JPS61123797A - High vacuum exhaust equipment - Google Patents

High vacuum exhaust equipment

Info

Publication number
JPS61123797A
JPS61123797A JP59242395A JP24239584A JPS61123797A JP S61123797 A JPS61123797 A JP S61123797A JP 59242395 A JP59242395 A JP 59242395A JP 24239584 A JP24239584 A JP 24239584A JP S61123797 A JPS61123797 A JP S61123797A
Authority
JP
Japan
Prior art keywords
molecular pump
exhaust
blade angle
high vacuum
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59242395A
Other languages
Japanese (ja)
Inventor
Naoyuki Hirazakura
平櫻 直之
Akitami Kaneko
金子 昭民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59242395A priority Critical patent/JPS61123797A/en
Publication of JPS61123797A publication Critical patent/JPS61123797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To increase pressure ratio and exhaust volume by making the capacity of molecular pumps and the blade angle of disks bigger as they are closer to the air suction side and making both of them smaller as they are closer to the exhaust side. CONSTITUTION:In a high vacuum exhaust equipment having plural stages of molecular pumps 21 and connecting pipes 23, the number of molecular pumps 21 is largest at the side of a suction opening 24 and is getting smaller as they become closer to an exhaust opening 25. Also, the blade angle of disks is getting bigger as they are located closer to the suction opening 24 from the exhaust opening 25. Under this arrangement, pressure ratio and exhaust volume can be increased. Since disks can be of the same size, it is possible to mass-produce them and eventually reduce their production cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各隣接段の排気口と吸気口とを1本のヘッダに
より連結した複数段の分子ポンプを有し、同各分子ポン
プにより大容量の排気を行って高真空を得る高真空排気
装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention has a multi-stage molecular pump in which the exhaust port and intake port of each adjacent stage are connected by a single header, and each molecular pump has a large This invention relates to a high vacuum evacuation device that obtains a high vacuum by evacuation of a volume.

(従来の技術) 従来の分子ポンプを第4,5図により説明すると、(1
)がロータ、(2)がケーシング、(3)が上記ロータ
(1)に取付けた動翼車、(4)が上記ケーシング(2
)に取付けた静翼車、(5)が上記ロータ(1)を回転
可能に支持する軸受、(6)が上記ロータ(1)を回転
するモータ、(7)が上記ロータ(1)に設けた吸気口
、(8)が上記ロータ(1)に設けた排気口で、上記動
翼車(3)は9回転方向に対して迎角を有する多数の翼
板から構成されている。また上記静翼車(4)は、同動
翼車(3)とは逆向きの翼角を有する多数の翼板から構
成されている。同分子ポンプは。
(Prior art) A conventional molecular pump will be explained with reference to FIGS. 4 and 5.
) is the rotor, (2) is the casing, (3) is the rotor attached to the rotor (1), and (4) is the casing (2).
), (5) is a bearing that rotatably supports the rotor (1), (6) is a motor that rotates the rotor (1), and (7) is installed on the rotor (1). (8) is an exhaust port provided on the rotor (1), and the rotor (3) is composed of a large number of vanes having angles of attack with respect to nine rotational directions. Further, the stationary impeller (4) is composed of a large number of vanes having a blade angle opposite to that of the cooperating impeller (3). The same molecular pump.

ロータ(1)の回転により気体分子が動翼車(3)及び
静翼車(4)の傾角に起因する分子運動上の偏りにより
一方向に押しやられる。その結果、吸気a(7)から排
気口(8)への流れが生じて、排気が行われる。翼車の
翼角(α)と排気特性との関係を第6,7図に示した。
Due to the rotation of the rotor (1), gas molecules are pushed in one direction due to the deviation in molecular motion caused by the inclination angles of the rotor (3) and stationary rotor (4). As a result, a flow is generated from the intake air a (7) to the exhaust port (8), and exhaust is performed. The relationship between the blade angle (α) of the impeller and the exhaust characteristics is shown in Figures 6 and 7.

同第6図において、QmaXは、理論上の最大排、気速
度効率であり、流しうる体積流量の指標である。また(
Pz/Pt)−Xは。
In FIG. 6, QmaX is the theoretical maximum exhaust and air velocity efficiency, and is an index of the volumetric flow rate that can flow. Also(
Pz/Pt)-X is.

翼車前後の理論最大圧力比である。またωは1口−タ(
1)の回転数である。同第6.7図から明らかなように
翼車の翼角(α)が小さい程、減圧効果が大きく、それ
とは反対に排気能力(体積流量)は小さくなる。但しQ
maxについては、翼角に対してピーク値を有する。同
分子ポンプでは。
This is the theoretical maximum pressure ratio before and after the impeller. Also, ω is 1 mouth (
1) is the rotation speed. As is clear from Fig. 6.7, the smaller the blade angle (α) of the impeller, the greater the pressure reduction effect, and, conversely, the smaller the exhaust capacity (volume flow rate). However, Q
max has a peak value with respect to the blade angle. In the same molecular pump.

翼角と排気特性との関係を考慮して、低圧側(吸気側)
では、排気体積流量をできるだけ多くするために翼角を
大きくシ、また高圧側(排気側)では、減圧効果を大き
くするために翼角を小さくするように設計している。
Considering the relationship between blade angle and exhaust characteristics, low pressure side (intake side)
In this case, the blade angle is designed to be large in order to maximize the exhaust volume flow rate, and the blade angle is designed to be small on the high pressure side (exhaust side) to increase the pressure reduction effect.

(発明が解決しようとする問題点) 前記分子ポンプの排気側と吸気側との圧力比は、各膜圧
力比の積で与えられるため、一般には。
(Problems to be Solved by the Invention) The pressure ratio between the exhaust side and the intake side of the molecular pump is generally given by the product of the membrane pressure ratios.

10’以上になっているのが普通である。他方。It is normal for it to be 10' or more. On the other hand.

排気質量流量は、各段の圧力と排気速度効率との積で与
えられるので(全段一定)、最低圧側(吸気側)の最大
排気速度効率でおさえられている。吸気側の翼車の翼角
を限度内で最大にとっても、最大排気速度効率Qmax
は、せいぜい10倍程度しか大きくできない(第6図参
照)ので、高圧倒(排気側)の排気速度効率は、その最
大能力値(Qmax)よりも著しく小さな値をとること
になり、装置の高圧側部分の排気能力を殆ど有効に使用
していないことになる。特に分子ポンプを複数台使用し
て、大容量の排気を行う場合、或いは大型分子ポンプを
製作する場合、高圧側部分の排気能力の有効使用が不充
分で、装置の効率が著しく低下する。
Since the exhaust mass flow rate is given by the product of the pressure of each stage and the pumping speed efficiency (constant for all stages), it is suppressed at the maximum pumping speed efficiency on the lowest pressure side (intake side). Even if the blade angle of the impeller on the intake side is maximized within the limit, the maximum exhaust speed efficiency Qmax
can only be increased by about 10 times at most (see Figure 6), so the pumping speed efficiency on the high overwhelm (exhaust side) will take a value significantly smaller than its maximum capacity value (Qmax), and the high pressure of the equipment This means that the exhaust capacity of the side portions is hardly used effectively. In particular, when a plurality of molecular pumps are used to perform large-capacity evacuation, or when a large-sized molecular pump is manufactured, the evacuation capacity of the high-pressure side portion is not used effectively, and the efficiency of the device is significantly reduced.

(問題点を解決するための手段) 本発明は前記の問題点に対処するもので、各隣接段の排
気口と吸気口とを1本のヘッダにより連結した複数段の
分子ポンプを有し、同各分子ポンプにより大容量の排気
を行って高真空を得る高真空排気装置において、最上流
の吸気側になるほど分子ポンプの容量を大きくするとと
もに分子ポンプの翼車の翼角を大きくシ、最下流の排気
側になるほど分子ポンプの容量を小さくするとともに分
子ポンプの翼車の翼角を小さくしたことを特徴する高真
空排気装置に係わり、その目的とする処は、圧力比と排
気流量とを大きくできる。また製作コストを低減できる
改良された高真空排気装置を供する点にある。
(Means for Solving the Problems) The present invention addresses the above-mentioned problems, and includes a multi-stage molecular pump in which the exhaust port and intake port of each adjacent stage are connected by one header. In the high vacuum evacuation system that generates a high vacuum by evacuation of a large volume using each molecular pump, the capacity of the molecular pump is increased toward the most upstream suction side, and the blade angle of the impeller of the molecular pump is increased. This is a high-vacuum evacuation system that is characterized by the capacity of the molecular pump becoming smaller and the blade angle of the impeller of the molecular pump becoming smaller as it moves toward the downstream exhaust side. You can make it bigger. Another object of the present invention is to provide an improved high vacuum evacuation device that can reduce manufacturing costs.

(実施例) 次に本発明の高真空排気装置を第1.2.3図示す一実
施例により説明すると、 (21)が多段の分子ポンプ
、 (22)が各段の分子ポンプ(21)の吸気口及び
排気口を連絡するヘッダ、 (23)が各段のヘッダ(
22)を連絡する連絡管、 (24)が本高真空排気装
置の最上流の吸気口、 (25)が本高真空排気装置の
最下流の排気口、 (26)が軸及び軸受(28)によ
り回転可能に支持された動翼車、 (27)が装置側に
固定された静翼車で1分子ポンプ(21)の台数は5本
高真空排気装置の吸気口(24)側で最も多く、排気口
(25)へ向かうに従って少なくなっている。なお分子
ポンプ(21)の口径を本高真空排気装置の最上流の吸
気口(24)側に向かう程大きくすれば3分子ポンプ(
21)の台数を多くする必要はない。また翼車の翼角は
5本高真空排気装置の排気口(25)側から吸気口(2
4)側へ向かうに従って大きくなっている。なお同−役
向の分子ポンプ(21)でも翼車の翼角に同じ傾向をも
たせてもよい。
(Example) Next, the high vacuum evacuation device of the present invention will be explained using an example shown in Figures 1.2.3. (21) is a multi-stage molecular pump, (22) is a molecular pump at each stage (21) (23) is the header for each stage (
22), (24) is the most upstream intake port of the main high vacuum evacuation device, (25) is the most downstream exhaust port of the main high vacuum evacuation device, (26) is the shaft and bearing (28) (27) is a stator vane wheel fixed to the equipment side, and the number of monomolecular pumps (21) is 5, which is the largest on the intake port (24) side of the high vacuum pumping equipment. , decreases toward the exhaust port (25). In addition, if the diameter of the molecular pump (21) is made larger toward the most upstream intake port (24) of the high vacuum evacuation device, a triple molecular pump (21) can be obtained.
21) There is no need to increase the number of units. In addition, the blade angle of the impeller is five, from the exhaust port (25) side of the high vacuum exhaust system to the intake port (25) side.
4) It gets bigger towards the side. Note that the blade angle of the impeller may have the same tendency in the molecular pump (21) having the same role.

(作用) 次に前記高真空排気装置の作用を説明する。吸気口(2
4)から大きな排気速度効率と大容量の排気面積とによ
り、大流量の高真空気体分子が吸入されて、下流側へ流
される。この高真空気体分子は下流側へ行くに従って分
子ポンプ(21)の翼角が小さくなるため、圧力比が大
きくなる。また同高真空気体分子は下流側へ行くに従っ
て圧力が高くなるため、小数台または小容量の分子ポン
プ(21)でも上流側(吸気側)とバランスして流れる
。このときの排気速度効率は、翼角の小さい分子ポンプ
(21)の翼車のもつ能力で充分に達成される。
(Function) Next, the function of the high vacuum evacuation device will be explained. Intake port (2
4) Due to the large pumping velocity efficiency and large pumping area, a large flow rate of high vacuum air molecules are sucked in and flowed downstream. The blade angle of the molecular pump (21) becomes smaller as the high-vacuum air molecules move toward the downstream side, so the pressure ratio becomes larger. Further, since the pressure of the same high-vacuum air molecules increases as they go downstream, they flow in balance with the upstream side (intake side) even with a small number of molecular pumps (21) or a small capacity molecular pump (21). The pumping speed efficiency at this time is sufficiently achieved by the ability of the impeller of the molecular pump (21) with a small blade angle.

(発明の効果) 本発明は前記のように各隣接段の排気口と吸気口とを1
本のヘッダにより連結した複数段の分子ポンプを有し、
同各分子ポンプにより大容量の排気を行って高真空を得
る高真空排気装置において、最上流の吸気側になるほど
分子ポンプの容量を大きくするとともに分子ポンプの翼
車の翼角を大きくシ、最下流の排気側になるほど分子ポ
ンプの容量を小さくするとともに分子ポンプの翼車の翼
角を小さくしていて、前記の作用が行われるので、圧力
比と排気流量とを大きくできる。また同一段の分子ポン
プの翼車は、同一形状でよいので。
(Effects of the Invention) As described above, the present invention connects the exhaust port and intake port of each adjacent stage to one
It has a multi-stage molecular pump connected by a book header,
In the high vacuum evacuation system that generates a high vacuum by evacuation of a large volume using each molecular pump, the capacity of the molecular pump is increased toward the most upstream suction side, and the blade angle of the impeller of the molecular pump is increased. The capacity of the molecular pump is made smaller toward the downstream exhaust side, and the blade angle of the impeller of the molecular pump is made smaller, and the above-mentioned effects are performed, so that the pressure ratio and the exhaust flow rate can be increased. Also, the impellers of molecular pumps in the same stage can have the same shape.

量産可能で、製作コストを低減できる効果がある以上本
発明を実施例ついて説明したが、勿論本発明はこのよう
な実施例にだけ局限されるものではなく1本発明の精神
を逸脱しない範囲で種々の設計の改変を施しうるちので
ある。
Although the present invention has been described with reference to embodiments as it can be mass-produced and has the effect of reducing manufacturing costs, it goes without saying that the present invention is not limited to such embodiments and can be modified without departing from the spirit of the present invention. It is a model with various design modifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる高真空排気装置の一実施例を示
す一部縦断側面図、第2図は分子ポンプの翼車の翼角を
示す説明図、第3図は分子ポンプの底面図、第4図は従
来の分子ポンプの縦断側面図、第5図は同分子ポンプの
翼車の翼角を示す説明図、第6図は最大排気効率を示す
説明図、第7図は翼車前後の理論最大圧力比を示す説明
図である。 (21)・・・分子ポンプ、 (24)  ・・・最上
流の吸気口、 (25)  ・・・最下流の排気口、 
(26)  ・・・動翼車、 (27)  ・・・静翼
束。 復代理人弁理士岡本重文外3名 ニー− 第4図 第6図  mox
Fig. 1 is a partially longitudinal side view showing an embodiment of the high vacuum evacuation device according to the present invention, Fig. 2 is an explanatory view showing the blade angle of the impeller of the molecular pump, and Fig. 3 is a bottom view of the molecular pump. , Fig. 4 is a vertical side view of a conventional molecular pump, Fig. 5 is an explanatory diagram showing the blade angle of the impeller of the same molecular pump, Fig. 6 is an explanatory diagram showing the maximum pumping efficiency, and Fig. 7 is an explanatory diagram showing the impeller of the same molecular pump. It is an explanatory view showing the theoretical maximum pressure ratio before and after. (21)...Molecular pump, (24)...Most upstream intake port, (25)...Most downstream exhaust port,
(26) ...Rotor wheel, (27) ...Stator blade bundle. Sub-Agent Patent Attorney Okamoto, 3 people outside of Japan - Figure 4 Figure 6 mox

Claims (1)

【特許請求の範囲】[Claims] 各隣接段の排気口と吸気口とを1本のヘッダにより連結
した複数段の分子ポンプを有し、同各分子ポンプにより
大容量の排気を行って高真空を得る高真空排気装置にお
いて、最上流の吸気側になるほど分子ポンプの容量を大
きくするとともに分子ポンプの翼車の翼角を大きくし、
最下流の排気側になるほど分子ポンプの容量を小さくす
るとともに分子ポンプの翼車の翼角を小さくしたことを
特徴する高真空排気装置。
This is the best high-vacuum evacuation system that has multiple stages of molecular pumps in which the exhaust port and inlet of each adjacent stage are connected by a single header, and each molecular pump pumps out a large volume to achieve a high vacuum. The closer you get to the upstream intake side, the larger the capacity of the molecular pump is, and the blade angle of the impeller of the molecular pump is increased.
A high-vacuum pumping device characterized in that the capacity of the molecular pump is made smaller toward the most downstream exhaust side, and the blade angle of the impeller of the molecular pump is made smaller.
JP59242395A 1984-11-19 1984-11-19 High vacuum exhaust equipment Pending JPS61123797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242395A JPS61123797A (en) 1984-11-19 1984-11-19 High vacuum exhaust equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242395A JPS61123797A (en) 1984-11-19 1984-11-19 High vacuum exhaust equipment

Publications (1)

Publication Number Publication Date
JPS61123797A true JPS61123797A (en) 1986-06-11

Family

ID=17088510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242395A Pending JPS61123797A (en) 1984-11-19 1984-11-19 High vacuum exhaust equipment

Country Status (1)

Country Link
JP (1) JPS61123797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264932A (en) * 2004-03-16 2005-09-29 Pfeiffer Vacuum Gmbh Turbo molecular pump and its disc manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264932A (en) * 2004-03-16 2005-09-29 Pfeiffer Vacuum Gmbh Turbo molecular pump and its disc manufacturing method

Similar Documents

Publication Publication Date Title
US5562405A (en) Multistage axial flow pumps and compressors
JPH037039B2 (en)
JPS5893986A (en) Multistage centrifugal compressor
JPS5817357B2 (en) Multi-stage turbo compressor
JP6353195B2 (en) Fixed disk and vacuum pump
JPH0826877B2 (en) Turbo molecular pump
KR20150070294A (en) High efficiency low specific speed centrifugal pump
JPS62113887A (en) Vacuum pump
KR890004933B1 (en) Turbo molecular pump
JPH0553955B2 (en)
WO1995028571A1 (en) Molecular pump
JP3974529B2 (en) Turbo molecular vacuum pump with rotor blades and stator blades
JPS61123797A (en) High vacuum exhaust equipment
JPS60182394A (en) Turbomolecular pump
JPS6361799A (en) Turbo molecular pump
JP2007192076A (en) Turbo vacuum pump
JPH02264196A (en) Turbine vacuum pump
JP3532653B2 (en) Turbo molecular pump
JPS61283794A (en) Turbo molecular pump
JP2003013880A (en) Turbo molecular pump
JP6850846B2 (en) Vacuum pumps and composite vacuum pumps
CN215256873U (en) Turbo molecular pump
JP2680156B2 (en) Vacuum pump
JPH01170795A (en) Vortex turbo-machinery
CN2473364Y (en) Multistage centrafugal vacuum pump