JPS61121361A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61121361A
JPS61121361A JP24240684A JP24240684A JPS61121361A JP S61121361 A JPS61121361 A JP S61121361A JP 24240684 A JP24240684 A JP 24240684A JP 24240684 A JP24240684 A JP 24240684A JP S61121361 A JPS61121361 A JP S61121361A
Authority
JP
Japan
Prior art keywords
emitter
layer
base
conduction type
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24240684A
Other languages
Japanese (ja)
Inventor
Toshio Oshima
利雄 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24240684A priority Critical patent/JPS61121361A/en
Publication of JPS61121361A publication Critical patent/JPS61121361A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To increase the capacitance of an emitter and switching-speed by reducing the area of an emitter-base junction and the finger width of the emitter. CONSTITUTION:Multilayer semiconductor layers are formed onto a semi- insulating substrate as semiconductor layers, which contain at least one conduction type collector layer and on which a reverse conduction type base region is shaped, or reverse conduction type base layers. An insulating film coating the whole surface is formed, and an opening from which a reverse conduction type base region or the partial surface of the reverse conduction type base layer is exposed selectively is shaped. One conduction type emitter layer having a band gap wider than the reverse conduction type base region or that of the reverse conduction type base layer is formed. Accordingly, the area of an emitter-base junction or the area of a base-collector junction can be reduced, thus lowering emitter capacitance and collector capacitance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速のへテロ接合バイポーラ・トランジスタ
(heterojunction  bipolar 
 transistor:HBT)と呼ばれる半導体装
置を製造するのに好適な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high speed heterojunction bipolar transistor.
The present invention relates to a method suitable for manufacturing a semiconductor device called a transistor (HBT).

〔従来の技術〕[Conventional technology]

第3図は従来技術で製造されたHBTの要部切断側面図
である。
FIG. 3 is a cutaway side view of essential parts of an HBT manufactured by the conventional technique.

図に於いて、lは半絶縁性GaAs基板、2はn+型G
aAsコレクタ・コンタクト層、3はn型G a A 
sコレクタ層、4はp“型GaASベース層、5はn型
AlGaAsエミツタ層、6はエミッタ電極、7はベー
ス電極、8はコレクタ電極、9は外部ベース抵抗をそれ
ぞれ示している。
In the figure, l is a semi-insulating GaAs substrate, 2 is an n+ type G
aAs collector contact layer, 3 is n-type Ga A
4 is a p" type GaAS base layer, 5 is an n type AlGaAs emitter layer, 6 is an emitter electrode, 7 is a base electrode, 8 is a collector electrode, and 9 is an external base resistance.

本従来例を製造する場合、基板1にコンタクト層2、コ
レクタ層3、ベース層4、エミッタN5を連続してエピ
タキシャル成長させ、その後、メサ・エツチングして諸
電極の引き出しゃ電極形成を行っている。
When manufacturing this conventional example, a contact layer 2, a collector layer 3, a base layer 4, and an emitter N5 are successively epitaxially grown on a substrate 1, and then mesa etching is performed to extract various electrodes and form electrodes. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記構造のHBTに於いては、次に列挙するような問題
がある。
The HBT having the above structure has the following problems.

(1)  ベース層4の厚さは全面に亙り一様であり、
従って、ベース・エミッタ接合の下側部分もベース電極
7の引き出し部分も同じであるから外部ベース抵抗8の
値が高い。
(1) The thickness of the base layer 4 is uniform over the entire surface,
Therefore, since the lower part of the base-emitter junction and the extended part of the base electrode 7 are the same, the value of the external base resistance 8 is high.

(2)ベース層4が面内に拡がっている為、適当なアイ
ソレーションを施したり、或いは、イオン注入を行わな
いと、ベース・コレクタ接合面積が広すぎてコレクタ容
量が大である。
(2) Since the base layer 4 extends in-plane, the base-collector junction area will be too large and the collector capacitance will be large unless appropriate isolation or ion implantation is performed.

(3)エミツタ層5が面内に拡がっている為、適当なア
イソレーションを施したり、或いは、イオン注入を行わ
ないと、エミッタ・ベース接合面積が広すぎ且つエミッ
タのフィンガ輻Wが広すぎてエミッタ容量が大であると
共にベース抵抗も大きい。
(3) Since the emitter layer 5 spreads in-plane, unless proper isolation or ion implantation is performed, the emitter-base junction area and the emitter finger radius W will be too wide. The emitter capacitance is large and the base resistance is also large.

HBTに関し、ここに挙げたような問題が存在すると、
そのスイッチング・スピードが低下することは云うまで
もない。
Regarding HBT, if there are problems such as those listed here,
Needless to say, the switching speed is reduced.

本発明は、HBTの構造に若干の改変を加え、前記(1
)乃至(3)に挙げた問題を解消し、スイッチング・ス
ピードを向上しようとする。
In the present invention, the structure of HBT is slightly modified, and the above (1)
) to (3), and attempt to improve switching speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に依る半導体装置の製造方法では、半絶縁性基板
上に少なくとも一導電型コレクタ層を含み表面を反対導
電型ベース領域が形成された半導体層或いは反対導電型
ベース層とした多層半導体層を形成し、次いで、全面を
覆う絶縁膜を形成してから前記反対導電型ベース領域或
いは前記反対導電型ベース層の一部表面を選択的に露出
する開口を形成し、次いで、前記反対導電型ベース領域
或いは前記反対導電型ベース層のハンド・ギャップより
広いそれを有する一導電型エミッタ層を形成するように
している。
In the method for manufacturing a semiconductor device according to the present invention, a semiconductor layer including a collector layer of at least one conductivity type and having a base region of an opposite conductivity type formed on the surface thereof, or a multilayer semiconductor layer having a base layer of an opposite conductivity type is formed on a semi-insulating substrate. forming an insulating film covering the entire surface, forming an opening to selectively expose a part of the surface of the opposite conductivity type base region or the opposite conductivity type base layer; An emitter layer of one conductivity type is formed having a region or a hand gap wider than the hand gap of the base layer of the opposite conductivity type.

〔作用〕[Effect]

このようにすると、エミッタ・ベース接合面積或いはベ
ース・コレクタ接合面積を小さくすることができ、エミ
ッタ容量やコレクタ容量を低下させることが可能となり
、また、ベース領域或いはベース層に於いて実効的なベ
ースとして動作する部分以外を厚くして外部ベース抵抗
を低下させることが可能である。
In this way, the emitter-base junction area or base-collector junction area can be reduced, emitter capacitance and collector capacitance can be reduced, and the effective base area in the base region or base layer can be reduced. It is possible to reduce the external base resistance by making the parts other than those that operate as thicker.

〔実施例〕〔Example〕

第1図は本発明一実施例を説明する為の工程要所に於け
る半導体装置の要部切断側面図を表し、第3図に関して
説明した部分と同部分は同記号で指示しである。
FIG. 1 shows a cutaway side view of a main part of a semiconductor device at a key point in the process for explaining one embodiment of the present invention, and the same parts as those explained with reference to FIG. 3 are indicated by the same symbols.

本実施例では、n型GaASコレクタ層3を成長させる
までは第3図について説明した従来技術を適用すること
ができるので、その後の工程から説明する。
In this embodiment, the conventional technique explained with reference to FIG. 3 can be applied until the n-type GaAS collector layer 3 is grown, so the subsequent steps will be explained.

(al  化学気相堆積(chemica 1  va
p。
(al chemical vapor deposition (chemica 1 va)
p.

ur  deposition:CVD)を適用するこ
とに依り二酸化シリコン(SiO2)膜11を厚さ約5
000 C人〕程度に形成する。
The silicon dioxide (SiO2) film 11 is deposited to a thickness of approximately 5 cm by applying CVD.
000 C people].

巾)通常のフォト・リソグラフィ技術並びに化学エツチ
ング法を適用することに依り、SiO2膜11のバター
ニングを行い、ベース領域形成予定部分に対応する開口
を形成する。
Width) The SiO2 film 11 is patterned by applying ordinary photolithography technology and chemical etching method to form an opening corresponding to the portion where the base region is to be formed.

(cl  該開口の形成に用いたマスク(図示せず)を
そのままにした状態でイオン注入法を適用することに依
り、ヘリリウム(Be)イオン或いはマグネシウム(M
g’)イオンのデポジション及び活性化を行ってp+型
ヘベー領域12を形成する。
(cl) By applying the ion implantation method while leaving the mask (not shown) used to form the opening, helium (Be) ions or magnesium (M
g') Perform ion deposition and activation to form p+ type Hebe region 12.

この場合に於けるBeイオン或いはMgイオンのドーズ
量は、例えばI X 10”  (cm−”)とし、ま
た、加速エネルギを20(KeV)とすることができる
In this case, the dose of Be ions or Mg ions can be set to, for example, I x 10''(cm-''), and the acceleration energy can be set to 20 (KeV).

前記のような工程に代替するものとして、基板に厚さ2
0.00C人〕程度のAlN膜を形成してから、その膜
を介してドーズff1lx10+5(cm −” ) 
、加速エネルギ30(KeV)としてBeイオンを注入
するようにしても良い。
As an alternative to the above process, the substrate may be coated with a thickness of 2
After forming an AlN film with a thickness of about 0.00 cm, a dose of ff1lx10+5 (cm −”) is applied through the film.
, Be ions may be implanted at an acceleration energy of 30 (KeV).

尚、活性化は後の工程で単独或いは他の熱処理を兼ねて
実施することができる。
Note that activation can be performed alone or in combination with other heat treatments in a later step.

fdl  マスクを除去してから、分子線エピタキシャ
ル成長(molecular  beam  epit
axy:MBE)法を適用することに依り、n型Aji
!GaAsエミッタ層5を厚さ約3000(人)程度に
形成する。
After removing the fdl mask, molecular beam epitaxial growth (molecular beam epitaxial growth) is performed.
axy:MBE) method, n-type Aji
! A GaAs emitter layer 5 is formed to a thickness of about 3,000 layers.

(el  通常のフォト・リソグラフィ技術及び適当な
エツチング法を適用することに依り、n型A/GaAs
エミツタ層5のパターニングを行う。
(el By applying conventional photolithography techniques and appropriate etching methods, n-type A/GaAs
The emitter layer 5 is patterned.

(fl  この後、通常の技法を適用することに依り、
エミッタ電極6、或いは、その他の諸電罹・配線やパッ
シベーション膜などを形成して完成する。尚、この場合
、ベース電極はエミッタ電極6に対して2次元的に形成
されることになり、また、コレクタ電極はS i O2
膜11及びコレクタ層3をメサ・エツチングしてコンタ
クト層20表面を選択的に露出させて形成することにな
る。
(fl After this, by applying the usual techniques,
The emitter electrode 6 or other electrical conductors, wiring, passivation film, etc. are formed to complete the process. In this case, the base electrode is formed two-dimensionally with respect to the emitter electrode 6, and the collector electrode is formed of SiO2.
The film 11 and the collector layer 3 are mesa-etched to selectively expose the surface of the contact layer 20.

この実施例に依り製造された半導体装置では、ベース・
コレクタ接合面積が小さいのでコレクタ容量が低減され
、また、第3図に見られる従来例に比較するとエミッタ
・ベース接合面積を小さく且つエミッタのフィンガ幅も
小さくすることが可能であるからエミッタ容量も低減さ
れ、更にまた、外部ベース抵抗も小さくすることができ
る。
In the semiconductor device manufactured according to this embodiment, the base
Collector capacitance is reduced because the collector junction area is small, and emitter capacitance is also reduced because the emitter-base junction area and emitter finger width can be made smaller compared to the conventional example shown in Figure 3. Moreover, the external base resistance can also be reduced.

第2図は本発明に於ける第2の実施例を説明する為の工
程要所に於ける半導体装置の要部切断側面図を表し、第
1図及び第3図に関して説明した部分と同部分は同記号
で指示しである。
FIG. 2 is a cross-sectional side view of a main part of a semiconductor device at a key point in the process for explaining a second embodiment of the present invention, and shows the same part as the part explained with respect to FIGS. 1 and 3. is indicated by the same symbol.

本実施例では、p+型GaAsヘベ一層4を成長させる
までは第3図について説明した従来技術を適用すること
ができるので、その後の工程から説明する。
In this embodiment, the conventional technique explained with reference to FIG. 3 can be applied until the p+ type GaAs heave layer 4 is grown, so the subsequent steps will be explained.

1alcVD法を適用することに依り、5i02膜11
を厚さ約1000  C人〕程度に形成する。
By applying the 1alcVD method, the 5i02 film 11
The thickness is approximately 1,000 mm thick.

tb+  通常のフォト・リソグラフィ技術並びに化学
エツチング法を適用することに依り、SiO2膜のパタ
ーニングを行い、エミッタ領域形成予定部分に対応する
開口を形成する。
tb+ By applying ordinary photolithography technology and chemical etching method, the SiO2 film is patterned to form an opening corresponding to the portion where the emitter region is to be formed.

(C)  該開口の形成に用いたマスク(図示せず)を
そのままにした状態でp+型ヘベ一層4のエツチングを
行い、深さ約2000  C人〕程度の凹所4Aを形成
する。
(C) With the mask (not shown) used to form the opening left in place, the p+ type heave layer 4 is etched to form a recess 4A with a depth of about 2000 mm.

これに依り、p+型ベース層4は局部的に厚さが100
0  C人〕になる。
As a result, the p+ type base layer 4 has a local thickness of 100 mm.
0 C people].

(d)マスクを除去してから、MBE法を適用すること
に依り、n型A6GaAsエミッタ層5を厚さ約500
0  C人〕程度に形成する。
(d) After removing the mask, by applying the MBE method, the n-type A6GaAs emitter layer 5 is formed to a thickness of approximately 500 mm.
0 C people].

(Ql  通常のフォト・リソグラフィ技術及び適当な
エツチング法を適用することに依り、n型AffQaA
sエミッタ層5のパターニングを行う。
(Ql By applying normal photolithography techniques and appropriate etching methods, n-type AffQaA
Patterning of the s emitter layer 5 is performed.

げ) この後、通常の技法を適用することに依り、エミ
ッタ電極6、或いは、その他の諸電極・配線やパッシベ
ーション膜などを形成して完成する。尚、ベース電極の
形成に関しては第1図に−ついて説明した実施例と同様
であり、また、コレクタ電極に関してはS i02膜1
1、ベース層4、コレクタ層3をメサ・エツチングして
コンタクト層2の表面を選択的に露出させて形成する。
(G) After this, the emitter electrode 6, other electrodes/wirings, passivation film, etc. are formed and completed by applying normal techniques. The formation of the base electrode is the same as in the embodiment described with reference to FIG.
1. The base layer 4 and the collector layer 3 are mesa-etched to selectively expose the surface of the contact layer 2.

この実施例に依り製造された半導体装置では、エミッタ
・ベース接合面積が小さく且つエミ・ツタのフィンガ幅
も小さいのでエミッタ容量が低減され、また、エミッタ
・ベース接合直下のベース層以外のベース層は厚いので
外部ベース抵抗の値は低く維持される。
In the semiconductor device manufactured according to this embodiment, the emitter capacitance is reduced because the emitter-base junction area is small and the emitter-vine finger width is also small, and the base layer other than the base layer directly under the emitter-base junction is The thickness keeps the value of the external base resistance low.

〔発明の効果〕〔Effect of the invention〕

本発明に依る半導体装置の製造方法では、半絶縁性基板
上に一導電型コレクタ層に反対導電型ベース領域を形成
した後、或いは、咳−導電型コレクタ層上に反対導電型
ベース層を形成した後、その全面を絶縁膜で覆い、その
絶縁膜に開口を形成して前記反対導電型ベース領域或い
は前記反対導電型ベース層の一部表面を露出させ、その
上に咳ベース領域或いはベース層のハンド・ギヤツブよ
り広いそれをもつ一導電型エミッタ層を形成するように
している。
In the method for manufacturing a semiconductor device according to the present invention, after forming a base region of an opposite conductivity type on a collector layer of one conductivity type on a semi-insulating substrate, or forming a base layer of an opposite conductivity type on a collector layer of a conductivity type. After that, the entire surface is covered with an insulating film, an opening is formed in the insulating film to expose a part of the surface of the base region of the opposite conductivity type or the base layer of the opposite conductivity type, and a cough base region or the base layer is formed on the base region or the base layer of the opposite conductivity type. An emitter layer of one conductivity type is formed which has a width wider than that of the hand gear.

このような本発明を実施して製造される半導体装置に於
いては、エミッタ・ベース接合面積やエミッタのフィン
ガ幅を小さくすることができるのでエミッタ容量を低減
させることが可能であり、また、ベース・コレクタ接合
面積を小さくすることができるのでコレクタ容量を低減
することが可能であり、更にまた、外部ベース抵抗も小
さくすることができる。
In a semiconductor device manufactured by implementing the present invention, the emitter-base junction area and the emitter finger width can be reduced, so the emitter capacitance can be reduced, and the emitter capacitance can be reduced. - Since the collector junction area can be reduced, the collector capacitance can be reduced, and furthermore, the external base resistance can also be reduced.

このような半導体装置に於けるス−(,7チング・スピ
ードが向上していることは云うまでも7ぽい。
It goes without saying that the processing speed of such semiconductor devices has been improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例を説明する為の工程要所に於け
る半導体装置の要部切断側面図、第2図は本発明の第2
の実施例を説明する為の工程要所に於ける半導体装置の
要部切断側面図、第3図は従来例を説明する為の工程要
所に於ける半導体装置の要部切断側面図をそれぞれ表し
ている。 図に於いて、■は半絶縁性GaAs基板、2はn+型G
aAsコレクタ・コンタクト層、3はn型GaAsコレ
クタ層、4はp+型GaAsベース層、4Aは凹所、5
はn型Aj2GaAsxミッタ層、6°はエミッタ電極
、7はベース電極、8はコレクタ電極、9は外部ペース
抵抗、11は5i02膜、12はp+型ベース領域をそ
れぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 第1図 第2図 第3図
FIG. 1 is a cutaway side view of a main part of a semiconductor device at a key point in the process for explaining one embodiment of the present invention, and FIG.
FIG. 3 is a cut-away side view of the main part of a semiconductor device at a key point in the process to explain an embodiment of the present invention, and FIG. represents. In the figure, ■ is a semi-insulating GaAs substrate, 2 is an n+ type G
aAs collector contact layer, 3 is n-type GaAs collector layer, 4 is p + type GaAs base layer, 4A is recess, 5
is an n-type Aj2GaAsx emitter layer, 6° is an emitter electrode, 7 is a base electrode, 8 is a collector electrode, 9 is an external space resistor, 11 is a 5i02 film, and 12 is a p+ type base region. Patent Applicant: Fujitsu Ltd. Representative Patent Attorney: Shoji Aitani Representative Patent Attorney: Hiroshi Watanabe - Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性基板上に少なくとも一導電型コレクタ層を含
み表面を反対導電型ベース領域が形成された半導体層或
いは反対導電型ベース層とした多層半導体層を形成し、
次いで、全面を覆う絶縁膜を形成してから前記反対導電
型ベース領域或いは前記反対導電型ベース層の一部表面
を選択的に露出する開口を形成し、次いで、前記反対導
電型ベース領域或いは前記反対導電型ベース層のバンド
・ギャップより広いそれを有する一導電型エミッタ層を
形成する工程が含まれてなることを特徴とする半導体装
置の製造方法。
Forming on a semi-insulating substrate a semiconductor layer including a collector layer of at least one conductivity type and having a base region of an opposite conductivity type formed on the surface thereof, or a multilayer semiconductor layer having a base layer of an opposite conductivity type,
Next, after forming an insulating film covering the entire surface, an opening is formed to selectively expose a part of the surface of the base region of the opposite conductivity type or the base layer of the opposite conductivity type, and then, the base region of the opposite conductivity type or the base layer of the opposite conductivity type is formed. 1. A method of manufacturing a semiconductor device, comprising the step of forming an emitter layer of one conductivity type having a band gap wider than a base layer of an opposite conductivity type.
JP24240684A 1984-11-19 1984-11-19 Manufacture of semiconductor device Pending JPS61121361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24240684A JPS61121361A (en) 1984-11-19 1984-11-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24240684A JPS61121361A (en) 1984-11-19 1984-11-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61121361A true JPS61121361A (en) 1986-06-09

Family

ID=17088661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24240684A Pending JPS61121361A (en) 1984-11-19 1984-11-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61121361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218761A (en) * 1985-07-18 1987-01-27 Matsushita Electric Ind Co Ltd Hetero junction transistor and manufacture thereof
JPS63316473A (en) * 1987-06-18 1988-12-23 Nippon Telegr & Teleph Corp <Ntt> Bipolar transistor
JP2009206325A (en) * 2008-02-28 2009-09-10 Hitachi Ltd Semiconductor device, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218761A (en) * 1985-07-18 1987-01-27 Matsushita Electric Ind Co Ltd Hetero junction transistor and manufacture thereof
JPS63316473A (en) * 1987-06-18 1988-12-23 Nippon Telegr & Teleph Corp <Ntt> Bipolar transistor
JP2009206325A (en) * 2008-02-28 2009-09-10 Hitachi Ltd Semiconductor device, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH03222336A (en) Manufacture of semiconductor device
JPS61121361A (en) Manufacture of semiconductor device
JPS61125039A (en) Semiconductor device and manufacture thereof
JPS6160588B2 (en)
JP2551427B2 (en) Semiconductor device and manufacturing method thereof
JP3210354B2 (en) Method for manufacturing heterojunction bipolar transistor
JPS61117865A (en) Bi-polar transistor and manufacture thereof
JPS60244065A (en) Manufacture of hetero-junction bipolar semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH07142685A (en) Semiconductor integrated circuit device and manufacture thereof
JPS60177671A (en) Manufacture of hetero junction bi-polar semiconductor device
JPS6217391B2 (en)
KR100226852B1 (en) Bipolar transistors and the manufacturing method thereof
JPH07118483B2 (en) Method for manufacturing compound semiconductor device
JPH06204259A (en) Manufacture of compound semiconductor device
JPH0645345A (en) Emitter electrode lead-out wiring and its manufacture
JPH06216326A (en) Manufacture of semiconductor device
JPH0529354A (en) Manufacture of semiconductor device
JPS62160761A (en) Semiconductor device
JPS58164241A (en) Manufacture of semiconductor device
JPH01270270A (en) Manufacture of semiconductor device
JPH03276638A (en) Manufacture of semiconductor device
JPH0399439A (en) Manufacture of semiconductor device
JPH03173439A (en) Semiconductor device
JPH0828372B2 (en) Method for manufacturing heterojunction bipolar transistor