JPS6112033A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6112033A
JPS6112033A JP59132771A JP13277184A JPS6112033A JP S6112033 A JPS6112033 A JP S6112033A JP 59132771 A JP59132771 A JP 59132771A JP 13277184 A JP13277184 A JP 13277184A JP S6112033 A JPS6112033 A JP S6112033A
Authority
JP
Japan
Prior art keywords
film
concentration
qss
psg
silicate glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59132771A
Other languages
Japanese (ja)
Other versions
JPH0715904B2 (en
Inventor
Hisayoshi Yamoto
久良 矢元
Hisao Hayashi
久雄 林
Kazuyoshi Kobayashi
和好 小林
Hisaharu Kiyota
清田 久晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59132771A priority Critical patent/JPH0715904B2/en
Publication of JPS6112033A publication Critical patent/JPS6112033A/en
Publication of JPH0715904B2 publication Critical patent/JPH0715904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To suppress the increase of interfacial charge density Qss as well as to effectively prevent the generation of adverse effect of the deterioration of insulating characteristics of an element isolation region by a method wherein a high density PSG film having the concentration of P of a specific value or above is provided. CONSTITUTION:A silicate glass of one or more layers containing 5wt% or more of P is provided between a protective film 3 and a plasma SiN film 10 in the semiconductor device having a silicate glass 6 of one or more layers containing 5wt% or less of impurities such as As, Sb or P and the like and an SiN film 10 formed in deposition by performing a plasma CVD method provided on the protective film 3 of SiO2 and the like formed on the semiconductor substrate 1 of Si and the like. By providing said high density PSG film 9, the H contained in the plasma SiN film is moved when an annealing and the like is performed, and H is prevented from reaching the semiconductor substrate by the high density PSG film, thereby enabling to substantially reduce the charge density Qss located on the interface between the semiconductor substrate 1 and the protective film 3 3 of SiO2 and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板に複数個のMOS  FET等の
素子が形成された半導体装置に関し、特に、基板上に不
純物含有シリケート・ガラス膜および窒化シリコン膜を
有する半導体装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor device in which a plurality of elements such as MOS FETs are formed on a semiconductor substrate, and in particular, the present invention relates to a semiconductor device in which a plurality of elements such as MOS FETs are formed on a semiconductor substrate. The present invention relates to a semiconductor device having a silicon film.

〔背景技術およびその問題点〕[Background technology and its problems]

例えば、NチャンネルMO8型FgT(電界効果トラン
ジスタ)あるいはバイポーラ・トランジスタを有するI
C(集積回路)やLSI(大規模集積回路)等の半導体
装置において、半導体基板上にAs5G(砒素シリケー
ト・ガラス)あるいはSb’SG(アンチモン引シリケ
ート・ガラス)等ヨり成るリフロー膜を形成し、ざら番
ここのりフロー膜上に直接あるいは8i(h層を介して
プラズマSiN  (窒化シリコン)膜を形成した構造
が知られている。
For example, an N-channel MO8 type FgT (field effect transistor) or an I
In semiconductor devices such as C (integrated circuits) and LSI (large scale integrated circuits), a reflow film made of As5G (arsenic silicate glass) or Sb'SG (antimony-based silicate glass) is formed on the semiconductor substrate. A structure is known in which a plasma SiN (silicon nitride) film is formed directly or via an 8i (h layer) on a flow film.

すなわち、第8図はこのような半導体装置の一例として
、NチャンネルMO8型FET素子30゜30を有する
ICあるいはLSIの一部を示している。この第8図に
おいて、例えばN型シリコン半導体基板31の表面に臨
んでP型拡散領域32が形成され、このP型領域32の
表面に臨んで上記FET素子30.30のソース、ドレ
イン領域となるN型領域が拡散法等により形成されてい
る。
That is, FIG. 8 shows a part of an IC or LSI having an N-channel MO8 type FET element 30.degree. 30 as an example of such a semiconductor device. In FIG. 8, for example, a P-type diffusion region 32 is formed facing the surface of an N-type silicon semiconductor substrate 31, and facing the surface of this P-type region 32 becomes the source and drain regions of the FET element 30, 30. An N-type region is formed by a diffusion method or the like.

ここで、P型領域32の表面には選択酸化法等により8
i(hの絶縁保護膜33を形成し、この保護膜33上を
こPo1y−8i (多結晶シリコン)より成るゲート
電極34や配線電極35等を形成した後、As5G(砒
素シリケート・ガラス)あるいは5b8G (アンチモ
ン・シリケート・ガラス)のリフロー膜36を形成して
いる。この例えばAs5Gのりフロー膜36は、比較的
低温でリフロー処理が行え、AIアルミニウム)電極3
5等を形成したときのAlの腐蝕やマイグレーションに
よる悪影響が少く配線の信頼性が高い等の特長を有して
いる。次に、As5G!Jフロー膜36上に、必要に応
じてAlt極31等を形成した後、表面安定化(パシベ
ーション)用の5iN(窒化シリコン)膜38をプラズ
マCVD法により被着形成する。このプラズマSiN膜
38は、耐湿性や化学的安定性あるいは物理的安定性に
優れ、また比較的低温で被着形成が行えるという利点を
有している。
Here, the surface of the P-type region 32 is oxidized by selective oxidation or the like.
After forming an insulating protective film 33 of i (h) and forming a gate electrode 34 and wiring electrodes 35 made of Po1y-8i (polycrystalline silicon) on this protective film 33, As5G (arsenic silicate glass) or A reflow film 36 of 5b8G (antimony silicate glass) is formed.For example, this As5G glue flow film 36 can be reflowed at a relatively low temperature,
It has features such as less adverse effects due to corrosion and migration of Al when forming 5 etc., and high reliability of wiring. Next, As5G! After forming an Alt electrode 31 and the like on the J flow film 36 as necessary, a 5iN (silicon nitride) film 38 for surface stabilization (passivation) is deposited by plasma CVD. This plasma SiN film 38 has excellent moisture resistance, chemical stability, and physical stability, and has the advantage that it can be deposited at a relatively low temperature.

ところで、このようなAs5Gリフロー膜36上にプラ
ズマSiN膜38を積層形成した構造において、いわゆ
るフォーミング・アニール処理を例えば350〜450
℃の温度範囲で30分〜120分程度行うと、基板のS
iと5in2絶縁保護膜33との界面に存在する電荷の
密度Qssが著るしく増大し、特に各PET素子30.
30間の素子分離領域39の界面電荷密度QSsが増加
することによって、素子間の絶縁分離が有効に行えなく
なる。
By the way, in the structure in which the plasma SiN film 38 is laminated on the As5G reflow film 36, the so-called forming annealing treatment is performed at a temperature of 350 to 450, for example.
When carried out for about 30 to 120 minutes in the temperature range of ℃, the S of the substrate
The charge density Qss existing at the interface between the 5in2 insulating protective film 33 and the PET element 30.
As the interfacial charge density QSs of the element isolation region 39 between the elements 30 increases, it becomes impossible to effectively isolate the elements.

すなわち、通常のQssの値は1〜5X10cm程度で
あるのに対し、上記構成におけるQssの値は1〜5X
10cm  にも達し、素子分離領域39が略導通状態
に近くなってしまう。
That is, while the normal Qss value is about 1~5X10cm, the Qss value in the above configuration is about 1~5X10cm.
The distance reaches as much as 10 cm 2 , and the element isolation region 39 becomes nearly conductive.

これは、プラズマSiN膜38が〔H〕(水素)を5〜
20重量%と比較的多量に含んでいる点、および上記リ
フロー膜36となるAs5Gあるいは5bso等をCV
D形成するときのソース・ガスにAs(J?aやSbC
/g等のCZ (塩素)系ガス゛を用いている点が原因
となって、上記アニール処理時ニ、プラズマSiN膜3
8の[H]が移動し、途中のりフロー膜36に捕えられ
ることな(Si(基板)−8iOz(保護膜)界面にま
で到達して電荷として蓄積され、いわゆるフィールド反
転現象が生じて上記素子分離領域の5i−8iOz界面
に擬似的なNいる。
This means that the plasma SiN film 38 absorbs 5 to 5 [H] (hydrogen).
It contains a relatively large amount of 20% by weight, and CV
As (J?a or SbC) is used as the source gas when forming D.
Due to the fact that a CZ (chlorine)-based gas such as /g is used, the plasma SiN film 3
[H] of 8 moves and is not captured by the flow film 36 on the way (reaches the Si (substrate)-8iOz (protective film) interface and is accumulated as a charge, causing a so-called field reversal phenomenon and Pseudo N is present at the 5i-8iOz interface in the separation region.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の実情に鑑みてなされたものであり、A
s5G等のシリケート・ガラスによるリフロー膜と、プ
ラズマSiN膜とが積層形成された半導体装置における
素子分離領域の5i−8iCh界面電界密度Qssの増
大を抑え、素子間の分離に悪影響を与えることのない半
導体装置の提供を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and
Suppressing the increase in the 5i-8iCh interfacial electric field density Qss in the element isolation region in a semiconductor device in which a reflow film made of silicate glass such as s5G and a plasma SiN film are laminated, without adversely affecting the isolation between elements. The purpose is to provide semiconductor devices.

〔発明の概要〕[Summary of the invention]

すなわち、本発明に係る半導体装置の特徴は、Si  
(シリコン)等の半導体基板上に形成した810□等の
保護膜上に、As (砒素)、 sb(アンチモン)あ
るいは不純物等の不純物を5重量係未満含む少くとも一
層のシリケート・ガラス膜と、プラズマCVD法により
被着形成した5iN(窒化シリコン)膜とを有する半導
体装置において、上記保護膜と上記プラズマ8iN膜と
の間2に、不純物を5重量%以上含むシリケート、・ガ
ラス膜を少くとも一層設けて成ることである。この高濃
度PSG(P濃度5重量%以上の燐シリケート・ガラス
)膜を設けることにより、上記半導体基板と上記5i0
2等の保護膜との界面に存在する電荷の密度Qss を
大幅に(従来に比べて略1桁以上)低減する′ことが可
能となる。これは、上記プラズマSiN膜に含まれる〔
H〕(水素)がアニール処理時等に移動して上記半導体
基板に到達することを上記高濃度PSG膜が阻止するた
めである。
That is, the feature of the semiconductor device according to the present invention is that Si
At least one layer of silicate glass film containing impurities such as As (arsenic), SB (antimony), or impurities of less than 5% by weight on a protective film such as 810□ formed on a semiconductor substrate such as (silicon); In a semiconductor device having a 5iN (silicon nitride) film deposited by a plasma CVD method, at least a silicate or glass film containing 5% by weight or more of impurities is provided between the protective film and the plasma 8iN film. It is necessary to further establish this. By providing this high concentration PSG (phosphorus silicate glass with a P concentration of 5% by weight or more) film, the semiconductor substrate and the 5i0
It becomes possible to significantly reduce the charge density Qss existing at the interface with the protective film 2 and the like (approximately one order of magnitude or more compared to the conventional method). This is included in the plasma SiN film [
This is because the high concentration PSG film prevents H] (hydrogen) from moving during annealing treatment and reaching the semiconductor substrate.

〔実施例〕〔Example〕

以下、本発明に係る好ましい実施例について、図面を参
照しながら説明する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例を示す概略断面図であり
、Si半導体基板1のP型領域の表面に臨んで、N型の
ソース領域2Sおよびドレイン領域2Dが例えば拡散法
等によりそれぞれ複数組形成されている。これらのソー
ス領域2Sとドレイン領域2Dとで挾まれた能動領域の
上方には、膜厚の薄いS ioz等より成るゲート絶縁
膜3Gを介してPo1y−8i (多結晶シリコン)よ
り成るゲート電極4が形成されている。ここで、ゲート
絶縁膜3Gについては、Si基板表面に対して例えば選
択酸化法を施すことにより、他の部分の膜厚の厚い(例
えば3000〜8000A程度の)フィールド絶縁膜3
Fとともに形成すればよい。フィールド絶縁膜3F上に
は、必要に応じて例えばPo1y−8iより成る配線電
極5を形成しておけばよい。
FIG. 1 is a schematic cross-sectional view showing a first embodiment of the present invention, in which an N-type source region 2S and a drain region 2D are formed by, for example, a diffusion method, facing the surface of a P-type region of a Si semiconductor substrate 1. Multiple sets of each are formed. Above the active region sandwiched between the source region 2S and drain region 2D, a gate electrode 4 made of Po1y-8i (polycrystalline silicon) is connected via a thin gate insulating film 3G made of Sioz or the like. is formed. Here, as for the gate insulating film 3G, by performing, for example, selective oxidation on the surface of the Si substrate, the field insulating film 3G is thicker (for example, about 3000 to 8000 Å) in other parts.
It may be formed together with F. A wiring electrode 5 made of, for example, Poly-8i may be formed on the field insulating film 3F, if necessary.

これらのゲート絶縁膜3Gおよびフィールド絶縁膜3F
より成る絶縁保護膜3上には、As5G(砒素シリケー
ト・ガラス)が例えばCVD法により3000〜800
0A程度に被着形成され、その後、例えば900℃、1
0分間程度の加熱によるリフロー処理(あるいはガラス
・フロー処理)が施されて、As5G!Jフロー膜6が
形成されている。
These gate insulating film 3G and field insulating film 3F
On the insulating protective film 3, As5G (arsenic silicate glass) is deposited, for example, by CVD to
It is deposited to about 0A, and then heated at 900°C for 1
After being subjected to reflow treatment (or glass flow treatment) by heating for about 0 minutes, As5G! A J flow membrane 6 is formed.

このリフロー処理は、上記加熱時のガラスの流動現象を
利用して、エツチング縁部等の段部の傾斜をゆるくし、
断線等を防止するためのものである。
This reflow process uses the above-mentioned flow phenomenon of glass during heating to loosen the slope of steps such as etching edges.
This is to prevent wire breakage, etc.

なお、例えばこのリフロー処理前の上記As5G被着形
成後には、ソース、ドレイン各領域28゜2Dに対する
コンタクト用の窓開は処理が施され、ソース、ドレイン
各電極78.7Dが形成されることにより、Nチャンネ
ルMO8型FET(電界効果トランジスタ)の素子が形
成されるわけである。
For example, after the As5G deposition is performed before this reflow treatment, contact window openings for the source and drain regions 28.7D are processed, and the source and drain electrodes 78.7D are formed. , an N-channel MO8 type FET (field effect transistor) element is formed.

以上の構成は従来と同様であり、上述した製法に限定さ
れず、また膜厚等も従来と同様に設定すればよい。
The above configuration is the same as the conventional one, and is not limited to the manufacturing method described above, and the film thickness and the like may be set in the same manner as the conventional one.

次に、ASSG膜6を例えば眉間絶縁膜として兼用し、
このAs SG膜6上に必要に応じてAA (アルミニ
ウム)等より成る配線電極8aを形成した後、pso(
燐シリケート・ガラス)を例えばCVD法等により被着
形成することにより、PSGSeO2成している。この
ときのPSGSeO2みは3000〜8000Aとして
おり、不純物の濃度は5重量%以上としている。こΦP
濃度は、後述するように7〜12重量%の範囲とするこ
とが好ましく、さらに野積しくは9〜12重量%の範囲
とすることである。
Next, the ASSG film 6 is also used as, for example, an insulating film between the eyebrows,
After forming a wiring electrode 8a made of AA (aluminum) or the like on this AsSG film 6 as necessary, pso(
PSGSeO2 is formed by depositing a phosphorus silicate glass (phosphorus silicate glass) by, for example, a CVD method. At this time, the PSGSeO2 concentration was set to 3000 to 8000 A, and the impurity concentration was set to 5% by weight or more. ThisΦP
The concentration is preferably in the range of 7 to 12% by weight, more preferably in the range of 9 to 12% by weight, as described below.

次に、PSG膜9上に、必要に応じてA1等より成る配
線電極8bを形成した後、プラズマCVD法により5i
N(窒化シリコン)膜10を例えば〜 8000〜12000A(0,8〜1.2μ771)程
度の厚さに被着形成する。
Next, after forming a wiring electrode 8b made of A1 or the like as necessary on the PSG film 9, a 5i
A N (silicon nitride) film 10 is deposited to a thickness of approximately 8,000 to 12,000 Å (0.8 to 1.2 μ771), for example.

以上のような構造、すなわち、最上層から順に、プラズ
マS iN、=PSG−AsSG−81o2−8 i基
板、の構造を有する半導体装置において、PSGSeO
2(燐)濃度を変化させたときの5iCh−8i界面電
荷密度Qssを測定した結果、第2図のようなグラフが
得られた。この第2図において、縦軸は単位面積(1c
m)当りの界面電荷Qssを対数目盛で表わし、横軸は
P濃度を重量係で表わしている。この第2図のグラフか
らも明らかなように、Pを含有しない(P濃度が0重量
%の)シリケート・ガ。
In a semiconductor device having the above structure, that is, from the top layer to the plasma SiN=PSG-AsSG-81o2-8i substrate, PSGSeO
As a result of measuring the 5iCh-8i interfacial charge density Qss when changing the 2 (phosphorus) concentration, a graph as shown in FIG. 2 was obtained. In this Figure 2, the vertical axis is the unit area (1c
The interfacial charge Qss per m) is expressed on a logarithmic scale, and the horizontal axis expresses the P concentration on a weight scale. As is clear from the graph in FIG. 2, this is a silicate gas that does not contain P (P concentration is 0% by weight).

ラス膜では、2 X 1 (Fcm”以上ものQssを
有しているのに対し、P濃度が5重量%以上のPSG膜
を用いた場合には、Qssは約1桁以上減少しく1/1
0以下となり)、良好な結果が得られている。ここで実
用上は、Qssの値が略10Cm  程度以下となるP
濃度7重量%以上が好ましく、また、A/配線電極の層
間絶縁膜として用いる場合のAAの腐蝕を考慮してP濃
度12重量%以下とすることが好ましい。さらに好まし
くは、P濃度が9重責チ以主、12重量%以下の範囲で
ある。
The PSG film has a Qss of 2×1 (Fcm” or more), but when a PSG film with a P concentration of 5% by weight or more is used, the Qss decreases by about one order of magnitude or more, and is reduced to 1/1.
0 or less), and good results have been obtained. In practical terms, the value of Qss is approximately 10Cm or less.
The P concentration is preferably 7% by weight or more, and in consideration of corrosion of AA when used as an interlayer insulating film for A/wiring electrodes, the P concentration is preferably 12% by weight or less. More preferably, the P concentration is in the range of 9 or more and 12% by weight or less.

ここで、上記As5GIJフロー膜6の代りに、5bS
G (アンチモン・シリケート・ガラス)リフロー処理
やPSG4Jフ占−膜等を用いてもよく、また、As8
G膜、5bSG膜、PSG膜の多層構造を用いてもよい
。これらのシリケート・ガラス膜の不純物(As、Sb
、P等)の濃度は、一般に5重量%未満となっている。
Here, instead of the As5GIJ flow membrane 6, 5bS
G (antimony silicate glass) reflow treatment, PSG4J film, etc. may be used, and As8
A multilayer structure of a G film, a 5bSG film, and a PSG film may be used. These silicate glass film impurities (As, Sb
, P, etc.) is generally less than 5% by weight.

要は、これらの低濃度シリケート・ガラス膜、例えばA
s5()IJフロー膜とは別に、プラズマSiN膜とs
 jog等の絶縁保護膜との間に、P濃度が5重量%以
上のPSG膜を設けることである。
In short, these low concentration silicate glass films, such as A
s5 () Apart from the IJ flow film, the plasma SiN film and s
A PSG film having a P concentration of 5% by weight or more is provided between an insulating protective film such as JOG.

例えば、上記第1図の構成のAs5Gリフロー膜6の代
りに5bSG(アンチモン・シリケート・ガラス)のり
フロー膜を用いた構造、すなわち、プラズマS iN 
−PSG−8b 8G−8i’02−8 i基板、の積
層構造を用いた本発明の第2の実施例となる半導体装置
において、PSGSeO2濃度を変えたときの5i−8
iOa界面電荷密度Qssを表わすグラフを第3図に示
す。゛ 次に、第4図は本発明の第3の実施例の要部を示す概略
断面図であり、 Si基板11上に形成された絶縁保護
膜となる5i02膜12上に高濃度(P濃度が5重量%
以上の)PSG膜13を直接形成している。このPSG
膜1膜上3上s SG膜14およびプラズマSiN膜1
5をこの順に形成することにより、上層から順に、プラ
ズマ5iN−ASSG−P2O−8iCh−8i基板、
の積層構造としている。
For example, a structure using a 5bSG (antimony silicate glass) glue flow film instead of the As5G reflow film 6 in the configuration shown in FIG. 1, that is, a plasma SiN
-PSG-8b 8G-8i'02-8i substrate, in the semiconductor device according to the second embodiment of the present invention using the laminated structure of 5i-8 when the PSGSeO2 concentration is changed.
A graph representing the iOa interfacial charge density Qss is shown in FIG. Next, FIG. 4 is a schematic cross-sectional view showing the main part of the third embodiment of the present invention. is 5% by weight
The above) PSG film 13 is directly formed. This PSG
Film 1 on film 3 SG film 14 and plasma SiN film 1
5 in this order, the plasma 5iN-ASSG-P2O-8iCh-8i substrate,
It has a laminated structure.

この第3の実施例においては、As5G膜14のみなら
ずPSG膜13に対しても、900°C−950℃程度
のりフロー処理が加わる。As5G膜14はリフロ一時
の流動性が高まりすぎるが、PSG膜13の流動性が低
いため、段部の耐圧低下等は生じない。また、Po 1
 y−8i配線電極16上にPSG膜13を形成し、A
s5G膜14上にAJ配線電極17を形成するような構
造、すなわち、PSG膜13とAA電極17とが接しな
い構造とすることにより、不純物によるA/腐蝕等の悪
影響が防止でき、P濃度を高くできる。この第3の実施
例の他の構造は、前述した第1の実施例と同様であるた
め、図示せず説明を省略する。
In this third embodiment, not only the As5G film 14 but also the PSG film 13 are subjected to a glue flow process of about 900°C to 950°C. Although the As5G film 14 has too high fluidity during reflow, since the PSG film 13 has low fluidity, no drop in breakdown voltage occurs at the stepped portion. Also, Po 1
A PSG film 13 is formed on the y-8i wiring electrode 16, and
By forming the AJ wiring electrode 17 on the s5G film 14, that is, by creating a structure in which the PSG film 13 and the AA electrode 17 are not in contact with each other, adverse effects such as A/corrosion caused by impurities can be prevented, and the P concentration can be reduced. Can be made high. The other structure of this third embodiment is the same as that of the first embodiment described above, so it is not shown and the explanation will be omitted.

このような第3の実施例において、PSG膜13のP濃
度を変えたときの5j−8iCh界面電荷密度Qssは
第5図のようになる。この第5図においては、P濃度が
7重量%のときのQssは1〜2×10Cm  程度で
あるが、上述したようにA/腐蝕等の悪影響を防止でき
るため、P濃度をさらに増加させてQssを大幅に低減
させることができる。
In the third embodiment, the 5j-8iCh interfacial charge density Qss when the P concentration of the PSG film 13 is changed is as shown in FIG. In Fig. 5, when the P concentration is 7% by weight, Qss is about 1 to 2 x 10 Cm, but as mentioned above, it is possible to prevent adverse effects such as A/corrosion, so the P concentration is further increased. Qss can be significantly reduced.

次に、第6図は本発明の第4の実施例を示し、上記第3
の実施例におけるAs5G膜14とプラズマSiN膜1
5との間に、5iOz膜18を配設した構造を示してい
る。この第4の実施例においても、上記第3の実施例と
同様に、Al配線電極17とPEG膜13とが直接に接
触しないように構成でき、PSG膜13のP濃度を増加
させてQssを大幅に低減できる。
Next, FIG. 6 shows a fourth embodiment of the present invention, and FIG.
As5G film 14 and plasma SiN film 1 in the example of
A structure in which a 5iOz film 18 is disposed between the 5iOz film 18 and the 5iOz film 18 is shown. Similarly to the third embodiment, this fourth embodiment can also be constructed so that the Al wiring electrode 17 and the PEG film 13 do not come into direct contact with each other, and the P concentration of the PSG film 13 is increased to increase the Qss. This can be significantly reduced.

この第4の実施例の5iCh膜18としては、低濃度P
SG膜を用いてもよく、この低濃度PSG膜のP濃度を
5重量%未満とすることでA/電極17の腐蝕等の悪影
響を防止すればよい。
The 5iCh film 18 of this fourth embodiment has a low concentration of P.
An SG film may also be used, and by setting the P concentration of this low concentration PSG film to less than 5% by weight, adverse effects such as corrosion of the A/electrode 17 can be prevented.

さらに、この第4の実施例の高濃度PSG膜13とAs
5G膜14とを一体化して、第7図に示す第5の実施例
のように、PおよびAsを導入したS i O2膜19
を形成してもよい。この第5の実施  7例におけるP
およびAs導導入Si0膜膜19P濃度を5重量%以上
とすることにより、Qssの低減を図ることができるこ
とは勿論である。さらに、この第5の実施例によれば、
上記第4の実施例に比べて製造が容易化し、上記第1.
第2の実施例に比べてAl電極の腐蝕等の悪影響が少い
という利点を有する。
Furthermore, the high concentration PSG film 13 of this fourth embodiment and the As
5G film 14 to form a SiO2 film 19 into which P and As are introduced, as in the fifth embodiment shown in FIG.
may be formed. This fifth implementation P in 7 cases
It goes without saying that Qss can be reduced by setting the As-introduced Si0 film 19P concentration to 5% by weight or more. Furthermore, according to this fifth embodiment,
Manufacturing is easier than in the fourth embodiment, and the first embodiment is easier to manufacture than the fourth embodiment.
Compared to the second embodiment, this embodiment has the advantage that there are fewer adverse effects such as corrosion of the Al electrode.

なお、本発明は、上記実施例のみに限定されるものでは
なく、例えば、高濃度PSG膜や低濃度のシリケート・
ガラス膜(As8G膜、5b8G膜、PSG膜等)を、
それぞれ多層に構成してもよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be applied to, for example, a high concentration PSG film or a low concentration silicate film.
Glass film (As8G film, 5b8G film, PSG film, etc.)
Each layer may be configured in multiple layers.

また、MO8型FET素子のみならず、ノくイポーラ・
トランジスタを用いた半導体装量にも適用可能である。
In addition to MO8 type FET elements, we also offer
It is also applicable to semiconductor devices using transistors.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体装置によれば、P濃度が5重量%以上の
高濃度PSG膜を設けることにより、界面電荷密度Qs
sの増加を抑制でき、素子分離領域の絶縁特性劣化等の
悪影響を窮地に防止できる。
According to the semiconductor device of the present invention, by providing a high concentration PSG film with a P concentration of 5% by weight or more, the interfacial charge density Qs
The increase in s can be suppressed, and adverse effects such as deterioration of the insulation properties of the element isolation region can be completely prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の要部を示す概略断面図
、第2図は該第1の実施例のPSG膜のP濃度と界面電
荷密度Qssとの関係を示すグラフ、第3図は本発明の
第2の実施例のPSG膜のP濃度と界面電荷密度Qss
との関係を示すグラフ、第4図は本発明の第3の実施例
の要部を示す概略断面図、第5図は該第3の実施例のP
SG膜のP濃度と界面電荷密度Qssとの関係を示すグ
ラフ、第6図は本発明の第4の実施例の要部を示す概略
断面図、第7図は本発明の第5の実施例の要部を示す概
略断面図、第8図は従来例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing the main part of the first embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the P concentration and interfacial charge density Qss of the PSG film of the first embodiment. Figure 3 shows the P concentration and interfacial charge density Qss of the PSG film of the second embodiment of the present invention.
FIG. 4 is a schematic sectional view showing the main part of the third embodiment of the present invention, and FIG. 5 is a graph showing the relationship between
A graph showing the relationship between the P concentration of the SG film and the interfacial charge density Qss, FIG. 6 is a schematic cross-sectional view showing the main part of the fourth embodiment of the present invention, and FIG. 7 is a fifth embodiment of the present invention. FIG. 8 is a schematic sectional view showing a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に形成した保護膜上に、少くとも一層の不純
物を5重量%未満含むシリケート・ガラス膜と、プラズ
マCVDで形成した窒化シリコン膜とを有する半導体装
置において、上記保護膜と上記窒化シリコン膜との間に
少くとも一層のP(燐)を5重量%以上含むシリケート
・ガラス膜を設けたことを特徴とする半導体装置。
A semiconductor device comprising, on a protective film formed on a semiconductor substrate, at least one silicate glass film containing less than 5% by weight of impurities, and a silicon nitride film formed by plasma CVD, the protective film and the silicon nitride film. A semiconductor device characterized in that at least one silicate glass film containing 5% by weight or more of P (phosphorus) is provided between the semiconductor device and the semiconductor device.
JP59132771A 1984-06-27 1984-06-27 Semiconductor device Expired - Lifetime JPH0715904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132771A JPH0715904B2 (en) 1984-06-27 1984-06-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132771A JPH0715904B2 (en) 1984-06-27 1984-06-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6112033A true JPS6112033A (en) 1986-01-20
JPH0715904B2 JPH0715904B2 (en) 1995-02-22

Family

ID=15089168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132771A Expired - Lifetime JPH0715904B2 (en) 1984-06-27 1984-06-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0715904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394086A (en) * 1989-09-04 1991-04-18 Japan Storage Battery Co Ltd Electrochemical oxygen separator
US6097079A (en) * 1996-11-14 2000-08-01 Advanced Micro Devices, Inc. Boron implanted dielectric structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785246A (en) * 1980-11-18 1982-05-27 Nippon Denso Co Ltd Semiconductor device
JPS57139930A (en) * 1981-02-24 1982-08-30 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785246A (en) * 1980-11-18 1982-05-27 Nippon Denso Co Ltd Semiconductor device
JPS57139930A (en) * 1981-02-24 1982-08-30 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394086A (en) * 1989-09-04 1991-04-18 Japan Storage Battery Co Ltd Electrochemical oxygen separator
US6097079A (en) * 1996-11-14 2000-08-01 Advanced Micro Devices, Inc. Boron implanted dielectric structure

Also Published As

Publication number Publication date
JPH0715904B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4377819A (en) Semiconductor device
JPH01129460A (en) Manufacture of thin-film transistor
JPH03203351A (en) Manufacture of semiconductor device
JPS6112033A (en) Semiconductor device
JPH07193059A (en) Manufacture of semiconductor device
JP6790808B2 (en) Semiconductor devices and their manufacturing methods
JPH118234A (en) Semiconductor device
JP2001036078A (en) Mos-type transistor and manufacture thereof
JP2907765B6 (en) Semiconductor device
JPS6240746A (en) Semiconductor device
JPS5892268A (en) Manufacture of semiconductor device
JP3237640B2 (en) Semiconductor device
JP2000353706A (en) Production of semiconductor device
US20020135031A1 (en) Method for forming a dielectric layer and semiconductor device incorporating the same
JPS61226930A (en) Semiconductor device
JP2907765B2 (en) Semiconductor device
JP4010425B2 (en) Semiconductor device and manufacturing method thereof
JPH0746698B2 (en) Method for manufacturing semiconductor device
JPH01298758A (en) Manufacture of semiconductor device
JPH06267973A (en) Manufacture of semiconductor
JP2002134614A (en) Semiconductor device
JPS61225838A (en) Forming method for electrode wirings
JPH1050698A (en) Semiconductor device
JPH03248538A (en) Charge-coupled element and manufacture thereof
JP2685493B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term