JPS61123335A - Signal synchronous circuit of privacy call communication equipment - Google Patents
Signal synchronous circuit of privacy call communication equipmentInfo
- Publication number
- JPS61123335A JPS61123335A JP24542084A JP24542084A JPS61123335A JP S61123335 A JPS61123335 A JP S61123335A JP 24542084 A JP24542084 A JP 24542084A JP 24542084 A JP24542084 A JP 24542084A JP S61123335 A JPS61123335 A JP S61123335A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- clock
- frequency
- synchronization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K1/00—Secret communication
- H04K1/06—Secret communication by transmitting the information or elements thereof at unnatural speeds or in jumbled order or backwards
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
Abstract
Description
【発明の詳細な説明】
(イ) 産業上の利用分野
本発明は有線或は無線通信において通話の秘密性(プフ
ィパシー)を保持する為の秘話通信回路に関するもので
あシ、更に詳説すると、前記通信システムの信号同期回
路に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a confidential communication circuit for maintaining the confidentiality of telephone calls in wired or wireless communications. This invention relates to a signal synchronization circuit for a communication system.
(ci)従来の技術
有線或は無線通信においては適当な受信装置を用いれば
、通信の内容が誰にでも傍受され、通話の秘話性が損わ
れるという問題が本質的にある。(ci) Prior Art In wired or wireless communication, there is an inherent problem that if a suitable receiving device is used, the contents of the communication can be intercepted by anyone, thereby impairing the privacy of the call.
この問題を解決する方法として、音声信号をスクランブ
ル処理して送出し、これを第三者に受信されても、この
ままでは内容は分からないようにしておき、この処理信
号を再生する回路(ディスクランブル処理回路)を持つ
受信者だけが音声信号に復元できる、所謂スクランブル
技術が従来から用いられている。従来からある秘話通信
方式としては、例えば電子通信学会誌(1982年8月
)「秘話技術J(P832〜P834)および電子通信
学会枝軸0880−149(1980年11月)「秘話
方式について」において、各植刃式が紹介されている。A method to solve this problem is to scramble the audio signal and send it out so that even if it is received by a third party, the contents cannot be known.The circuit that plays back this processed signal (descrambler) A so-called scrambling technique has been used in the past, which allows only a recipient with a processing circuit (processing circuit) to restore the audio signal. Conventional confidential communication methods are described, for example, in the Journal of the Institute of Electronics and Communication Engineers (August 1982), “Secret Communication Technology J (P832-P834)” and “About the Secret Communication Method”, IEICE Branch 0880-149 (November 1980). , each Uekaba style is introduced.
音声情報はスペクトル及びこれの時間変化から構成され
ているので、スペクトル構造を変化させるスクランブル
処理によって音声としての了解性を低下させることがで
きる。この観点からこれまでに実用化されたスクランブ
ル方式としてはスペクトル反転法や周波数分割置換法等
があげられる。Since audio information is composed of a spectrum and its temporal changes, the intelligibility of the audio can be reduced by scrambling processing that changes the spectral structure. From this point of view, scrambling methods that have been put to practical use include the spectrum inversion method and the frequency division permutation method.
例えば、特公昭58−8621 (HO4K 1104
)「周波数補正機能をもつ秘話方式」や特開昭58−1
48541(HO4に1104)r秘話回路」はスペク
トル反転秘話方式に関し、また特公昭58−24984
(ELO4JL1106)r秘話装置」は所定のスペク
トルに分割後、信号処理を施す方式に関し、また前記電
子通信学会枝軸C8−80−149は音声信号を一旦デ
ィジタル信号に変換後、FFT処理によって周波数軸変
換処理を施す方式に関し、それぞれ改良を図る方法を提
案しているものである。而してスペクトル反転法では秘
話の為の組合せ数(キー数)か充分にはとれない、また
後の三者の方式では、キー数は多いが、フィルタを多用
したり、上゛1゛T処理回路が必要で回路規模が大きく
なυ、コストも高い、また消責電力も大きいなどの問題
があった。For example, Special Publication No. 58-8621 (HO4K 1104
) "Secret conversation system with frequency correction function" and JP-A-58-1
48541 (HO4 to 1104) r secret speech circuit" relates to the spectrum inversion secret speech method, and is also
(ELO4JL1106) r Confidential communication device" relates to a method of performing signal processing after dividing into a predetermined spectrum, and the IEICE branch axis C8-80-149 once converts an audio signal into a digital signal and then converts it into a frequency axis by FFT processing. This paper proposes methods for improving each method of performing conversion processing. However, the spectral inversion method does not have a sufficient number of combinations (number of keys) for the secret story, and the latter three methods have a large number of keys, but they use many filters and There were problems such as a processing circuit was required and the circuit scale was large, the cost was high, and the amount of power consumed was large.
これらの観点から、キー数が多くとれて秘話性能に優れ
、しかも回路構成が簡単なスクランブル方式として本件
出願人は先に特願昭57−164766号「秘話通信方
法及びその装置」(昭和57年9月20日出願)、特願
昭57−184916号「秘話通信システムのクロック
回路」(昭和57年10月20日出願)や特願昭58−
19702「秘話通信装置」(昭和58年10月20日
出願)を提案した。これは可変遅延回路を用いて、その
遅延時間を制御するクロックの周波数を周期的に時間変
化させ、時間軸の圧縮・伸長を反復して、音声信号をス
クランブル処理して送出し、受信側でディスクランブル
処理を施す方法である。From these viewpoints, the applicant previously proposed a scrambling method with a large number of keys, excellent secret communication performance, and a simple circuit configuration. Patent Application No. 184916 (filed on September 20, 1984), "Clock Circuit for Confidential Communication System" (filed on October 20, 1988)
19702 "Secret Communication Device" (filed on October 20, 1988). This uses a variable delay circuit to periodically change the frequency of the clock that controls the delay time, repeatedly compresses and expands the time axis, scrambles the audio signal, and sends it out. This method performs descrambling processing.
この方式において受信側で元の音声に正しく復元させる
ためには、送信側と逆の信号処理を行わせるように、可
変遅延回路に印加するクロックの動作を送信側と受信側
で同期させておく必要があり、そのために送受信装置の
一方から他方に同期信号を送る必要がおる。そこで例え
ば、クロック周波数の時間変化の周期で単−周波数正弦
波の振巾変調を行なっfcす、また周波数を変えてFS
jL変調を行ない、同期信号として送信信号に重畳して
送出する方式が用いられる。In this method, in order to correctly restore the original audio on the receiving side, the operation of the clock applied to the variable delay circuit must be synchronized on the sending and receiving sides so that the signal processing is the opposite of that on the sending side. Therefore, it is necessary to send a synchronization signal from one transmitting/receiving device to the other. Therefore, for example, amplitude modulation of a single-frequency sine wave is performed at the period of time change of the clock frequency, and FS is performed by changing the frequency.
A method is used in which the signal is subjected to jL modulation and is superimposed on a transmission signal as a synchronization signal and sent out.
しかし、上記の妬き従来の同期方式は変調の際のスペク
トルの広が9が音声帯域内に入り、ノイズとして音声信
号の8N比を劣化させるという欠点があった。又、単一
正弦波の周波数を音声帯域の高域側に設ける必要楚あり
、伝送信号帯域の広がりが問題となる。However, the above-mentioned conventional synchronization method has the disadvantage that the spectrum spread 9 during modulation falls within the audio band and degrades the 8N ratio of the audio signal as noise. Furthermore, it is necessary to provide the frequency of the single sine wave on the high frequency side of the audio band, which poses a problem of widening the transmission signal band.
(ハ) 発明が解決しようとする問題点本発明は従来の
秘話通信装置におけるSN比の劣化等の同期回路の欠点
を解決できる信号同期回路を提供するものでおる。(c) Problems to be Solved by the Invention The present invention provides a signal synchronization circuit that can solve the drawbacks of the synchronization circuit, such as deterioration of the S/N ratio, in conventional confidential communication devices.
に) 問題点を解決するための手段および作用先ず、本
発明の基本となる回路構成について第1図と共に説明す
る。同図において、(1)は音声信号入力端、(2)は
LPF、(3)は可変遅延回路、(4)はLPF、(5
)はクロック周波数制御回路であり、クロック周波数制
御カウンタ回路(6)と論理回路(7)からなっている
。(8+はゲート信号発生回路、(9)は向期信号発生
薗路、αOjは加算回路、(社)は送信回路、しは有線
或は無線の伝送系、(131は受信回路、圓はLPF、
■は可変遅延回路、C6;はLPF、0ηは音声出力端
、αねはゲート信号復調回路、(1!llはトリガ発生
回路、■はクロック周波数制御回路であり、制御カウン
タ回路(2)と論理回路■からなっている。B) Means and operation for solving the problems First, the basic circuit configuration of the present invention will be explained with reference to FIG. 1. In the figure, (1) is an audio signal input terminal, (2) is an LPF, (3) is a variable delay circuit, (4) is an LPF, and (5) is an LPF.
) is a clock frequency control circuit, which consists of a clock frequency control counter circuit (6) and a logic circuit (7). (8+ is a gate signal generation circuit, (9) is a clockwise signal generation circuit, αOj is an addition circuit, (Company) is a transmission circuit, or is a wired or wireless transmission system, (131 is a reception circuit, and circle is an LPF. ,
■ is a variable delay circuit, C6 is an LPF, 0η is an audio output terminal, α is a gate signal demodulation circuit, (1!ll is a trigger generation circuit, ■ is a clock frequency control circuit, and a control counter circuit (2) It consists of a logic circuit ■.
さて、遅延時間がクロック制御可能な可変遅延回路(3
)囮を送受信側にそれぞれ設け、該遅延回路のクロック
周波数を送受信側遅延回路の遅延時間の和の分の周期で
時間変化させ、送信側でスクランブル処理を行ない、受
信側でディスクランブル処理を行う。Now, a variable delay circuit whose delay time can be controlled by a clock (3
) A decoy is provided on each of the transmitting and receiving sides, and the clock frequency of the delay circuit is changed over time at a cycle equal to the sum of the delay times of the transmitting and receiving side delay circuits, and the transmitting side performs scrambling processing, and the receiving side performs descrambling processing. .
この回路において、可変遅延回路(3)四としてはBB
D (Buokat Brigade Device)
やCC1)(Charge Coupled De
vice)等のアナログシフトレジスタやRAM等のメ
モリ素子が用いられる。また、可変遅延回路へ印加する
クロックの周波数は、該クロックを計数するカウンタ回
路(6)(21iを含むクロック周波数制御回路(5)
母によって制御される構成となっている。送受信側のク
ロック動作を同期させる為に送信側(a)の同期信号発
生回路(9)で発生された同期信号(8p)が加算回路
ααで音声信号信号に重畳されて送出される。In this circuit, the variable delay circuit (3) is BB.
D (Buokat Brigade Device)
CC1) (Charge Coupled De
An analog shift register such as VICE) and a memory element such as RAM are used. In addition, the frequency of the clock applied to the variable delay circuit is determined by the clock frequency control circuit (5) including the counter circuit (6) (21i) that counts the clock.
It is configured to be controlled by the mother. In order to synchronize clock operations on the transmitting and receiving sides, a synchronizing signal (8p) generated by a synchronizing signal generating circuit (9) on the transmitting side (a) is superimposed on the audio signal signal by an adder αα and sent out.
この同期信号としては次のような信号を使用する。即ち
、第2図(a)のように、送信側クロック周波数制御回
路(5)に含まれる送信側制御カウンタ回路(6)の値
に関連してゲート信号をゲート信号発生回路(8)から
取シ出し、このゲート信号を用い、同期信号発生回路(
9)において、例えば正弦波を第2図(b)のようにゲ
ート制御して得られるトーンバースト波や同図((+)
のように位相変調〔同図(8)は2相、180度変調〕
を施した信号或はF8に信号等とし、これを同期信号と
して使用する。The following signal is used as this synchronization signal. That is, as shown in FIG. 2(a), a gate signal is extracted from the gate signal generation circuit (8) in relation to the value of the transmission side control counter circuit (6) included in the transmission side clock frequency control circuit (5). The synchronization signal generation circuit (
9), for example, a tone burst wave obtained by gate-controlling a sine wave as shown in Figure 2 (b), or a tone burst wave ((+)
Phase modulation as shown [Figure (8) shows two-phase, 180 degree modulation]
This is used as a synchronizing signal or a signal for F8.
欠に受信側(b)では、フィルタ回路によるフィルタ処
理により音声信号に重畳された前記同期信号を抽出後、
第2図(a)に対応するゲート信号を復調する(第2図
(d)参照)。On the receiving side (b), after extracting the synchronization signal superimposed on the audio signal through filter processing by a filter circuit,
The gate signal corresponding to FIG. 2(a) is demodulated (see FIG. 2(d)).
さて、クロック周波数はカウンタ(61(211の値に
よって決定されるので、クロック動作の同期を行うには
受信側のカウンタ値を送信側と同じ値になるようにすれ
ばよく、送信側(a)でゲート信号発生回路(8)から
ゲート信号(Gt)を送出するときのカウンタ回路(6
)の値と同じになるように受信側(b)のカウンタ回路
(社)を、ゲート信号復調回路(2)の出力ゲート信号
(Gm)(第2図(d)〕から得られるトリガ信号〔第
2図(e)〕によってププリセラするように構成されて
いる。即ち、送信側遅延回路と受信側遅延回路の遅延時
間の和の分の周期毎に立上シ又は立下シのあるパルス波
(矩形波)を同期信号とし、送信側における同期信号の
立上り(又は立下り)時のカウンタの値と同じに次るよ
うに受信側で復調同期信号から得られるトリガによって
プリセット動作させるように構成されている。Now, the clock frequency is determined by the value of the counter (61 (211), so in order to synchronize the clock operation, it is sufficient to set the counter value on the receiving side to the same value as on the transmitting side, and the transmitting side (a) The counter circuit (6) when sending out the gate signal (Gt) from the gate signal generation circuit (8)
) on the receiving side (b) so that the trigger signal obtained from the output gate signal (Gm) of the gate signal demodulation circuit (2) (Fig. 2 (d)) is the same as the value of In other words, the pulse waveform has a rising edge or a falling edge every period equal to the sum of the delay times of the transmitting side delay circuit and the receiving side delay circuit. (rectangular wave) as a synchronization signal, and is configured to perform a preset operation by a trigger obtained from a demodulated synchronization signal on the reception side, which is the same as the counter value at the rise (or fall) of the synchronization signal on the transmission side. has been done.
本発明では同期信号として、一定周波数の低周波信号及
び該信号を逓倍した信号の2波を音声信号帯域より低域
側に設け、これを音声信号に重畳して伝送し、受信側で
これらを分離し同期用信号として用いるものである。In the present invention, as a synchronization signal, two waves, a low frequency signal with a constant frequency and a signal obtained by multiplying this signal, are provided on the lower side of the audio signal band, and these are superimposed on the audio signal and transmitted, and these are transmitted on the receiving side. It is separated and used as a synchronization signal.
(ハ)実施例
第6図は本発明の同期回路の送信側の実施例である。同
図に於て、(2)はサンプリングによる折シ返し雑音を
防止するLPF、(3)は記憶容量Nの可変遅延回路で
クロックに従って入力信号をサンプリングし、これを順
次転送して出力する。ここではBBDを用いている。該
BBDを制御するクロックは周波数(fO)の発振器の
のマスタクロックを入力とする可変分周回路−の出力(
CP)をI
用いている。該可変分周回路CPを計数するカラへ−
ンタ■及び、該カウンタ出力を入力とするマトリクス回
路■により制御され、第4図に示すように出力CPの周
波数(fl)を階段状に変化させる。(C) Embodiment FIG. 6 shows an embodiment of the transmitting side of the synchronous circuit of the present invention. In the figure, (2) is an LPF that prevents aliasing noise due to sampling, and (3) is a variable delay circuit with a storage capacity of N, which samples the input signal according to the clock and sequentially transfers and outputs it. Here, BBD is used. The clock that controls the BBD is the output (
CP) is used. It is controlled by a color counter (2) that counts the variable frequency dividing circuit CP and a matrix circuit (4) that receives the output of the counter as an input, and changes the frequency (fl) of the output CP in a stepwise manner as shown in Fig. 4. .
カウンタ缶が(3PをN個計数する毎にflの上昇・下
降を切り換えるとともに図に示すようなOFの変化周期
と等しい周期をもつQ信号を出力し、同期信号に用いる
。周期(T)は
T=またし月
となる。ここでRは可変遅延回路の記憶容量、iは可変
分周回路の分周数の最小値、mは分周段階数、fOはマ
スタクロック周波数である。例えば、fo=250xu
z、t=13、m=8、N=512とすると、T=67
.6ms、f=1/T=i4゜8Hzとなる。また前記
Q信号をPLL@を用いてM逓倍したQM倍信号同期信
号として用いる。Every time the counter counts N 3Ps, it switches between raising and lowering fl and outputs a Q signal with a period equal to the changing period of OF as shown in the figure, which is used as a synchronization signal.The period (T) is T = Matashitsuki.Here, R is the storage capacity of the variable delay circuit, i is the minimum value of the frequency division number of the variable frequency divider circuit, m is the number of frequency division stages, and fO is the master clock frequency.For example, fo=250xu
z, t=13, m=8, N=512, T=67
.. 6ms, f=1/T=i4°8Hz. Further, the Q signal is multiplied by M using PLL@ and used as a QM times signal synchronization signal.
QM倍信号周波数(fQM)を音声周波数以下100H
z程度薔ζ選ぶ。前記例ではQ信号の周波数fQは14
,8H2だから8逓倍して
f QM=14.8x8= 118.4 (Hz )と
する。前記Q信号及びQM倍信号、中心周波数がそれぞ
れfQ及ヒf QltOB P 11@及び圓、これら
にそれぞれ継続し各出力レベルを調整するレベル調整器
@(9)を経て麻算回路頭に印加される。QM times signal frequency (fQM) is 100H below the audio frequency
Choose z degree. In the above example, the frequency fQ of the Q signal is 14
, 8H2, so it is multiplied by 8 and becomes fQM=14.8x8=118.4 (Hz). The center frequencies of the Q signal and QM multiplied signal are applied to the head of the arithmetic circuit through the level adjuster @(9) which continues these and adjusts each output level, respectively. Ru.
一方、可変遅延回路(3)の出力は、該回路の出力に含
まれる高周波成分を除去するLPFQ31を経て加算回
路α4に於てレベル調整器@(2)の出力と共に加算重
畳される。該加算出力は続いて増巾変調処理を送信回路
但で受け、送信アンテナより送出される。On the other hand, the output of the variable delay circuit (3) passes through an LPFQ31 that removes high frequency components contained in the output of the circuit, and is added and superimposed with the output of the level adjuster @(2) in the adder circuit α4. The summed output is then subjected to amplification modulation processing in a transmitting circuit, and is sent out from a transmitting antenna.
次に第5図と共に本発明実施例の受信側を説明する。受
信アンテナ■で受信され、受信アンテナに続く受信回路
(2)で受信増巾・検波復調されたベースバンド信号か
ら前記周波数(fQ)及び(fQM)の2低周波数同期
信号が、中心周波数(fQ ) (f QM ) OB
P F((3134)及ヒコnう+cツレ(”れ縦続す
るPLL(2)−によ)抽出される。PLL(至)の出
力(復調QM倍信号はカウンタ(至)ヘクロック入力さ
れる。PLL(3,9の出力(復調Q信号)は単パルス
発生回路(支)へ入力され、Q信号の立下りのタイミン
グで発生させた単パルスによって前記カウンタ(至)を
リセットする。該カウンタ缶は復調QM倍信号立下9を
計数し、M/2個(但しMは偶数とし本実施例ではM=
8)計数した後の次の立上シをゲートマトリクス回路缶
により検出する。Next, the receiving side of the embodiment of the present invention will be explained with reference to FIG. The two low-frequency synchronization signals of the frequencies (fQ) and (fQM) are generated from the baseband signal received by the receiving antenna (2) and subjected to reception amplification and detection demodulation in the receiving circuit (2) following the receiving antenna. ) (f QM) OB
P F ((3134) and Hiko n+c (by PLL (2)-) are extracted. The output of PLL (to) (the demodulated QM multiplied signal is clocked into the counter (to)). The outputs (demodulated Q signals) of the PLL (3 and 9) are input to the single pulse generation circuit (support), and the counter (to) is reset by the single pulse generated at the falling timing of the Q signal. counts the fall 9 of the demodulated QM multiplied signal, M/2 (however, M is an even number, and in this example, M=
8) Detect the next rising edge after counting by the gate matrix circuit.
該立上シのタイミングで単パルス発生回路缶により単パ
ルスを発生させる。A single pulse is generated by the single pulse generating circuit at the timing of the rising edge.
一方、前記受信回路しの出力である受信信号は、周波数
(fQ)及び(fQM)成分を除去するRPF(4Q1
、折シ返し雑音防止用のLPF(141,記憶容量への
アナログシフトレジスタ(至)、高周波成分を除去する
L P F(lilを経て出力される。アナログシフト
レジスタ@を制御するクロックパルスは送信側と同様、
マスタクロック回路(6)、可変分周回路(421,カ
ウンタ(■、ゲートマトリクス(財)にょシ制御される
。該クロックパルスの周波数を送受間で一散させるため
、前記単パルス発生回路[有]の出力パルスによりカウ
ンタ(0をリセットする。On the other hand, the received signal, which is the output of the receiving circuit, is passed through an RPF (4Q1
, an LPF (141) for preventing aliasing noise, an analog shift register (to) to the storage capacity, and an LPF (lil) for removing high frequency components.The clock pulse that controls the analog shift register @ is transmitted. As well as the side
The master clock circuit (6), the variable frequency divider circuit (421), the counter (■, gate matrix) are controlled by the master clock circuit (6), the variable frequency divider circuit (421), and the gate matrix (Incorporated). ] The counter (resets to 0) by the output pulse.
かかる構成によれば、Q信号は送受間で同期しているは
ずであるが、雑音成分が重畳するため精度よく行うこと
はむずかしい。そこでQM倍信号よシ微調を行う。即ち
、Q信号の立上シ近傍でこれに最も近いQM倍信号立上
夛がよシ正確な位相情報を持つと考えられる。第6図(
a)の如く、復調Q信号に対し復調QM倍信号遅れてい
る時、Q信号の立下シで前記カウンタ(ト)がリセット
された後、クロック入力であるQM倍信号立下りを87
2=4回計数した後の次のクロックの立上9(図の18
点)をゲートマトリクス回路(支)によシ検出し、該K
a点で“H″を出力し前記単パルス発生回路臨へ入力さ
れる。第5図(b)の如く、復調Q信号に対し復調QM
倍信号進んでいる時も同様に、カウンタ田がリセットさ
れた後、QM倍信号立下りを4回計数した後の次のクロ
ックの立下fi(JLb点)を検出する。即ち、どちら
の場合でもQ信号の立上シ近傍でこれに最も近いQM倍
信号立上りを検出できる。但し、周波数(fQ)のQ信
号に対し、周波数(fqM)のQM倍信号相対的位相差
が±1/2 f 9M以下であることが条件である。According to such a configuration, the Q signals are supposed to be synchronized between transmitting and receiving, but it is difficult to achieve this with high precision because noise components are superimposed. Therefore, fine adjustment is performed on the QM multiplied signal. That is, it is considered that the QM multiplied signal rising point closest to the rising edge of the Q signal has more accurate phase information. Figure 6 (
As in a), when the demodulated QM multiplied signal lags behind the demodulated Q signal, after the counter (G) is reset at the falling edge of the Q signal, the falling edge of the QM multiplied signal, which is the clock input, is
2=Rise 9 of the next clock after counting 4 times (18 in the figure)
point) is detected by the gate matrix circuit (support), and the corresponding K
At point a, "H" is output and input to the single pulse generator circuit. As shown in Fig. 5(b), for the demodulated Q signal, the demodulated QM
Similarly, when the double signal is leading, after the counter is reset, the next clock fall fi (point JLb) after counting the falling edge of the QM double signal four times is detected. That is, in either case, the QM times signal rising edge closest to the rising edge of the Q signal can be detected. However, the condition is that the relative phase difference between the Q signal of frequency (fQ) and the QM multiplied signal of frequency (fqM) is ±1/2 f 9M or less.
前記ゲートマ)IJクス回路の一例を第7図に、又その
動作を説明する為のタイムチャートを第7図に示す。第
6図の構成によりQm出力としてパルス4を検出できる
。Q/DとQMをANDゲート(383、)でゲートす
る際、パルス乙の影響でノイズが出るのを防止する為、
遅延回路(382)を挿入しである。該遅延回路(38
2)の遅延時間はQM倍信号周期の1/2以下でなけれ
ばならない。FIG. 7 shows an example of the gate mask IJ circuit, and FIG. 7 shows a time chart for explaining its operation. With the configuration shown in FIG. 6, pulse 4 can be detected as the Qm output. When gate Q/D and QM with an AND gate (383,), in order to prevent noise from occurring due to the influence of pulse O,
A delay circuit (382) is inserted. The delay circuit (38
The delay time in 2) must be less than 1/2 of the QM times the signal period.
尚、本実施例ではMが偶数の場合について述べたが、M
が奇数の場合はカウンタ缶で復調QM倍信号立上りを計
数すればよい。Incidentally, in this embodiment, the case where M is an even number has been described, but M
If is an odd number, a counter can be used to count the rising edges of the demodulated QM multiplied signal.
(へ)発明の効果
このように本発明の回路によれは同期信号として音声周
波数帯域より低域側に2波設けれは、伝送信号帯域を広
げずに送受信間の同期をとることができる。また本発明
による同期方法を用いた可変遅延回路方式秘話通信装置
によって秘話性能の優れた通信を行なうことができる。(f) Effects of the Invention As described above, the circuit of the present invention provides synchronization signals with two waves lower than the audio frequency band, so that synchronization between transmission and reception can be achieved without widening the transmission signal band. Further, the variable delay circuit type confidential communication device using the synchronization method according to the present invention allows communication with excellent confidential communication performance.
第1図は本発明の基となる秘話通信方式の基本構成図、
第2図は上記方式において用いる同期信号の波形例、第
3図は本発明の送信側の実施例回路、第4図はクロック
周波数の遷移図、第5図は本発明の受信側の実施例回路
、第6図は同期信号のタイムチャート、第7図はゲート
マトリクス回路例、第8図はゲートマトリクス回路信号
タイムチャートである。
(3)巴・・・・・・可変遅延回路、(5)■・・・・
・・クロック周波数制御回路、(6)@・・・・・・ク
ロック周波数制動カウンタ回路、(7)に・・・・・・
論理回路、(81・・・・・・ゲート信号発生回路、(
9+・・・・・・同期信号発生@路、αα・・・・・・
加算回路、し・・・・・・ゲート信号復調回路、昨・・
・・・・トリガパルス発生回路。
←
lJJの 】 く 。 u’+ロ
騙O叶a 10 lo a OG O=FIG. 1 is a basic configuration diagram of the confidential communication system that is the basis of the present invention.
Fig. 2 is an example of the waveform of a synchronization signal used in the above system, Fig. 3 is an embodiment of the transmitting side circuit of the present invention, Fig. 4 is a clock frequency transition diagram, and Fig. 5 is an embodiment of the receiving side of the present invention. 6 is a time chart of a synchronizing signal, FIG. 7 is an example of a gate matrix circuit, and FIG. 8 is a time chart of gate matrix circuit signals. (3) Tomoe...variable delay circuit, (5) ■...
...Clock frequency control circuit, (6)@...Clock frequency braking counter circuit, (7)...
Logic circuit, (81... gate signal generation circuit, (
9+...Synchronization signal generation @path, αα...
Addition circuit,... Gate signal demodulation circuit, yesterday...
...Trigger pulse generation circuit. ← lJJ's] Ku. u'+ro
Deception O Kano a 10 lo a OG O=
Claims (3)
して記憶し且つ出力する信号の可変遅延回路と、前記ク
ロックパルスの周波数を制御するクロック周波数制御回
路と、送信側と受信側のクロック動作を同期させるため
の信号同期回路とを通信系の送信側と受信側とに備え、
送信側に於て可変遅延回路に信号を入力する時のクロッ
ク周波数と出力する時のクロック周波数を異ならせるこ
とにより送信信号の周波数を変えて送信し、受信側で受
信され可変遅延回路に入力した信号が該遅延回路から出
力されるときのクロック周波数が前記送信側可変遅延回
路に信号が入力される時のクロック周波数と等しくなる
様に送受信側双方でクロックパルスを同期させることに
より受信信号周波数を再生する秘話通信装置であって、
送信側の同期手段として送信側クロックパルスに同期し
周波数が整数比で且つ周波数帯域が音声周波数帯域より
低く位相同期した第1及び第2正弦波信号を送信音声信
号に重畳して送出し、受信側では受信信号よりこれら第
1及び第2正弦波信号を分離し、該第1及び第2正弦波
信号に対応して第1及び第2同期信号を発生させ、該第
1及び第2同期信号に関連して前記クロック制御回路を
初期値化することを特徴とする秘話通信装置の信号同期
回路。(1) A variable delay circuit for signals that sequentially samples signals according to clock pulses, stores them, and outputs them; a clock frequency control circuit that controls the frequency of the clock pulses; and a clock frequency control circuit for synchronizing the clock operations on the transmitting and receiving sides. A signal synchronization circuit is provided on the transmitting side and the receiving side of the communication system,
On the transmitting side, by changing the clock frequency when inputting the signal to the variable delay circuit and the clock frequency when outputting it, the frequency of the transmitted signal is changed and transmitted, and the signal is received on the receiving side and input to the variable delay circuit. The received signal frequency is adjusted by synchronizing clock pulses on both the transmitting and receiving sides so that the clock frequency when the signal is output from the delay circuit is equal to the clock frequency when the signal is input to the transmitting side variable delay circuit. A secret communication device for reproducing,
As a synchronization means on the transmitting side, first and second sine wave signals synchronized with the transmitting side clock pulse, whose frequencies are in an integer ratio, and whose frequency band is lower than the audio frequency band and are phase-synchronized, are superimposed on the transmitted audio signal, and are sent out and received. The side separates these first and second sine wave signals from the received signal, generates first and second synchronization signals corresponding to the first and second sine wave signals, and generates first and second synchronization signals. A signal synchronization circuit for a confidential communication device, characterized in that the clock control circuit is initialized in relation to the above.
れに対応する第2同期信号の極性反転時に同期パルスを
発生させ、受信側クロック制御回路を初期値化すること
を特徴とする特許請求の範囲第1項に記載の秘話通信装
置の信号同期回路。(2) A synchronization pulse is generated near the time of polarity reversal of the first synchronization signal on the low frequency side and when the polarity of the corresponding second synchronization signal is reversed to initialize the receiving side clock control circuit. A signal synchronization circuit for a confidential communication device according to claim 1.
号をそれぞれPLL回路を通して得られる矩形波である
事を特徴とする特許請求の範囲第2項に記載の秘話通信
装置の信号同期回路。(3) The confidential communication device according to claim 2, wherein the first and second synchronization signals are rectangular waves obtained by passing the first and second sine wave signals through a PLL circuit, respectively. Signal synchronization circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24542084A JPS61123335A (en) | 1984-11-20 | 1984-11-20 | Signal synchronous circuit of privacy call communication equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24542084A JPS61123335A (en) | 1984-11-20 | 1984-11-20 | Signal synchronous circuit of privacy call communication equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61123335A true JPS61123335A (en) | 1986-06-11 |
Family
ID=17133388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24542084A Pending JPS61123335A (en) | 1984-11-20 | 1984-11-20 | Signal synchronous circuit of privacy call communication equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61123335A (en) |
-
1984
- 1984-11-20 JP JP24542084A patent/JPS61123335A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4188506A (en) | Method and installation for masked speech transmission over a telephone channel | |
EP0117276B1 (en) | Privacy communication apparatus | |
US3766480A (en) | Device for recovering a frequency showing phase jitter | |
US4133977A (en) | Voice scrambler using syllabic masking | |
JPS61123335A (en) | Signal synchronous circuit of privacy call communication equipment | |
JPS61123331A (en) | Signal synchronous circuit of privacy call communication equipment | |
JPS61123332A (en) | Signal synchronizing circuit of privacy call communication equipment | |
JPS6221340A (en) | Signal synchronizing circuit for privacy communication equipment | |
JPS62271534A (en) | Synchronizing circuit for privacy communication equipment | |
JPS6143032A (en) | Privacy telephone set | |
JPH0339418B2 (en) | ||
JPS61123330A (en) | Signal synchronizing circuit of privacy call communication equipment | |
JPS61123333A (en) | Signal synchronizing circuit of privacy call communication equipment | |
JPS60109941A (en) | Signal synchronism circuit of ciphered communication device | |
JPH0446025B2 (en) | ||
JPH055209B2 (en) | ||
JPH0149217B2 (en) | ||
US20040042619A1 (en) | Method and apparatus for signal scrambling/descrambling, and method of speech secrecy based on the same | |
JPS60191533A (en) | Picture signal transmission system | |
JPH0149216B2 (en) | ||
JPS6313441A (en) | Privacy communicating system | |
JPH01162438A (en) | Synchronizing circuit for privacy communication device | |
JPS5975731A (en) | Secret talk communication system | |
JPH077941B2 (en) | Secret story method | |
JPH0846659A (en) | Symbol clock controller |