や銅滓粉のような高級酸化切分含有しない場合にはPo
  の値はシャフトの下部に行くほど上昇するので、こ
のようなときにはηはとして求める。
On the other hand, if the copper concentrate supplied from the concentrate burner does not contain high-grade oxidized fractions such as repeated dust or copper slag powder, Po
The value of increases toward the bottom of the shaft, so in such a case, η is determined as:

〔実施例〕〔Example〕

以下実施例(こついて説明する。 Examples (explained below).

実施例1 第3図(a、)に示す改良型精鉱、<−ナーを4本シャ
フト部頂部に使用した場合と、第3図(b)&こ示す従
来型精鉱バーナ−31本シャフト部頂部Gこ使用した場
合についての精鉱バーナーの性能を評価する方法につい
て説明する。
Example 1 The improved concentrate burner shown in Fig. 3 (a), using 4 <- burners at the top of the shaft, and the conventional concentrate burner with 31 shafts shown in Fig. 3 (b) A method for evaluating the performance of a concentrate burner when using the top part G will be explained.

第3図G)に示す従来型精鉱バーナーは精鉱ツク−す一
本体21の下部にベンチュリー状絞り部22を有し、そ
の下方にはすそ拡がりになったノく−ナーコーン23が
形成されている。精鉱ノく一ナ一本体21の中央に管状
の精鉱シュート24が下端をベンチュリー状絞り部22
よりや一下方に突出するように垂設され、精鉱シュート
24・の中心企貫通して重油バーナー25が設けられ、
重油ノく一ナー25の下端の開口はバーナーコーン23
の出口付近に位置している。重油バーナー25の精鉱シ
ュート24の下端の出口より下方のバーナーコーン23
の部分の外周には落下する精鉱を分散する分散コーン2
6が設けられている。送風管27を通って精鉱バーナ一
本体21内に供給される反応用空気が精鉱シュート24
のベンチュリー状絞り部22から精鉱シュート24を通
って落下する精鉱に吹込まれるように構成されている。
The conventional concentrate burner shown in FIG. 3G) has a venturi-shaped constriction part 22 at the bottom of the concentrate scoop main body 21, and a constrictor cone 23 with a widened base is formed below the constriction part 22. ing. A tubular concentrate chute 24 is located in the center of the concentrate chute 21 and its lower end is connected to a venturi-shaped constriction part 22.
A heavy oil burner 25 is installed vertically so as to protrude further downward, and passes through the center of the concentrate chute 24.
The opening at the lower end of the heavy oil burner 25 is the burner cone 23
It is located near the exit. Burner cone 23 below the outlet at the lower end of concentrate chute 24 of heavy oil burner 25
There is a dispersion cone 2 on the outer periphery of the part that disperses the falling concentrate.
6 is provided. Reaction air supplied into the concentrate burner main body 21 through the blast pipe 27 flows through the concentrate chute 24.
It is configured to be blown into the concentrate falling through the concentrate chute 24 from the venturi-shaped throttle part 22 of the block.

第3図(a)に示す改良型精鉱バーナーは、第1図ら)
の従来型精鉱バーナーの精鉱シュー) 24の内側の重
油バーナー25を囲んで酸素吹込管28を設けてあり、
酸素吹込管28の出口部を精鉱シュート24の中央より
下端寄りに設け、その中央部に開口面積調整スペーサー
29を設けて開口面積をせばめ、開口部は酸素吹込管2
8の軸方向に対し45゜に傾斜した10枚の案内羽根3
0を設けである。重油バーナー25の下端外周に取付け
た分散コーン26の下端面は精鉱シュート24の下端3
2と実質上同一高さの平面となっている。精鉱分散コー
ン26の外周の円錐面の傾斜は、精鉱シュート24の下
端32内側とバーナーコーン23の下端内側とを結ぶ線
と平行になっている。精鉱シュート2Φの下端外周には
流速調節コーン33が吊りロッド34により精鉱バーナ
一本体21の上面より上下に位置を調節できるように止
め金具35で係止されて吊り下げられている。流速調節
コーン33の下半外面は、精鉱バーナ一本体21の内面
と平行に形成されている。そして高濃度酸素の一部又は
全部を酸素吹込管28を通し精鉱シュート2Φ内に旋回
流として吹込み、精鉱シュート2Φの下端32からベン
チュリー状絞り部22に供給する気体流速を80〜24
0 m/secとしたものである。
The improved concentrate burner shown in Fig. 3(a) is shown in Fig. 1 et al.)
An oxygen blowing pipe 28 is provided surrounding the heavy oil burner 25 inside the conventional concentrate burner (concentrate shoe) 24,
The outlet part of the oxygen blowing pipe 28 is provided closer to the lower end than the center of the concentrate chute 24, and an opening area adjustment spacer 29 is provided in the center to narrow the opening area, and the opening part is set closer to the lower end than the center of the concentrate chute 24.
10 guide vanes 3 inclined at 45° with respect to the axial direction of 8
0 is set. The lower end surface of the dispersion cone 26 attached to the outer periphery of the lower end of the heavy oil burner 25 is connected to the lower end 3 of the concentrate chute 24.
It is a plane with substantially the same height as 2. The slope of the conical surface on the outer periphery of the concentrate dispersion cone 26 is parallel to a line connecting the inside of the lower end 32 of the concentrate chute 24 and the inside of the lower end of the burner cone 23 . A flow rate adjusting cone 33 is suspended from the outer periphery of the lower end of the concentrate chute 2Φ by a hanging rod 34 and is suspended by a stopper 35 so that its position can be adjusted up and down from the upper surface of the concentrate burner body 21. The outer surface of the lower half of the flow rate adjusting cone 33 is formed parallel to the inner surface of the concentrate burner body 21. Then, part or all of the high concentration oxygen is blown into the concentrate chute 2Φ through the oxygen blowing pipe 28 as a swirling flow, and the gas flow rate is set to 80 to 24
0 m/sec.

両精鉱バーナーを使用した操業は夫々約1ケ月継続して
行ない、その期間の操業結果の平均値を示した。
The operation using both concentrate burners was continued for about one month, and the average value of the operation results during that period is shown.

一方精鉱バーナーの評価は夫々の操業の安定していると
きのごく短時間に求めた結果であるが、シャフト部lの
酸素分圧はシャフト部1内頂部から、暖間までの高さ8
mのうち頂部から5.0m下った点で測定したものであ
り、またセトラー部6−の酸素分圧として1ま、シャフ
ト部1直下の皺抜ロアから抜取った鼓の抜き始めから1
0分後に測定した値を用いてηの値を求めた。
On the other hand, the evaluation of concentrate burners is the result obtained in a very short period of time when the respective operations are stable, but the oxygen partial pressure in the shaft part 1 is at a height of 8 from the top of the shaft part 1 to the warm temperature.
It is measured at a point 5.0 m below the top of m, and the oxygen partial pressure in the settler section 6- is 1, and it is 1 from the start of removing the drum taken out from the wrinkle removing lower directly below the shaft section 1.
The value of η was determined using the value measured after 0 minutes.

これらの結果を第2表に示す。These results are shown in Table 2.

第  2  表 上表の結果から改良型バーナーの方が従来型バーナーに
比して優れており、ηによって精鉱バーナーの性能を定
量評価できたことが判る。
From the results shown in Table 2, it can be seen that the improved burner is superior to the conventional burner, and that the performance of the concentrate burner can be quantitatively evaluated using η.

実施例2 第3図(a)に示す改良型精鉱バーナーを使用し、精鉱
シュート24より高濃度酸素を吹込んで全送風中の酸素
濃度を27%で操業していた。このときの精鉱シュート
出口周囲のベンチュリー状絞り部22に供給する空気の
流速は110m/sであった。
Example 2 The improved concentrate burner shown in FIG. 3(a) was used, and high concentration oxygen was blown from the concentrate chute 24 to operate at a total oxygen concentration of 27%. At this time, the flow velocity of the air supplied to the venturi-shaped constriction section 22 around the outlet of the concentrate chute was 110 m/s.

また精鉱バーナーの性能評価値ηは実施例1と同様に測
定したところ97%であった。
Further, the performance evaluation value η of the concentrate burner was measured in the same manner as in Example 1 and was 97%.

次いで精鉱シュート24よりの酸素供給量を増して全送
風中の酸素濃度を38%にしたところ精鉱シュート出口
周囲のベンチュリー状絞り部22に供給する空気の流速
は61 m/sとなった。このときの精鉱バーナーの性
能評価値ηは94%に低下した。そこで精鉱シュート外
側下部に設けられた流速調節コーン33の位置を若干下
げて精鉱シュート出口周囲のベンチュリー状絞り部22
に供給する空気の流速を110 m/sになるようにし
たところ、再び測定したηの値は97%と良好になった
Next, the amount of oxygen supplied from the concentrate chute 24 was increased to bring the oxygen concentration in the total blast to 38%, and the flow velocity of the air supplied to the venturi-shaped constriction section 22 around the concentrate chute outlet was 61 m/s. . At this time, the performance evaluation value η of the concentrate burner decreased to 94%. Therefore, the position of the flow rate regulating cone 33 provided at the lower part of the outside of the concentrate chute is lowered slightly to increase the venturi-shaped constriction part 22 around the concentrate chute outlet.
When the flow velocity of the air supplied to the tube was set to 110 m/s, the value of η measured again was as good as 97%.

これらの結果を第3表に示す。These results are shown in Table 3.

第  3  表 〔発明の効果〕 以上の説明から明らかなように本発明によれば自溶製錬
用精鉱バーナーの性能が定量的に、短時間で且つ経済的
に評価できるので従来使用の精鉱バーナーに代えて新た
に設定した精鉱バーナーに取替えた場合、そのバーナア
が性能的に優れているか否かが簡単に評価でき、あるい
はその評価結果に基すいて富化酸素の富化方法や、精鉱
シュート出口周囲のベンチュリ一部に供給する空気の流
速を一定値以上に保つような操業条件の変更を行なって
精鉱バーナー性能を高水準に保つようにすることが可能
であり、また充分性能の優れた精鉱バーナーであればシ
ャフト内の測定点の位置をシャフト出口に近い高さより
も更に上の位置で測定した値をη評価の計算式に適用し
て尚且つ97%以上の数値が得られればシャフト内での
冶金反応はそれ迄で実質上終了していることになり、シ
ャフト高さが短かく、エネルギー損失の少ない自溶炉の
設計に資することができる利点もある。
Table 3 [Effects of the Invention] As is clear from the above explanation, according to the present invention, the performance of a concentrate burner for self-smelting can be evaluated quantitatively, quickly and economically, which makes it possible to evaluate the performance of a concentrate burner for self-smelting in a short time and economically. When replacing an ore burner with a newly set concentrate burner, it is possible to easily evaluate whether the burner has superior performance or not, and based on the evaluation results, it is possible to determine the enrichment method for enriched oxygen. It is possible to maintain concentrate burner performance at a high level by changing operating conditions such as maintaining the flow rate of air supplied to a part of the venturi around the outlet of the concentrate chute above a certain value, and If the concentrate burner has sufficient performance, the value measured at the position of the measurement point in the shaft at a position higher than the height near the shaft outlet can be applied to the calculation formula for η evaluation, and the value of 97% or more can be obtained. If a numerical value is obtained, it means that the metallurgical reaction within the shaft has essentially finished by then, which has the advantage of contributing to the design of a flash furnace with a short shaft height and low energy loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、自溶炉の酸素分圧の測定位置とその測定位置
で測定した酸素分圧をシャフト部入口からの距離に対応
して示した図、第2図はセトラー部の深さ方向酸素分圧
の変化を示した図、第3図(a)は本発明実施例に用い
た改良型精鉱バーナーの断面図、第3図(b)は本発明
実施例に用いた従来型精鉱バーナーの断面図である。 1・・シャフト部、2.3.4.5.15・・測定孔、
6・・セトラー部、−7,8,9,10X11.12−
fillip口、13.14・・媛出口、16・・暖、
17・・鼓、18・・シャフト部直下のセトラー部、2
】・・精鉱バーナ一本体、22・・ベンチュリー状絞り
部、23・・バーナーコーン、 24・・精鉱シュート、25・・ff1Mバーナー、2
6・・分散コーン、27・・送風管、28・・酸素吹込
管、29・・開口面積調整スペーサー、30・・案内羽
根、31・・下端面、32・・下端、33・・流速調節
コーン、3÷・・吊りロンド、35・・止め金具。 出願人  住友金属鉱山株式会社 1″ 第1図 □シャフト部入口h゛らの距駈 第3図 (α) 31下端面 第3図 (b)
Figure 1 shows the measurement position of the oxygen partial pressure in the flash furnace and the oxygen partial pressure measured at that measurement position in relation to the distance from the shaft entrance, and Figure 2 shows the depth direction of the settler part. Figure 3 (a) is a cross-sectional view of the improved concentrate burner used in the embodiment of the present invention, and Figure 3 (b) is a diagram showing changes in oxygen partial pressure. It is a sectional view of an ore burner. 1...Shaft part, 2.3.4.5.15...Measurement hole,
6...Settler part, -7,8,9,10X11.12-
fillip mouth, 13.14...Hime exit, 16...warm,
17... drum, 18... settler part directly below the shaft part, 2
]... Concentrate burner body, 22... Venturi-shaped throttle part, 23... Burner cone, 24... Concentrate chute, 25... ff1M burner, 2
6...Dispersion cone, 27...Blow pipe, 28...Oxygen blowing pipe, 29...Opening area adjustment spacer, 30...Guide vane, 31...Lower end surface, 32...Lower end, 33...Flow rate adjustment cone , 3÷...hanging rondo, 35...stopping metal fitting. Applicant: Sumitomo Metal Mining Co., Ltd. 1'' Fig. 1 □ Shaft entrance h゛ et al. distance Fig. 3 (α) 31 Lower end surface Fig. 3 (b)

Claims (1)

【特許請求の範囲】[Claims] (1)酸素濃度電池を内蔵した酸素プローブを用いて自
溶炉内のシヤフト部下部の空間を落下する溶融物液滴中
の酸素分圧及びセトラー部のシヤフト部直下のマット抜
口から抜取つたマット中の酸素分圧を測定し、これらの
値を一定温度における酸素分圧に標準化した後、これら
二つの標準化酸素分圧の対数値の比を求め、これを精鉱
バーナーの評価値とすることを特徴とする自溶製錬炉用
精鋼バーナーの性能評価方法。
(1) Using an oxygen probe with a built-in oxygen concentration battery, we measured the partial pressure of oxygen in the melt droplets falling through the space below the shaft in the flash furnace and extracted them from the mat outlet directly below the shaft in the settler part. After measuring the oxygen partial pressure in the matte and standardizing these values to the oxygen partial pressure at a constant temperature, find the ratio of the logarithm values of these two standardized oxygen partial pressures and use this as the evaluation value of the concentrate burner. A method for evaluating the performance of a refined steel burner for a flash smelting furnace.
JP59242989A 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace Granted JPS61124538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242989A JPS61124538A (en) 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242989A JPS61124538A (en) 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace

Publications (2)

Publication Number Publication Date
JPS61124538A true JPS61124538A (en) 1986-06-12
JPH0377858B2 JPH0377858B2 (en) 1991-12-11

Family

ID=17097239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242989A Granted JPS61124538A (en) 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace

Country Status (1)

Country Link
JP (1) JPS61124538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142446U (en) * 1988-03-23 1989-09-29
JPH02153030A (en) * 1988-12-02 1990-06-12 Sumitomo Metal Mining Co Ltd Flash smelting and refining furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102312163B1 (en) 2020-12-24 2021-10-14 쿠팡 주식회사 Method for providing information related to item and electronic apparatus using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142446U (en) * 1988-03-23 1989-09-29
JPH0339483Y2 (en) * 1988-03-23 1991-08-20
JPH02153030A (en) * 1988-12-02 1990-06-12 Sumitomo Metal Mining Co Ltd Flash smelting and refining furnace

Also Published As

Publication number Publication date
JPH0377858B2 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
CN102288740B (en) Measuring probes for measuring and sampling with a metal melt
US7462218B2 (en) Aluminum melting method using analysis of fumes coming from the furnace
CN111443184B (en) Test device and method for simulating iron ore state under blast furnace ironmaking condition
JPS61124538A (en) Method for evaluating performance of concentration burner for flash smelting furnace
US3463631A (en) Method and arrangement for determining the oxidation reactions during refining of metals
WO2015175785A1 (en) Furnace control for manufacturing steel using slag height measurement and off-gas analysis systems
Taskinen et al. Oxygen pressure in the Outokumpu flash smelting furnace—Part 1: Copper flash smelting settler
US3565606A (en) Method for controlling carbon removal in a basic oxygen furnace
Kyllo et al. A mathematical model of the nickel converter: Part II. Application and analysis of converter operation
CN106244827A (en) The smelting endpoint of a kind of smelting titanium slag with electric stove judges system and method
US3540879A (en) Method for controlling phosphorus removal in a basic oxygen furnace
JP2003160821A (en) Method and instrument for determining clearance in hot section
KR20210022380A (en) Method and system for generating blast furnace operating prediction model according to hydrogen-containing gas injection
JP7111278B1 (en) METHOD AND DEVICE FOR DETECTING RESIDUAL MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
WO2022168556A1 (en) Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method
EP4269626A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
JPH01195217A (en) Operation of melting and reducing furnace
JPH0625368B2 (en) Blast furnace operation method
JPS6335716A (en) Method and instrument for measuring secondary combustion rate in smelting reduction
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium
US3610599A (en) System for controlling phosphorus removal in a basic oxygen furnace
US675215A (en) Apparatus for the manufacture of steel.
JPS60103107A (en) Operating method of refining furnace in steel making
JPS6035409B2 (en) Method for measuring properties of molten slag in converter
Garrido et al. Research and Technology Department Canadian Liquid Air Ltd

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term