JPH0377858B2 - - Google Patents

Info

Publication number
JPH0377858B2
JPH0377858B2 JP59242989A JP24298984A JPH0377858B2 JP H0377858 B2 JPH0377858 B2 JP H0377858B2 JP 59242989 A JP59242989 A JP 59242989A JP 24298984 A JP24298984 A JP 24298984A JP H0377858 B2 JPH0377858 B2 JP H0377858B2
Authority
JP
Japan
Prior art keywords
concentrate
partial pressure
oxygen
shaft
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242989A
Other languages
Japanese (ja)
Other versions
JPS61124538A (en
Inventor
Nobumasa Iemori
Yukio Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP59242989A priority Critical patent/JPS61124538A/en
Publication of JPS61124538A publication Critical patent/JPS61124538A/en
Publication of JPH0377858B2 publication Critical patent/JPH0377858B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は自溶製錬炉において、精鉱と反応用空
気又は酸素富化空気(以下反応用気体と記す)を
吹き込み溶錬反応をさせる精鉱バーナーの性能の
評価方法に関する。 〔従来の技術〕 自溶炉においては乾燥した精鉱、例えば銅精鉱
を反応用気体の共にリアクシヨンシヤフトの上部
に設けられた精鉱バーナーから吹き込み、瞬間的
に精鉱を酸化熔融し銅等の有価金属を〓として濃
縮する。この場合、精鉱と反応用気体とが均一に
混合し、リアクシヨンシヤフト中を落下する極め
て短時間のうちに均一な酸化反応が進行するよう
にすることが重要である。混合状態が悪く局部的
に未反応未溶解物が生成すると、これがリアクシ
ヨンシヤフト下部のセトラーに堆積して〓の生成
を妨げたり、〓温度、〓品位の大きな変動を生じ
たりして操炉上の困難を招くのみならず、反応が
集中して起る部分では局部的加熱が起りリアクシ
ヨンシヤフトの煉瓦を損傷することになり、また
精鉱の酸化反応熱が充分利用できないため補助燃
料の使用量が増加する結果を招く。 こゝで精鉱の反応用気体との混合の状態は自溶
炉に設けられた精鉱バーナーの構造ならびにその
使用状態即ち精鉱バーナーの性能により大きく支
配される。 従来、精鉱バーナーの性能を評価するには自溶
炉の装入物及び産出物の酸素の物質収支を調べる
ことにより反応用気体中の酸素の何%が精鉱の酸
化反応に寄与したかを示す酸素効率を求め、この
値によつて行なつてきた。しかしながらこの方法
では装入物及び生成物に含まれる全ての酸化物を
定量評価しなければならず、分析技術、測定誤
差、解析に要する時間及び費用の点などで多くの
問題があり、且つ正確を期することは困難であつ
た。また煙灰発生率、〓温度と〓温度の差等の実
操業データーにより精鉱バーナーの性能を評価す
る方法もあるが、短期間の操業データーでは正し
い結論を得ることは難かしく、原料精鉱の変動そ
の他操業条件を一定に維持することは事実上不可
能であつて、バーナー性能の良否の絶対的定量評
価ができない問題点があつた。 精鉱の装入量が少ない軽負荷操業で精鉱バーナ
ーの性能に余裕があるときには、シヤフト部内の
高さ方向の温度分布を測定することによつて、シ
ヤフト部の反応に必要とする最低の高さを求める
ことによつて精鉱バーナーの性能を評価すること
も考えられるが、短期間で測定を終わることが難
かしく、またシヤフト内の冶金反応が高温酸化反
応であるため温度分布のみからシヤフトの必要高
さを求めることは非常に危険なことである。 〔発明が解決しようとする問題点〕 本発明は精鉱バーナーの性能及び配置高さを従
来のように長期間の操業結果を待たずに判定しう
る方法を供せんとするものである。 〔問題点を解決するための手段〕 発明者等は自溶炉内部の高温酸化冶金反応の進
行度を表わす指標として溶体中の酸素分圧を選
び、この酸素分圧を溶鋼中の酸素量の測定に近年
用いられるようになつた安定化ジルコニアを固体
電解質として用いた酸素濃淡電池を内蔵した酸素
プローブを用いて、シヤフト部及びセトラー部の
溶体中の酸素分圧を測定し、この値を一定温度に
おける酸素分圧に補正(以下この補正値を標準化
酸素分圧と云う)して、自溶炉内における標準化
酸素分圧の変化を詳細に検討したところ、シヤフ
ト部出口の標準化酸素分圧の対数値とセトラー部
の標準化酸素分圧の対数値との比を求めることに
よつて精鉱バーナーの性能を定量評価できること
を見出した。 しかしながらセトラー部の酸素分圧を測定する
ことは、後述するようにセトラー部天井より酸素
プロープを挿入する必要があり、測定が困難であ
ること、及びこの値をシヤフト部直下のマツト抜
口から抜取つたマツトの酸素分圧で代用できるこ
とから本発明を次のように構成した。 即ち、本発明は酸素濃淡電池を内蔵した酸素プ
ローブを用いて自溶炉内のシヤフト下部空間を落
下する溶融物液滴中の酸素分圧及びセトラー部の
シヤフト直下のマツト抜取つたマツト中の酸素分
圧を測定し、これらの値から標準化酸素分圧を求
め、シヤフト部の標準化酸素分圧の値とマツト中
の標準化酸素分圧値の対数値の比を求め、これを
精鉱バーナーの性能の評価値とするものである。 以下本発明を更に詳細に説明する。 (イ) 酸素分圧の測定方法 自溶炉内の製錬反応の条件下で実質上完全な
酸素イオン伝導を示す酸化物、例えば安定化ジ
ルコニアZrO2+MgOを固体電解質として用い
て酸素濃淡電池()を構成する。 Pt/Po2()/ZrO2+MgO/Po2()/Pt(1) この酸素濃淡電池1の起電力Eは次の(2)式で
表わすことができる。 E=RT/4FlnPo2()/Po2() (2) 但し R:ガス定数 T:絶対温度〓 F:フアラデー定数 Po2():参照電極の示す酸素分圧 Po2():測定電極の示す酸素分圧 こゝで参照電極としては一定温度において一
定の酸素分圧を示すものであれば特に限定され
るものではないが、銅製錬においては精度的に
Fe・FeOが優れている。 式(2)から明らかなように酸素濃淡電池1の起
電力Eと温度Tが測定できれば参照電極の示す
酸素分圧Po2()の値は既知 〔例えば参照電極がFe・FeOの場合は
RTlnPo2()=−526800+129.6T(J・mol-1
となる〕 であるため測定電極の示す酸素分圧Po2()
を求めることができる。 (ロ) 酸素分圧を標準化方法 酸素濃淡電池によつて測定される酸素分圧は
温度によつて変化するので自溶炉内の各測定場
所における酸素分圧によつて反応の進行度を推
定しようとしても、各測定場所における温度は
一般的に異なるため、得られた酸素分圧をある
一定の温度(銅製錬においては例えば1200℃、
1250℃など)における酸素分圧に標準化する必
要がある。この標準化方法としては反応系を構
成する化合物成分間に成立する酸化還元反応式
より評価するのが一般的であり、本発明におい
ては〓および〓の構成元素に多量の鉄を含むの
で次の反応式を考えるのが良い。 4FeO(l)+O2(g)=2Fe2O3(l) (3) (3)式の標準自由エネルギー変化△G°(T)は
FeO(l)とFe2O3(l)の活量αFeO、αFe2O3及び酸素分
圧PO2(T)を用いて次式のように表わすこと
ができる。 △G°(T)=−RTln(αFe2O32/(αFeO4・PO2
T)(5) 従つて測定温度T1における酸素分圧PO2(T1
を標準温度T2における酸素分圧PO2(T2)に標準
化するには、温度T1とT2との変化では活量
αFe2O3、αFeOが変化せず一定であると仮定すれば、
(5)式から次の(6)式が得られる。 lnPO2(T2)=1/RT2△G°(T2) −1/RT1△G°(T1)+lnPo2(T1)(6) 従つて測定温度T1、その温度における酸素
分圧が求められれば(3)式の反応自由エネルギー
△G°は既知であるから、これらの値を(6)式に
代入すると標準温度T2における酸素分圧Po2
(T2)を求めることができる。 〔測定実験例〕 本発明において自溶炉のシヤフト部およびセト
ラー部のどの点で酸素分圧を測定するのが良いか
を調査するためにシヤフト内及びセトラー部の各
所で酸素分圧の測定を試みた。第1図の炉縦断面
図及び平面図に酸素分圧の測定場所を示す。 自溶炉のシヤフト部1の側壁にその高さを変え
て上下4ケ所の測定孔2,3,4,5を開け、シ
ヤフト内高さ方向及び半径方向(シヤフト半径3
mの炉壁より夫々1m及び2m中心寄りの位置)
の標準化酸素分圧の変化を求めた。またセトラー
部6の酸素分圧としてはシヤフト部直下の〓抜口
7及びそれより下流側の〓抜口8〜12及び〓出
口13,14のうち1回の測定につき数個所を選
んで〓及び〓中の酸素分圧の水平方向の変化を求
めた他、セトラー中央部の天井に設けた測定孔1
5からセトラー内溶体中の垂直方向の標準化酸素
分圧の変化も調べた。 第1図にシヤフト部及び各マツトホールでの標
準化酸素分圧の値をシヤフト部入口からの距離に
対応して示し、第1表にはシヤフト内の測定位置
の差異による結果を示す。また第3図には測定孔
15で測定したセトラー部の溶体中の垂直方向の
標準化酸素分圧の値を示す。
[Industrial Application Field] The present invention is directed to evaluation of the performance of a concentrate burner in a flash smelting furnace, which performs a smelting reaction by blowing concentrate and reaction air or oxygen-enriched air (hereinafter referred to as reaction gas). Regarding the method. [Prior art] In a flash furnace, dry concentrate, such as copper concentrate, is blown together with a reaction gas from a concentrate burner installed at the top of a reaction shaft, and the concentrate is instantly oxidized and melted to form copper. Concentrate valuable metals such as 〓. In this case, it is important that the concentrate and the reaction gas are uniformly mixed so that a uniform oxidation reaction proceeds within a very short period of time as they fall through the reaction shaft. If the mixing conditions are poor and unreacted and undissolved materials are generated locally, this may accumulate in the settler at the bottom of the reaction shaft, preventing the formation of molten metal, or causing large fluctuations in temperature and quality, which may cause problems during reactor operation. Not only does this cause difficulties, but also local heating occurs in areas where the reaction is concentrated, damaging the bricks of the reaction shaft.Also, the heat of the oxidation reaction of the concentrate cannot be fully utilized, making it difficult to use auxiliary fuel. resulting in an increase in volume. Here, the state of mixing of the concentrate with the reaction gas is largely controlled by the structure of the concentrate burner provided in the flash furnace and its operating conditions, that is, the performance of the concentrate burner. Conventionally, to evaluate the performance of a concentrate burner, it was possible to determine what percentage of oxygen in the reaction gas contributed to the oxidation reaction of the concentrate by examining the mass balance of oxygen in the charge and output of the flash furnace. We have determined the oxygen efficiency that represents However, this method requires quantitative evaluation of all oxides contained in the feed and products, and there are many problems in terms of analysis technology, measurement errors, time and cost required for analysis, and it is not accurate. It was difficult to anticipate. There is also a method to evaluate the performance of concentrate burners using actual operational data such as smoke generation rate and difference between It is virtually impossible to maintain fluctuations and other operating conditions constant, and there is a problem in that absolute quantitative evaluation of burner performance cannot be performed. When there is a margin in the performance of the concentrate burner during light-load operation with a small amount of concentrate charged, the minimum temperature required for the reaction in the shaft can be determined by measuring the temperature distribution in the height direction within the shaft. It is possible to evaluate the performance of the concentrate burner by determining the height, but it is difficult to complete the measurement in a short period of time, and since the metallurgical reaction inside the shaft is a high-temperature oxidation reaction, it is possible to evaluate the performance of the concentrate burner by determining the height. Determining the required height of the shaft is extremely dangerous. [Problems to be Solved by the Invention] The present invention aims to provide a method by which the performance and arrangement height of a concentrate burner can be determined without waiting for long-term operation results as in the conventional method. [Means for solving the problem] The inventors selected the oxygen partial pressure in the solution as an index representing the progress of the high-temperature oxidation metallurgy reaction inside the flash furnace, and calculated this oxygen partial pressure as the amount of oxygen in the molten steel. Using an oxygen probe with a built-in oxygen concentration battery that uses stabilized zirconia as a solid electrolyte, which has come into use in recent years, the partial pressure of oxygen in the solution in the shaft and settler parts is measured, and this value is kept constant. After correcting the oxygen partial pressure at different temperatures (hereinafter this correction value will be referred to as the standardized oxygen partial pressure), we investigated in detail the changes in the standardized oxygen partial pressure in the flash furnace, and found that the standardized oxygen partial pressure at the shaft outlet was It was discovered that the performance of a concentrate burner can be quantitatively evaluated by determining the ratio of the logarithmic value to the logarithmic value of the standardized oxygen partial pressure in the settler section. However, measuring the oxygen partial pressure in the settler section requires inserting an oxygen probe from the ceiling of the settler section, as described later, making measurement difficult. Since the oxygen partial pressure of ivy can be used as a substitute, the present invention was constructed as follows. That is, the present invention uses an oxygen probe with a built-in oxygen concentration battery to measure the partial pressure of oxygen in the melt droplets falling in the space below the shaft in a flash furnace and the oxygen in the mats extracted from the mats directly below the shaft in the settler section. Measure the partial pressure, find the standardized oxygen partial pressure from these values, find the ratio of the logarithm of the standardized oxygen partial pressure value at the shaft and the standardized oxygen partial pressure value in the mat, and use this to determine the performance of the concentrate burner. This is the evaluation value. The present invention will be explained in more detail below. (a) Method for measuring oxygen partial pressure Oxygen concentration batteries ( ). Pt/Po 2 ()/ZrO 2 +MgO/Po 2 ()/Pt(1) The electromotive force E of this oxygen concentration battery 1 can be expressed by the following equation (2). E=RT/4FlnPo 2 ()/Po 2 () (2) where R: Gas constant T: Absolute temperature F: Faraday constant Po 2 (): Oxygen partial pressure indicated by the reference electrode Po 2 (): Measured electrode The reference electrode is not particularly limited as long as it exhibits a constant oxygen partial pressure at a constant temperature, but in copper smelting, the accuracy
Fe・FeO is excellent. As is clear from equation (2), if the electromotive force E and temperature T of the oxygen concentration battery 1 can be measured, the value of the oxygen partial pressure Po 2 () indicated by the reference electrode is known [For example, if the reference electrode is Fe/FeO,
RTlnPo 2 () = −526800 + 129.6T (J・mol -1 )
] Therefore, the oxygen partial pressure Po 2 () indicated by the measuring electrode is
can be found. (b) Method for standardizing oxygen partial pressure Since the oxygen partial pressure measured by an oxygen concentration battery changes depending on the temperature, the progress of the reaction can be estimated based on the oxygen partial pressure at each measurement location in the flash furnace. However, the temperature at each measurement location is generally different, so the obtained oxygen partial pressure is set at a certain temperature (for example, 1200℃ in copper smelting
It is necessary to standardize to the oxygen partial pressure at 1250℃, etc.). This standardization method is generally evaluated based on the redox reaction equation established between the compound components that make up the reaction system.In the present invention, since the constituent elements of 〓 and 〓 contain a large amount of iron, the following reaction It's good to think of a formula. 4FeO(l)+O 2 (g)=2Fe 2 O 3 (l) (3) The standard free energy change △G°(T) in equation (3) is
It can be expressed as follows using the activities α FeO and α Fe2O3 of FeO(l) and Fe 2 O 3 (l) and the oxygen partial pressure PO 2 (T). △G° (T) = −RTln (α Fe2O3 ) 2 / (α FeO ) 4・PO 2 (
T)(5) Therefore, the oxygen partial pressure PO 2 (T 1 ) at the measurement temperature T 1
To standardize to the oxygen partial pressure PO 2 (T 2 ) at the standard temperature T 2 , assuming that the activities α Fe2O3 and α FeO do not change and remain constant when the temperature changes between T 1 and T 2 ,
The following equation (6) is obtained from equation (5). lnPO 2 (T 2 ) = 1/RT 2 △G° (T 2 ) −1/RT 1 △G° (T 1 ) + lnPo 2 (T 1 ) (6) Therefore, the measurement temperature T 1 and the oxygen at that temperature If the partial pressure is found, the reaction free energy △G° in equation (3) is known, so by substituting these values into equation (6), the oxygen partial pressure Po 2 at standard temperature T 2
(T 2 ) can be obtained. [Example of measurement experiment] In order to investigate which points in the shaft section and settler section of a flash furnace are best to measure oxygen partial pressure, oxygen partial pressure was measured at various points in the shaft and settler section. I tried. The longitudinal cross-sectional view and plan view of the furnace in FIG. 1 show the locations where the oxygen partial pressure is measured. Four measurement holes 2, 3, 4, and 5 were opened at different heights in the side wall of the shaft part 1 of the flash furnace, and the measurement holes were measured in the shaft inner height direction and radial direction (shaft radius 3).
1m and 2m from the center of the furnace wall, respectively)
The change in the standardized oxygen partial pressure was determined. In addition, for the oxygen partial pressure in the settler section 6, several locations were selected for each measurement among the outlet 7 directly below the shaft section, the outlets 8 to 12 downstream from it, and the outlets 13 and 14. In addition to determining the horizontal change in the oxygen partial pressure inside the settler, we also measured the measurement hole 1 installed in the ceiling in the center of the settler.
The change in the normalized partial pressure of oxygen in the vertical direction in the solution in the settler from 5 was also investigated. FIG. 1 shows the values of the standardized oxygen partial pressure in the shaft part and each mat hole corresponding to the distance from the shaft part inlet, and Table 1 shows the results depending on the difference in the measurement position within the shaft. Further, FIG. 3 shows the normalized partial pressure of oxygen in the vertical direction in the solution in the settler section, which was measured through the measurement hole 15.

〔バーナー性能の評価〕[Evaluation of burner performance]

例えば第1図のシヤフト部の測定孔5から酸素
分圧を測定し、またシヤフト部直下の〓抜口7か
ら抜取つた〓の酸素分圧を測定して、夫々の標準
化酸素分圧をPo2(R/S)及びPo2(S/T)と
する。 こゝで銅製錬の通常の操作では精鉱バーナーか
ら供給される銅精鉱中には酸化物を含んだ繰辺ダ
スト、銅滓粉を含有しており、またシヤフトを落
下する溶融物液滴は下に行く程〓品位が上昇し、
且つ一般には〓品位が高いとPo2は高くなるので
シヤフト下部に行くほどPo2は高くなるべきだ
が、実際には溶融物液滴に含まれる〓中のFeSが
ダスト、銅滓中の高級酸化物を還元してシヤフト
の下部に行くに従つてPo2を低下させている。 このような場合精鉱バーナーの性能ηは次のよ
うにして求める。 η=100×logPo2(R/S)/logPo2(S/T)(
7) ηの値は0〜100の値を取り得るが精鉱バーナ
ーの性能はηの値が大きいほど良く、定量性を有
しており、換言すれば第1図のグラフで横軸のシ
ヤフト部上部からシヤフト部直下のセトラー部1
8まで標準化酸素分圧の傾斜が小さいほど性能が
良いことになる。 ηを求めるときのシヤフト部のPo2の値Po2
(R/S)はシヤフト部の下部であつて、セトラ
ー部天井煉瓦とのつなぎ目よりやゝ上部で測定す
ることが好ましく、またセトラー部のPo2の値
Po2(S/T)はセトラー部のどの〓の抜口の値
も使用できるが、シヤフト直下の〓抜口7の値が
好ましい。 このηの望ましい値は標準化酸素分圧をシヤフ
ト部下部及びシヤフト部直下の〓抜口で測定した
場合95以上である。 また絶対性については(7)式で自溶炉における製
錬反応の最終状態を示す熱力学的示強変数
logPo2(S/T)で標準化しているため、熱力学
上及び操業上の全ての変数について標準化されて
いると考えられる。 一方精鉱バーナーから供給される銅精鉱中に繰
返ダストや銅滓粉のような高級酸化物を含有しな
い場合にはPo2の値はシヤフトの下部に行くほど
上昇するので、このようなときにはηは η=100×logPo2(S/T)/logPo2(R/S)(
8) として求める。 〔実施例〕 以下実施例について説明する。 実施例 1 第3図aに示す改良型精鉱バーナーを4本シヤ
フト部頂部に使用した場合と、第3図bに示す従
来型精鉱バーナーを4本シヤフト部頂部に使用し
た場合についての精鉱バーナーの性能を評価する
方法について使用する。 第3図bに示す従来型精鉱バーナーは精鉱バー
ナー本体21の下部にベンチユリー状絞り部22
を有し、その下方にはすそ拡がりになつたバーナ
ーコーン23が形成されている。精鉱バーナー本
体21の中央に管状の精鉱シユート24が下端を
ベンチユリー状絞り部22よりやゝ下方に突出す
るように垂設され、精鉱シユート24の中心を貫
通して重油バーナー25が設けられ、重油バーナ
ー25の下端の開口はバーナーコーン23の出口
付近に位置している。重油バーナー25の精鉱シ
ユート24の下端の出口より下方のバーナーコー
ン23の部分の外周には落下する精鉱を分散する
分散コーン26が設けられている。送風管27を
通つて精鉱バーナー本体21内に供給される反応
用空気が精鉱シユート24のベンチユリー状絞り
部22から精鉱シユート24を通つて落下する精
鉱に吹込まれるように構成されている。 第3図aに示す改良型精鉱バーナーは、第1図
bの従来型精鉱バーナーの精鉱シユート24の内
側の重油バーナー25を囲んで酸素吹込管28を
設けてあり、酸素吹込管28の出口部を精鉱シユ
ート24の中央より下端寄りに設け、その中央部
に開口面積調整スペーサー29を設けて開口面積
をせばめ、開口部は酸素吹込管28の軸方向に対
し45°に傾斜した10枚の案内羽根30を設けてあ
る。重油バーナー25の下端外周に取付けた分散
コーン26の下端面は精鉱シユート24の下端3
2と実質上同一高さの平面となつている。精鉱分
散コーン26の外周の円錐面の傾斜は、精鉱シユ
ート24の下端32内側とバーナーコーン23の
下端内側とを結ぶ線と平行になつている。精鉱シ
ユート24の下端外周には流速調節コーン33が
吊りロツド34により精鉱バーナー本体21の上
面より下下に位置を調節できるように止め金具3
5で係止されて吊り下げられている。流速調節コ
ーン33の下半外面は、精鉱バーナー本体21の
内面と平行に形成されている。そして高濃度酸素
の一部又は全部を酸素吹込管28を通し精鉱シユ
ート24内に旋回流として吹込み、精鉱シユート
24の下端32からベンチユリー状絞り部22に
供給する気体流速を80〜240m/secとしたもので
ある。 両精鉱バーナーを使用した操業は夫々約1ケ月
継続して行ない、その期間の操業結果の平均値を
示した。 一方精鉱バーナーの評価は夫々の操業の安定し
ているときのごく短期間に求めた結果であるが、
シヤフト部1の酸素分圧はシヤフト部1内頂部か
ら、〓面までの高さ8mのうち頂部から5.0m下
つた点で測定したものであり、またセトラー部6
の酸素分圧としては、シヤフト部1直下の〓抜口
7から抜取つた〓の抜き始めから10分後に測定し
た値を用いてηの値を求めた。 これらの結果を第2表に示す。
For example, by measuring the oxygen partial pressure from the measurement hole 5 in the shaft part in Fig. 1, and by measuring the oxygen partial pressure taken out from the outlet 7 directly below the shaft part, the respective standardized oxygen partial pressures can be calculated as Po 2 (R/S) and Po 2 (S/T). In the normal operation of copper smelting, the copper concentrate supplied from the concentrate burner contains oxide-containing mill dust and copper slag powder, and melt droplets falling down the shaft. The lower you go, the higher the quality becomes.
In general, the higher the quality, the higher the Po 2 , so the lower the shaft, the higher the Po 2 should be, but in reality, the FeS contained in the melt droplets is dust, and the higher oxidation in the copper slag. Po 2 decreases as you move toward the bottom of the shaft. In such a case, the performance η of the concentrate burner is determined as follows. η=100×logPo 2 (R/S)/logPo 2 (S/T)(
7) The value of η can take a value from 0 to 100, but the performance of the concentrate burner is better as the value of η is larger, and it has quantitative properties.In other words, the shaft on the horizontal axis in the graph of Figure 1 Settler section 1 from the top of the section to just below the shaft section
The smaller the slope of the standardized oxygen partial pressure up to 8, the better the performance. Po 2 value of the shaft part when calculating η Po 2
(R/S) is preferably measured at the bottom of the shaft section, slightly above the joint between the settler section and the ceiling brick, and the Po 2 value of the settler section.
For Po 2 (S/T), the value of any outlet in the settler section can be used, but the value of outlet 7 directly below the shaft is preferable. A desirable value for η is 95 or more when the standardized oxygen partial pressure is measured at the bottom of the shaft and at the outlet directly below the shaft. Regarding absoluteness, Equation (7) is a thermodynamic intensive variable that indicates the final state of the smelting reaction in the flash furnace.
Since it is standardized by logPo 2 (S/T), it is considered that all thermodynamic and operational variables are standardized. On the other hand, if the copper concentrate supplied from the concentrate burner does not contain high-grade oxides such as repetitive dust or copper slag powder, the Po 2 value will increase toward the bottom of the shaft. Sometimes η is η=100×logPo 2 (S/T)/logPo 2 (R/S)(
8) Find as. [Example] Examples will be described below. Example 1 Concentration of the case where four improved concentrate burners shown in Fig. 3a are used at the top of the shaft part and the case where four conventional concentrate burners shown in Fig. 3b are used at the top of the shaft part. Used for methods to evaluate the performance of ore burners. The conventional concentrate burner shown in FIG.
A burner cone 23 with a widened base is formed below it. A tubular concentrate chute 24 is vertically disposed in the center of the concentrate burner body 21 with its lower end protruding slightly below the ventilate-shaped constriction part 22, and a heavy oil burner 25 is provided passing through the center of the concentrate chute 24. The opening at the lower end of the heavy oil burner 25 is located near the outlet of the burner cone 23. A dispersion cone 26 for dispersing falling concentrate is provided on the outer periphery of a portion of the burner cone 23 below the outlet at the lower end of the concentrate chute 24 of the heavy oil burner 25. The reactor air supplied into the concentrate burner body 21 through the blast pipe 27 is blown from the ventilate-like constriction 22 of the concentrate chute 24 into the concentrate falling through the concentrate chute 24. ing. The improved concentrate burner shown in FIG. 3a is provided with an oxygen blowing pipe 28 surrounding the heavy oil burner 25 inside the concentrate chute 24 of the conventional concentrate burner shown in FIG. 1b. An outlet portion of the concentrate chute 24 is provided closer to the lower end than the center thereof, and an opening area adjusting spacer 29 is provided in the center portion to narrow the opening area, and the opening portion is inclined at 45° with respect to the axial direction of the oxygen blowing pipe 28. Ten guide vanes 30 are provided. The lower end surface of the dispersion cone 26 attached to the outer periphery of the lower end of the heavy oil burner 25 is connected to the lower end 3 of the concentrate chute 24.
It is a flat surface with substantially the same height as 2. The slope of the conical surface on the outer periphery of the concentrate dispersion cone 26 is parallel to a line connecting the inside of the lower end 32 of the concentrate chute 24 and the inside of the lower end of the burner cone 23 . A flow rate adjusting cone 33 is attached to the outer periphery of the lower end of the concentrate chute 24 with a stopper 3 so that the position can be adjusted below and below the upper surface of the concentrate burner main body 21 by means of a hanging rod 34.
5 and is suspended. The outer surface of the lower half of the flow rate adjusting cone 33 is formed parallel to the inner surface of the concentrate burner body 21 . Then, part or all of the high concentration oxygen is blown into the concentrate chute 24 as a swirling flow through the oxygen blowing pipe 28, and the gas flow rate is set at 80 to 240 m to be supplied from the lower end 32 of the concentrate chute 24 to the ventilated constriction part 22. /sec. The operation using both concentrate burners was continued for about one month, and the average value of the operation results during that period is shown. On the other hand, the evaluation of concentrate burners is the result obtained in a very short period of time when the respective operations are stable.
The oxygen partial pressure in the shaft part 1 was measured at a point 5.0 m below the top within a height of 8 m from the top of the shaft part 1 to the bottom surface.
The value of η was determined using the value of the oxygen partial pressure measured 10 minutes after the start of extraction of the water from the water outlet 7 directly below the shaft portion 1. These results are shown in Table 2.

【表】 上表の結果から改良型バーナーの方が従来型バ
ーナーに比して優れており、ηによつて精鉱バー
ナーの性能を定量評価できたことが判る。 実施例 2 第3図aに示す改良型精鉱バーナーを使用し、
精鉱シユート24より高濃度酸素を吹込んで全送
風中の酸素濃度を27%で操業していた。このとき
の精鉱シユート出口周囲のベンチユリー状絞り部
22に供給する空気の流速は110m/sであつた。
また精鉱バーナーの性能評価値ηは実施例1と同
様に測定したところ97%であつた。 次いで精鉱シユート24よりの酸素供給量を増
して全送風中の酸素濃度を38%にしたところ精鉱
シユート出口周囲のベンチユリー状絞り部22に
供給する空気の流速は61m/sとなつた。このと
きの精鉱バーナーの性能評価値ηは94%に低下し
た。そこで精鉱シユート外側下部に設けられた流
速調節コーン33の位置を若干下げて精鉱シユー
ト出口周囲のベンチユリー状絞り部22に供給す
る空気の流速を100m/sになるようにしたとこ
ろ、再び測定したηの値は97%と良好になつた。 これらの結果を第3表に示す。
[Table] From the results in the table above, it can be seen that the improved burner is superior to the conventional burner, and that the performance of the concentrate burner can be quantitatively evaluated using η. Example 2 Using the improved concentrate burner shown in Figure 3a,
Highly concentrated oxygen was blown into the concentrate chute 24, and the plant was operated at a total oxygen concentration of 27%. At this time, the flow velocity of the air supplied to the ventilated constriction section 22 around the outlet of the concentrate chute was 110 m/s.
The performance evaluation value η of the concentrate burner was measured in the same manner as in Example 1 and was 97%. Next, the amount of oxygen supplied from the concentrate chute 24 was increased to bring the oxygen concentration in the total blast to 38%, and the flow velocity of the air supplied to the ventilated constriction section 22 around the outlet of the concentrate chute became 61 m/s. At this time, the performance evaluation value η of the concentrate burner decreased to 94%. Therefore, the position of the flow velocity adjustment cone 33 provided at the outer lower part of the concentrate chute was lowered slightly so that the flow velocity of the air supplied to the ventilated constriction part 22 around the outlet of the concentrate chute was 100 m/s, and the measurements were taken again. The value of η was as good as 97%. These results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

上記の説明から明らかなように本発明によれば
自溶製錬用精鉱バーナーの性能が定量的に、短時
間で且つ経済的に評価できるので従来使用の精鉱
バーナーに代えて新たに測定した精鉱バーナーに
取替えた場合、そのバーナーが性能的に優れてい
るか否かがか簡単に評価でき、あるいはその評価
結果に基ずいて富化酸素の富化方法や、精鉱シユ
ート出口周囲のベンチユリー部に供給する空気の
流速を一定値以上に保つような操業条件を変更を
行なつて精鉱バーナー性能を高水準に保つように
することが可能であり、また充分性能の優れた精
鉱バーナーであればシヤフト内の測定点の位置を
シヤフト出口に近い高さよりも更に上の位置で測
定した値をη評価の計算式に適用して尚且つ97%
以上の数値が得られればシヤフト内での冶金反応
はそれ迄で実質上終了していることになり、シヤ
フト高さが短かく、エネルギー損失の少ない自溶
炉の設計に資することができる利点もある。
As is clear from the above description, according to the present invention, the performance of a concentrate burner for self-smelting can be evaluated quantitatively, quickly, and economically, so new measurements can be carried out in place of conventionally used concentrate burners. If you replace the burner with a concentrated concentrate burner, you can easily evaluate whether the burner has superior performance or not, and based on the evaluation results, you can decide on the enrichment method for enriched oxygen or the area around the concentrate chute outlet. It is possible to maintain concentrate burner performance at a high level by changing operating conditions such as keeping the flow rate of air supplied to the ventilate section above a certain value, and it is possible to maintain concentrate burner performance at a high level. If it is a burner, the value measured at the position of the measurement point inside the shaft at a position higher than the height near the shaft exit is applied to the calculation formula for η evaluation, and the value is 97%.
If the above values are obtained, the metallurgical reaction within the shaft has essentially finished, which has the advantage of contributing to the design of a flash furnace with a short shaft height and low energy loss. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、自溶炉の酸素分圧の測定位置とその
測定位置で測定した酸素分圧をシヤフト部入口か
らの距離に対応して示した図、第2図はセトラー
部の深さ方向酸素分圧の変化を示した図、第3図
aは本発明実施例に用いた改良型精鉱バーナーの
断面図、第3図bは本発明実施例に用いた従来型
精鉱バーナーの断面図である。 1……シヤフト部、2,3,4,5,15……
測定孔、6……セトラー部、7,8,9,10,
11,12……〓抜口、13,14……〓出口、
16……〓、17……〓、18……シヤフト部直
下のセトラー部、21……精鉱バーナー本体、2
2……ベンチユリー状絞り部、23……バーナー
コーン、24……精鉱シユート、25……重油バ
ーナー、26……分散コーン、27……送風管、
28……酸素吹込管、29……開口面積調整スペ
ーサー、30……案内羽根、31……下端面、3
2……下端、33……流速調節コーン、34……
吊りロツド、35……止め金具。
Figure 1 shows the measurement position of the oxygen partial pressure in the flash furnace and the oxygen partial pressure measured at that measurement position in relation to the distance from the shaft entrance, and Figure 2 shows the depth direction of the settler part. Figure 3a is a cross-sectional view of an improved concentrate burner used in an example of the present invention, and Figure 3b is a cross-sectional view of a conventional concentrate burner used in an example of the present invention. It is a diagram. 1...Shaft part, 2, 3, 4, 5, 15...
Measurement hole, 6...Settler part, 7, 8, 9, 10,
11,12...=exit, 13,14...=exit,
16...〓, 17...〓, 18...Settler section directly below the shaft section, 21...Concentrate burner body, 2
2... Bentuary-shaped constriction part, 23... Burner cone, 24... Concentrate chute, 25... Heavy oil burner, 26... Dispersion cone, 27... Blower pipe,
28... Oxygen blowing pipe, 29... Opening area adjustment spacer, 30... Guide vane, 31... Lower end surface, 3
2...Lower end, 33...Flow rate adjustment cone, 34...
Hanging rod, 35...stop metal fitting.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素濃度電池を内蔵した酸素プローブを用い
て自溶炉内のシヤフト部下部の空間を落下する溶
融物液滴中の酸素分圧及びセトラー部のシヤフト
部直下のマツト抜口から抜取つたマツト中の酸素
分圧を測定し、これらの値を一定温度における酸
素分圧に標準化した後、これら二つの標準化酸素
分圧の対数値の比を求め、これを精鉱バーナーの
評価値とすることを特徴とする自溶製錬炉用精鉱
バーナーの性能評価方法。
1 Using an oxygen probe with a built-in oxygen concentration battery, we measured the partial pressure of oxygen in the melt droplets falling through the space below the shaft in the flash furnace and the content of the pine extracted from the pine outlet just below the shaft in the settler section. After measuring the oxygen partial pressure of Performance evaluation method for concentrate burners for flash smelting furnaces.
JP59242989A 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace Granted JPS61124538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242989A JPS61124538A (en) 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242989A JPS61124538A (en) 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace

Publications (2)

Publication Number Publication Date
JPS61124538A JPS61124538A (en) 1986-06-12
JPH0377858B2 true JPH0377858B2 (en) 1991-12-11

Family

ID=17097239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242989A Granted JPS61124538A (en) 1984-11-16 1984-11-16 Method for evaluating performance of concentration burner for flash smelting furnace

Country Status (1)

Country Link
JP (1) JPS61124538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270259B1 (en) 2020-12-24 2022-03-08 Coupang Corp. Method for providing information related to item and electronic apparatus using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339483Y2 (en) * 1988-03-23 1991-08-20
JP2723572B2 (en) * 1988-12-02 1998-03-09 住友金属鉱山株式会社 Flash smelting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270259B1 (en) 2020-12-24 2022-03-08 Coupang Corp. Method for providing information related to item and electronic apparatus using the same

Also Published As

Publication number Publication date
JPS61124538A (en) 1986-06-12

Similar Documents

Publication Publication Date Title
CN102288740B (en) Measuring probes for measuring and sampling with a metal melt
JP4571407B2 (en) Apparatus for detecting formation of aluminum oxide and aluminum melting furnace
CN111443184B (en) Test device and method for simulating iron ore state under blast furnace ironmaking condition
US3920447A (en) Steel production method
JPH0377858B2 (en)
KR100209207B1 (en) Method of copper fire refining
US3463631A (en) Method and arrangement for determining the oxidation reactions during refining of metals
JPH10310808A (en) Operation of blast furnace
KR100241854B1 (en) How to operate vertically
US4158562A (en) Blast furnace testing and control methods
US20110203415A1 (en) Method of suppressing slag foaming in continuous melting furnace
US4113469A (en) Refining molten metal
US4978106A (en) Iron reduction apparatus
CN105651407A (en) Metallurgical coke initial reaction temperature measurement method and device
JP2003160821A (en) Method and instrument for determining clearance in hot section
CN106244827A (en) The smelting endpoint of a kind of smelting titanium slag with electric stove judges system and method
EP4269626A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
Buehl Design of pyrometallurgical pilot plants
Garrido et al. Research and Technology Department Canadian Liquid Air Ltd
JPH0625368B2 (en) Blast furnace operation method
JPH0627284B2 (en) Blast furnace operation method
Mei et al. Real-Time Carbon and Temperature Model of Converter Based on the Weights of Elemental Reaction Rate
Landucci et al. Oxygen-enriched air in lead and zinc smelting
US675329A (en) Process of manufacturing steel.
US675215A (en) Apparatus for the manufacture of steel.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term