JPS61120586A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS61120586A
JPS61120586A JP59239489A JP23948984A JPS61120586A JP S61120586 A JPS61120586 A JP S61120586A JP 59239489 A JP59239489 A JP 59239489A JP 23948984 A JP23948984 A JP 23948984A JP S61120586 A JPS61120586 A JP S61120586A
Authority
JP
Japan
Prior art keywords
insulation layer
electrode
insulating layer
photoconductive film
inorganic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59239489A
Other languages
Japanese (ja)
Inventor
Kunio Matsumura
松村 邦夫
Kensaku Yano
健作 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59239489A priority Critical patent/JPS61120586A/en
Publication of JPS61120586A publication Critical patent/JPS61120586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent deterioration of a laminated photoconductive film by forming an insulation layer smoothing a rugged plane of a semiconductor substrate with an organic insulation layer and an inorganic insulation layer and to attain ease of taper etching of a contact hole through the structure of the inorganic insulation layer. CONSTITUTION:A scanning part and the 1st electrode 8 are formed on a semiconductor substrate 1 and its surface is made coarse. Then a heat-resistant organic insulation layer 14 is coated on the coarse face and laminated to a height higher than the top of the electrode 8 by nearly 1,000Angstrom . Then the organic insulation layer 14 is formed on the recess of the substrate 1 to form the inorganic insulation layer 15 on the elec trode 8 and the organic insulation layer 14. Then a contact hole 10 is provided to the insulation layer 15, and after an Al-Si is vapor-deposited on the entire face on the insulation layer 15, the 2nd electrode 11 is formed. Then a photoconductive film 12 is laminated on the electrode 11. Since the insulation layer 15 is formed while smoothing the rugged plane of the substrate 1 by the insulation layer 14, it is not required to polish the insulation layer 15. The photoconductive film 12 is not contami nated by the insulation layer 14 by the intervention of the insulation layer 15. Since the contact hole 10 is formed in contact with the insulation layer 15 only, taper etching is attained easily.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光導電膜を積層させた形の固体撮像装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state imaging device in which photoconductive films are laminated.

〔発明の技術的背景〕[Technical background of the invention]

近年、走査部等を形成した半導体基板上に光導電膜を設
け1、この光導電膜で発生した信号電荷を走査部によっ
て読み出す固体撮像装置が開発されている。
In recent years, solid-state imaging devices have been developed in which a photoconductive film is provided on a semiconductor substrate on which a scanning section and the like are formed, and signal charges generated in the photoconductive film are read out by the scanning section.

第3図はこの種の固体撮像装置の一例を示す図であり、
P臘の半導体基板(1)にはn+型の不純物からなるC
ODチャンネル(2)と電荷蓄積部(3)とが隣接して
設けられ、この一体となったものがP+盤のストッパー
領域(4) Cより互い(部分離されている。
FIG. 3 is a diagram showing an example of this type of solid-state imaging device,
The P semiconductor substrate (1) contains C consisting of n+ type impurities.
An OD channel (2) and a charge storage section (3) are provided adjacent to each other, and this integrated structure is separated from each other (partially) by a stopper region (4) C of the P+ board.

そして電荷蓄積部(3)を除いた半導体基板(1)上に
は、ゲート絶縁膜(5)を介してゲート電極(6)が形
成され、更にゲート電極(6)を覆いしかも電荷蓄積部
(3)の一部が露出するように絶縁膜(力が形成されて
いる。
A gate electrode (6) is formed on the semiconductor substrate (1) excluding the charge storage portion (3) via a gate insulating film (5), further covering the gate electrode (6) and covering the charge storage portion ( 3) An insulating film is formed so that a part of it is exposed.

また電荷蓄積部(3)及び絶縁膜(7)上には、第1電
極(8)が1画素ごと(部分離されて形成されている。
Further, on the charge storage section (3) and the insulating film (7), first electrodes (8) are formed for each pixel (partially separated).

こうして半導体基板(1)の表面は凹凸面になっている
が、この凹凸面を平滑化するために、StO,やSi、
N4等の無機絶縁材料或いは耐熱性を有するポリイミド
系の有機絶縁材料からなる絶縁層(9)が形成されてい
る。そして絶縁層(9)の一部にはコンタクトホール四
が設けられ、このコンタクトホール顛を介して第1電極
(8)が電気的(:接続され、更に第1電極(8)及び
絶縁層(9)上には第2電極(Ll)が形成されている
。更に絶縁層(9)及び第2電極伍υ上ζ;は、光導電
膜(13と透光性の第3電極a壕が顆次形成されている
In this way, the surface of the semiconductor substrate (1) has an uneven surface, but in order to smooth this uneven surface, StO, Si, etc.
An insulating layer (9) made of an inorganic insulating material such as N4 or a heat-resistant polyimide-based organic insulating material is formed. A contact hole 4 is provided in a part of the insulating layer (9), and the first electrode (8) is electrically connected through this contact hole. 9) A second electrode (Ll) is formed on the insulating layer (9) and the second electrode 5; Condylar formation.

この固体撮像装置では、第8電極(L:1に所定の電圧
を印加させた状態で光導電膜住1;光が照射されると、
光導電膜@で光電変換された信号電荷が発生するととも
に、この信号電荷は第1電極(8)及び第2電極(11
Jを通って電荷蓄積部(3) C蓄積される。
In this solid-state imaging device, when a photoconductive film 1 is irradiated with a predetermined voltage applied to the eighth electrode (L: 1),
Signal charges photoelectrically converted are generated in the photoconductive film @, and these signal charges are transferred to the first electrode (8) and the second electrode (11).
The charge storage section (3) C is accumulated through J.

そして蓄積された信号電荷は、任意の蓄積時間後1ニゲ
ート電極(6)に重圧を印加することにより、CODチ
ャンネル(2)C読み出される。
The accumulated signal charges are then read out from the COD channel (2)C by applying heavy pressure to the first gate electrode (6) after an arbitrary accumulation time.

〔背景技術の問題点〕[Problems with background technology]

前述の固体撮像装置は、光導電膜aりな形成する際の下
地となる表面の凹凸が絶縁層(9)により低減されてい
るために、形成した光導電膜C1a C内部クラックが
発生しないという利点がある反面、次のような問題点が
あることが明らか(:なった。
The above-mentioned solid-state imaging device has the advantage that cracks do not occur inside the formed photoconductive film C1aC because the unevenness of the underlying surface when forming the photoconductive film C1a is reduced by the insulating layer (9). On the other hand, it is clear that there are the following problems.

即ち例えば絶縁層(9)が無機絶縁材料からなる場合、
絶縁層(9)はスパッタ法や電子ビーム蒸着法等で堆積
させるが、膜厚が10μmli度でも下地となる半導体
基板(1)の凹凸6;影響されて、平坦になりに〈い。
That is, for example, when the insulating layer (9) is made of an inorganic insulating material,
The insulating layer (9) is deposited by sputtering or electron beam evaporation, but even if the film thickness is 10 μm, it is affected by the unevenness of the underlying semiconductor substrate (1) and does not become flat.

故−に平滑化するために研摩を行なうが、研摩の際の精
度が容易に得られず、場合によってはゲート電極(6)
等の走査部を破損する危険も出てくる。
Therefore, polishing is performed to smooth the gate electrode (6), but it is difficult to obtain precision during polishing, and in some cases, the gate electrode (6)
There is also a risk of damaging the scanning unit.

一方、絶縁層(9)が耐熱性を有する有機絶縁材料から
なる場合、絶縁層(9)は溶液製膜法で堆積でき、粘度
を適当に調整すればスピンナーによる回転塗布が可能と
なり、平滑化することは容易である。
On the other hand, when the insulating layer (9) is made of a heat-resistant organic insulating material, the insulating layer (9) can be deposited by a solution film forming method, and if the viscosity is appropriately adjusted, it can be spin-coated with a spinner and smoothed. It's easy to do.

嗅 しかし光導電膜μりは下地の影響を受けやすく、画素と
とに分離された第2電極はり間から露出するのが有機絶
縁材料のときには、これが無機絶縁材料であるときと比
べ、形成された光導電膜0は付着力が弱く、暗比抵抗が
1桁から2桁小さいようになる。これは第2電極αυ間
のリークを引き起こしやすく、解像度や画像の劣化を招
くことを意味している。また有機絶縁材料に含有されて
いる微量の残存溶媒やガス成分等の汚染物質が、光導電
膜(I3+二しだいζ二しみ出していき、光導電y&@
の特性を劣化させて寿命を短くすることもある。
However, the photoconductive film resistance is easily affected by the underlying material, and when an organic insulating material is exposed between the second electrode beams that separate the pixels, it is less likely to be formed than when it is an inorganic insulating material. The photoconductive film 0 has weak adhesion, and its dark specific resistance is one to two orders of magnitude smaller. This means that leakage between the second electrodes αυ is likely to occur, resulting in deterioration of resolution and images. In addition, trace amounts of contaminants such as residual solvents and gas components contained in the organic insulating material seep out from the photoconductive film (I3+2), causing the photoconductive
It may also deteriorate the characteristics of the product and shorten its lifespan.

〔発明の目的〕[Purpose of the invention]

本発明はこのような従来の欠点を解決するためになされ
たもので、光導電膜の特性の劣下な防ぎ且つ第14を極
と第2′:/l極との電気的接続を良好(ニすることの
可能な固体撮像装置の提供を目的とする。
The present invention has been made to solve these conventional drawbacks, and it is possible to prevent the deterioration of the characteristics of the photoconductive film and to improve the electrical connection between the 14th pole and the 2':/1 pole. The purpose of the present invention is to provide a solid-state imaging device that can perform two functions.

〔発明の概要〕[Summary of the invention]

即ち本発明は、走査部及び第1″2に極が形成されて表
面が凹凸面(ニなっている半導体基板と、この凹凸面の
凹部に形成された耐熱性を有する有機絶縁層と、第1゛
峨極及びM機絶縁層上に形成された無機絶縁ノーと、無
機絶縁層の一部に設けられたコンタクトホールを介して
第1電極と電気的に接続されている第2電極と、第2電
極側(:積層された光導電膜と、光導電膜上(:形成さ
れた透光性の第8電極とを備えたことを特徴とする固体
撮像装置である。
That is, the present invention provides a semiconductor substrate having an uneven surface (concave and convex) with poles formed on the scanning section and the first and second parts, a heat-resistant organic insulating layer formed in the concave portions of the uneven surface, and an inorganic insulating node formed on the 1st electrode and the M organic insulating layer, and a second electrode electrically connected to the first electrode via a contact hole provided in a part of the inorganic insulating layer; This is a solid-state imaging device characterized by comprising a photoconductive film laminated on the second electrode side and a translucent eighth electrode formed on the photoconductive film.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細を図面を参照して説明する。 The details of the present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例を示す図であり、第8図と同
じ部分には同一の符号を付しである。この実施例は第1
図に示すように、P型の半導体基板(1)にallの不
純物からなるCODチャンネル(2)と電荷蓄積部(3
)とが隣接して設けられ、この一体となったものがP型
のストッパー領域(4) cより互いC部分離されてい
る。そして電荷蓄積部(3)を除いた半導体基板(1)
上には、ゲート絶縁膜(5)を介してゲート電極(6)
が形成され、更Cニゲート電極(6)を覆いしかも電荷
蓄積部(3)の一部が露出するよう≦二絶縁膜(7)が
形成されている。また電荷蓄積部(3)及び絶縁膜(7
)上には、第1電極(8)が1画素ごとに分離されて形
成されている。こうして半導体基板(1)は走査部及び
第1電極(8)が形成されて表面が凹凸面6二なってい
る。
FIG. 1 is a diagram showing an embodiment of the present invention, and the same parts as in FIG. 8 are given the same reference numerals. This example is the first
As shown in the figure, a P-type semiconductor substrate (1) has a COD channel (2) made of all impurities and a charge storage part (3).
) are provided adjacent to each other, and this integrated structure is separated from each other by a distance C from the P-type stopper region (4) c. And the semiconductor substrate (1) excluding the charge storage part (3)
A gate electrode (6) is formed on the top via a gate insulating film (5).
is formed, and a ≦2 insulating film (7) is formed so as to cover the C ngate electrode (6) and expose a part of the charge storage part (3). In addition, the charge storage part (3) and the insulating film (7)
), a first electrode (8) is formed separately for each pixel. In this way, the scanning portion and the first electrode (8) are formed on the semiconductor substrate (1), and the surface thereof becomes an uneven surface 62.

そしてこの凹凸面上に耐熱性を有する有機絶縁層a◆例
えばポリ゛イミドをスピンナーで回転塗布して、第1電
極(8)の頂部より1000λ根度高い部分まで形成す
る。次にドライエツチング法により、有機絶縁層Iの全
面エツチングを進行状態を制御しながら行なう。なおこ
のエツチングの制御は、有機絶縁層Iの光の反射率の変
化を測定して行ない、第1電極(8)の頂部が500 
i程度の厚さく二露出した状態で完了させる。次に半導
体基板(1)を真空炉に人れて約400Cの温度で約1
時間ベーキングして、有機絶縁層Iの固化及び脱ガスを
行なう。このとき有機絶縁層Iから水分や残存溶媒等が
ガスとして放出されるが、完全に除去できるのではなく
長期的には有機絶縁層Iの狭面(ニジみ出す。こうして
半導体基板(1)の凹凸面の凹部に有機絶縁層(14)
が形成される。次6:第1電極(8)及び有機絶縁層I
上に、無機絶縁層(LS例えば別11N4が形成される
。この無機絶縁層USは圧力1.0Torr、温度25
0C及び電力4Wの条件下で3iH4,Hl及びNH8
の3種類のガスをグロー放電分解し、xoooi程度の
厚さに堆積する。次に無機絶縁層a$の所定の位置に、
ケミカルドライエツチングによりコンタクトホールα0
を設ける。続いて人4−81を無機絶縁tfj (15
上等の全面C:蒸着した後、所定の形状にエツチングし
て第2電極Iが形成される。この第2電極αηは無機絶
縁層aりの一部に設けられたコンタクトホール(1Gを
介して、第1電極(8)と電気的に接続される。次(:
第2電極aυ側即ち無機絶縁層(15及び第2電極μυ
上に、光導電膜(Lのとしてアモルファスシリコン膜が
積層される。この光導電膜0は圧力2.0Torr。
Then, a heat-resistant organic insulating layer a◆, for example, polyimide, is spin-coated on this uneven surface using a spinner to form a portion 1000λ higher than the top of the first electrode (8). Next, the entire surface of the organic insulating layer I is etched by a dry etching method while controlling the progress. Note that this etching is controlled by measuring changes in the light reflectance of the organic insulating layer I, and the top of the first electrode (8) is
Complete the process with a thickness of approximately i exposed. Next, the semiconductor substrate (1) is placed in a vacuum furnace at a temperature of about 400C for about 1
Baking is performed for a period of time to solidify and degas the organic insulating layer I. At this time, moisture, residual solvent, etc. are released from the organic insulating layer I as a gas, but it cannot be completely removed, and in the long term, the organic insulating layer I will seep out from the narrow surface (narrow surface) of the semiconductor substrate (1). Organic insulating layer (14) in the concave part of the uneven surface
is formed. Next 6: First electrode (8) and organic insulating layer I
On top, an inorganic insulating layer (LS, for example, another 11N4) is formed. This inorganic insulating layer US is heated at a pressure of 1.0 Torr and a temperature of 25
3iH4, Hl and NH8 under the conditions of 0C and power 4W
The three types of gases are decomposed by glow discharge and deposited to a thickness of about xoooi. Next, at a predetermined position of the inorganic insulating layer a$,
Contact hole α0 by chemical dry etching
will be established. Next, person 4-81 was inorganic insulated tfj (15
Upper entire surface C: After vapor deposition, the second electrode I is formed by etching into a predetermined shape. This second electrode αη is electrically connected to the first electrode (8) through a contact hole (1G) provided in a part of the inorganic insulating layer a.
The second electrode aυ side, that is, the inorganic insulating layer (15 and the second electrode μυ
An amorphous silicon film is laminated thereon as a photoconductive film (L).The pressure of this photoconductive film 0 is 2.0 Torr.

温度250C及び電力8Wの条件下で、Hlを10チ希
釈した8iH4にto ppm程度のBtHaを混合し
たガスをグロー放電分解し″′c8μm程度の厚さく;
堆積し、暗比抵抗がlO〜lOΩαぐらいになる。そし
て光導電膜αの上口は、透光性の第3電極(13として
ITOをスパッタリングで形成し、所望の固体撮像装置
が得られる。
Under conditions of temperature 250C and power 8W, glow discharge decomposition of 8iH4 diluted with 10% Hl and up to ppm of BtHa is performed to a thickness of about 8μm;
The dark resistivity becomes about 10 to 10Ωα. Then, at the upper end of the photoconductive film α, ITO is formed as a transparent third electrode (13) by sputtering, and a desired solid-state imaging device is obtained.

この実施例は半導体基板(1)の凹凸面を有機絶縁層(
9,)である程度まで平滑化してから無機絶縁層Qjを
形成しているので、無機絶縁層(Isを研摩する必要は
なくなる。また有機絶縁層<14)と光導電膜俣りとの
間には無機絶縁層(USがはさまれているので、光導電
膜@が有機絶縁層(14)1:より汚染されるのを防止
することができ、しかも光導電膜(Lりは撮像動作を行
なうにあたり充分に高い暗比抵抗を得られるよう一部な
る。更C:コンタクトホール顛は無機絶縁層μm;だけ
接して形成されるので、テーパを付けたり大きさを制御
したりすることが容易になり、第1電極(8)と第2電
極Iとの間の電気的不良が少なくなる。
In this example, the uneven surface of the semiconductor substrate (1) is covered with an organic insulating layer (
Since the inorganic insulating layer Qj is formed after being smoothed to a certain extent by step 9,), there is no need to polish the inorganic insulating layer (Is). Since the inorganic insulating layer (US) is sandwiched between the photoconductive film and the organic insulating layer (14), it is possible to prevent the photoconductive film from being contaminated by the organic insulating layer (14). C: Since the contact hole is formed in contact with the inorganic insulating layer by μm, it is easy to taper and control the size. Therefore, electrical defects between the first electrode (8) and the second electrode I are reduced.

〔発明の他の実施例〕[Other embodiments of the invention]

第2図は本発明の他の実施例を示す因であり、第1図と
同じ部分には同一の符号を付しである。
FIG. 2 shows another embodiment of the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

この実施例は第1図に示した実施例と比べると、無機絶
縁層の部分が異なっている以外はほぼ同じ構造であるの
で、無機絶縁層の部分に限定して説明する。この実施例
では、無機絶縁層端は複数個例えば2個の層からなり、
この2層は第1電極(8)に近い側から順に厚さ約10
00^のSiNからなる第1無機絶縁層(161)、及
び厚さ約10001の8 +01からなる第2無機絶縁
層(ISt)である。そしてこの2層はと@CC501
H,ガスを主原料とするグロー放電分解法により形成さ
れ、コンタクトホール(IIを形成する際のドライエツ
チングに対するエツチングレートは、第1無機絶縁層(
161)の方が′!JI2無機NA縁層(16りより大
きい。
This embodiment has almost the same structure as the embodiment shown in FIG. 1 except for the inorganic insulating layer, so the explanation will be limited to the inorganic insulating layer. In this embodiment, the inorganic insulating layer end consists of a plurality of layers, for example two layers,
These two layers have a thickness of approximately 10 mm in order from the side closest to the first electrode (8).
A first inorganic insulating layer (161) made of 00^ SiN, and a second inorganic insulating layer (ISt) made of 8+01 with a thickness of about 10001. And these two layers are @CC501
The etching rate for the dry etching when forming the contact hole (II) is the same as that of the first inorganic insulating layer (II).
161) is better! JI2 inorganic NA edge layer (larger than 16 mm).

この実施例は第1図に示した実施例と同様の効果がある
ばかりでなく、無機絶縁層αeの部分を厚く形成してピ
ンホールをなくすことができ、第1電極(8)と第2電
極仏υが電気的に短絡するのを防げる。これに対して第
1図に示すものでは、無機絶縁層(至)は単一の層であ
るので、単純C:厚く形成するとコンタクトホールa1
のテーパ角が急峻になる関係で都合が悪い。また無機絶
縁層αeは、エツチングレートの異なる異種の層(16
1)、 (16りが第1電極(8)に近い側から順Cニ
エッチングレートが大きくなるようシー基べられている
ので、緩やかなテーパ角をもつテーパエツチングができ
、第1電極(8)と第2電極α■の良好な電気的接続を
可能にする。
This embodiment not only has the same effect as the embodiment shown in FIG. This prevents the electrode υ from being electrically shorted. On the other hand, in the case shown in FIG. 1, the inorganic insulating layer (to) is a single layer, so simple C: if it is formed thickly, the contact hole a1
This is inconvenient because the taper angle becomes steep. In addition, the inorganic insulating layer αe is a different type of layer (16
1), (16) are sea-based so that the C etching rate increases in order from the side closer to the first electrode (8), so taper etching with a gentle taper angle is possible, and ) and the second electrode α■.

また図には示さないが、第2電極aυ及び第2電極aυ
間から露出する無機絶縁層(lEe上に、電極コーティ
ング層として例えば厚さxboii度のSiCをグロー
放電分解法により形成してもよい。こうすると第2電極
(l])と光導電膜(13との界面反応が起こらないの
で、光導電膜@の特性がより向上する。
Although not shown in the figure, the second electrode aυ and the second electrode aυ
On the inorganic insulating layer (1Ee) exposed from between, SiC having a thickness of, for example, xboii degrees may be formed as an electrode coating layer by a glow discharge decomposition method. Since no interfacial reaction occurs with the photoconductive film, the properties of the photoconductive film are further improved.

ただし光導成膜uり内に発生した信号電荷が第2電極住
υに到達するように、電極コーティング層の厚さは20
0Å以下(ニすることが望ましい。
However, the thickness of the electrode coating layer is 20 mm so that the signal charge generated within the photoconductive film reaches the second electrode layer.
0 Å or less (preferably 2).

なお上述した実施例においては、光導電膜(lりとして
アモルファスシリコンの例を述べたが、これに限らず撮
像管用の光電変換材料として用いられるSb、S、 、
 8e −As −Te 、 Cd8e及びCdZnT
e等も使用できることは明らかであり、In8b 、 
Pb8nTe及びCdHgHe等の赤外用光電材料も使
用できる。
In the above-described embodiments, amorphous silicon was used as the photoconductive film; however, the present invention is not limited to this, and Sb, S,
8e-As-Te, Cd8e and CdZnT
It is clear that In8b, etc. can also be used.
Infrared photoelectric materials such as Pb8nTe and CdHgHe can also be used.

また走査部としてもインターライン転送形CODの例を
示したが、これに限定されるものではなくフレーム転送
形CCD、MO8形CID、BBD或いはこれらの組合
せでもよい。
Further, although an interline transfer type COD is shown as an example of the scanning unit, the present invention is not limited to this, and a frame transfer type CCD, MO8 type CID, BBD, or a combination thereof may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の固体撮像装置は、半導体基
板の凹凸面を平滑化する絶縁層が有機絶縁層と無機絶縁
層とからなるので、積層する光導電膜の劣下を防ぐこと
ができる。また無機絶縁層の構造を工夫することにより
、第1電極と第2電極とを電気的に接続するだめのコン
タクトホールなうまくテーパエツチングできる。
As explained above, in the solid-state imaging device of the present invention, since the insulating layer that smoothes the uneven surface of the semiconductor substrate is composed of an organic insulating layer and an inorganic insulating layer, deterioration of the laminated photoconductive film can be prevented. . Furthermore, by devising the structure of the inorganic insulating layer, a contact hole for electrically connecting the first electrode and the second electrode can be etched with a good taper.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は本発明の一実施例を示す図、第8図は
従来の固体撮像装置の一例を示す凶である。 (1)・・・半導体基板 (Ll)・・・第2電極 Cl7J・・・光導電膜 住J・・・′!J18磁極 (14)・・・有機絶縁層 四、 (Le・・・無機絶縁層 代理人 弁理士  則 近 憲 佑 (ほか1名)第 
 1 図 第2図 第3図 手続補正書(自発) 昭和6oヂ。、^ 日
1 and 2 are diagrams showing an embodiment of the present invention, and FIG. 8 is a diagram showing an example of a conventional solid-state imaging device. (1)...Semiconductor substrate (Ll)...Second electrode Cl7J...Photoconductive film J...'! J18 magnetic pole (14)...Organic insulating layer 4, (Le...Inorganic insulating layer Agent Patent attorney Noriyuki Chika (and 1 other person) No.
1 Figure 2 Figure 3 Procedural amendment (voluntary) Showa 6 oji. , ^ day

Claims (2)

【特許請求の範囲】[Claims] (1)走査部及び第1電極が形成されて表面が凹凸面に
なつている半導体基板と、前記凹凸面の凹部に形成され
た耐熱性を有する有機絶縁層と、前記第1電極及び前記
有機絶縁層上に形成された無機絶縁層と、前記無機絶縁
層の一部に設けられたコンタクトホールを介して前記第
1電極と電気的に接続されている第2電極と、前記第2
電極側に積層された光導電膜と、前記光導電膜上に形成
された透光性の第3電極とを備えたことを特徴とする固
体撮像装置。
(1) A semiconductor substrate having an uneven surface on which a scanning portion and a first electrode are formed; a heat-resistant organic insulating layer formed in the recesses of the uneven surface; an inorganic insulating layer formed on an insulating layer; a second electrode electrically connected to the first electrode via a contact hole provided in a part of the inorganic insulating layer;
A solid-state imaging device comprising: a photoconductive film laminated on an electrode side; and a translucent third electrode formed on the photoconductive film.
(2)前記無機絶縁層は複数個の層からなり、この各層
は前記第1電極に近い側から順にエッチングレートが大
きくなるように並べられていることを特徴とする特許請
求の範囲第1項記載の固体撮像装置。
(2) The inorganic insulating layer is composed of a plurality of layers, and each layer is arranged so that the etching rate increases in order from the side closer to the first electrode. The solid-state imaging device described.
JP59239489A 1984-11-15 1984-11-15 Solid-state image pickup device Pending JPS61120586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59239489A JPS61120586A (en) 1984-11-15 1984-11-15 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59239489A JPS61120586A (en) 1984-11-15 1984-11-15 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS61120586A true JPS61120586A (en) 1986-06-07

Family

ID=17045535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59239489A Pending JPS61120586A (en) 1984-11-15 1984-11-15 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS61120586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099933A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Radiograph detector
JP4755285B2 (en) * 2006-11-30 2011-08-24 シュタビロ インターナツィオナール ゲーエムベーハー pen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755285B2 (en) * 2006-11-30 2011-08-24 シュタビロ インターナツィオナール ゲーエムベーハー pen
JP2009099933A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Radiograph detector

Similar Documents

Publication Publication Date Title
US6072554A (en) In-plane switching type liquid crystal display wherein the upper surface of the first substate having a raised portion
JPH04163528A (en) Active matrix display
US4608749A (en) Method of manufacturing a solid-state image pickup device
JPS6464355A (en) Solid-state image sensing device and its manufacture
EP0851499A2 (en) Photosensitive imager contact
JPH10214954A (en) Radiation image pickup device
JPS61120586A (en) Solid-state image pickup device
JPH0135351B2 (en)
JPS57115880A (en) Thin film image pickup device in two dimensions
JPS6047574A (en) Solid-state image pickup device
JPS5742174A (en) Solid image pickup device
JPS6051376A (en) Solid-state image pickup device
JPS61212056A (en) Solid state image pickup device
JPH01291460A (en) Solid-stage image sensing device
JPS6386474A (en) Solid-state image sensing device
JPH03278437A (en) Thin film semiconductor device and manufacture thereof
JPS59119760A (en) Solid-state image pickup element
JPH0360156A (en) Solid-state image sensing device
JPS61142770A (en) Solid state image pickup element
JPS63208269A (en) Solid-state image sensing device
JPS61206258A (en) Solid-state image pickup device
JPS61206257A (en) Solid-state image pickup device
JPH02260570A (en) Polycrystalline silicon film transistor
JPS6381952A (en) Manufacture of semiconductor device
JPH01183847A (en) Unmagnifying image sensor