JPS6111919B2 - - Google Patents

Info

Publication number
JPS6111919B2
JPS6111919B2 JP3503780A JP3503780A JPS6111919B2 JP S6111919 B2 JPS6111919 B2 JP S6111919B2 JP 3503780 A JP3503780 A JP 3503780A JP 3503780 A JP3503780 A JP 3503780A JP S6111919 B2 JPS6111919 B2 JP S6111919B2
Authority
JP
Japan
Prior art keywords
solution
growth
holder
hole
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3503780A
Other languages
Japanese (ja)
Other versions
JPS56134594A (en
Inventor
Masaru Wada
Kunio Ito
Takashi Sugino
Juichi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3503780A priority Critical patent/JPS56134594A/en
Publication of JPS56134594A publication Critical patent/JPS56134594A/en
Publication of JPS6111919B2 publication Critical patent/JPS6111919B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は液相エピタキシヤル成長方法およびそ
の成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid phase epitaxial growth method and a growth apparatus therefor.

最近の液相エピタキシヤル成長技術の向上は半
導体レーザなどのデバイスの歩留と信頼性の飛躍
的な向上をもたらした。成長膜厚においても、
0.1μm以下の薄膜を容易に実現でき、しかも膜
厚の制御が精度よくできる様になつた。
Recent improvements in liquid phase epitaxial growth technology have led to dramatic improvements in yield and reliability of devices such as semiconductor lasers. Even in the grown film thickness,
It has become possible to easily create thin films of 0.1 μm or less, and to control the film thickness with high precision.

現在、液相エピタキシヤル成長法には、横型ス
ライド方式とたて型回転方式がある。横型スライ
ド方式は基板および複数の溶液槽を水平かつ直線
上に配し、基板あるいは溶液槽を押すことによつ
て順次接触させていく方法で、操作法が簡単で最
もよく用いられているが、十分な均熱長を必要と
している。また、たて型回転方式は基板および複
数の溶液槽を同一円周上に配し、基板あるいは溶
液槽を回転させることによつて順次接触させてい
く方法で、この方式によれば、均一な温度分布は
円型炉の一断面内だけでよく、非常に容易に均一
温度分布を得ることができるが、基板の大型化お
よび溶液槽の増加と伴に円型炉を大型化する必要
がある。いずれの場合にも、一長一短があるが、
使用状態の厳しい管理の下でいずれも同一レベル
の結晶成長層が得られている。
Currently, liquid phase epitaxial growth methods include a horizontal slide method and a vertical rotation method. The horizontal slide method is a method in which a substrate and multiple solution tanks are arranged horizontally and in a straight line, and the substrate or solution tanks are brought into contact with each other one by one by pushing, and is the most commonly used method due to its simple operation. Sufficient soaking length is required. In addition, the vertical rotation method is a method in which a substrate and multiple solution tanks are placed on the same circumference and brought into contact with each other one by one by rotating the substrate or solution tank. The temperature distribution only needs to be within one cross section of the circular furnace, and it is very easy to obtain a uniform temperature distribution, but as the substrate size increases and the number of solution baths increases, it is necessary to increase the size of the circular furnace. . In either case, there are advantages and disadvantages, but
The same level of crystal growth layer was obtained in all cases under strict control of usage conditions.

しかしながら、この様な従来の成長方法では、
一度の成長で一枚のウエハしか成長できないため
量産化が難しくかつ、溶液槽中の溶媒、溶質の使
用に関して非常に不経済であつた。
However, with this conventional growth method,
Since only one wafer can be grown at one time, mass production is difficult, and the use of solvent and solute in the solution bath is extremely uneconomical.

本発明は横型スライド方式あるいはたて型回転
方式を用い、一つの溶液に同時に2枚以上の基板
を接触させ、順次スライドあるいは回転させるこ
とによつて、一度の結晶成長で2枚以上の成長ウ
エハを作製することができるものである。
The present invention uses a horizontal slide method or a vertical rotation method to bring two or more substrates into contact with one solution at the same time and slide or rotate them sequentially, thereby growing two or more wafers in a single crystal growth process. can be produced.

以下、実施例をあげて、本発明の結晶成長方法
を図面を用いて詳しく述べる。
Hereinafter, the crystal growth method of the present invention will be described in detail with reference to Examples and drawings.

なお、横型スライド方式およびたて型回転方式
は共に、本発明に関して原理的には同一であるた
め、ここでは横型スライド方式について説明を行
う。
Note that since both the horizontal slide method and the vertical rotation method are the same in principle regarding the present invention, the horizontal slide method will be explained here.

第1図は従来の横型スライド方式に用いるカー
ボンボートの断面図である。基板ホルダー1の溝
に成長用基板2をセツトし、溶液ホルダー3の各
槽にそれぞれ種々の溶媒や溶質から成る溶液4を
第1図の様にセツトする。昇温後、一定温度に保
ち溶液4中の溶媒が十分に溶解し、均一に撹拌さ
れた後、一定の冷却速度で降温し、成長を開始す
る。成長は石英棒5を押し、各槽の溶液4を成長
用基板2に順次接触させることによつて多層膜が
得られる。石英棒6は基板ホルダー1を固定させ
るためのものである。一般に液相エピタキシヤル
成長による半導体レーザなどはこの様な方法でダ
ブルヘテロ構造が構成されている。しかしなが
ら、一度の結晶成長で一枚の成長ウエハしか得ら
れず、非能率的で大量生産に適していない。量産
化を図るためにも一度で数枚のウエハを同時に成
長させる必要がある。
FIG. 1 is a sectional view of a carbon boat used in a conventional horizontal slide system. A growth substrate 2 is set in the groove of the substrate holder 1, and a solution 4 consisting of various solvents and solutes is set in each tank of the solution holder 3 as shown in FIG. After the temperature is raised, the temperature is maintained at a constant temperature so that the solvent in the solution 4 is sufficiently dissolved and stirred uniformly, and then the temperature is lowered at a constant cooling rate to start growth. For growth, a multilayer film is obtained by pushing the quartz rod 5 and sequentially bringing the solutions 4 in each tank into contact with the growth substrate 2. The quartz rod 6 is for fixing the substrate holder 1. In general, semiconductor lasers and the like formed by liquid phase epitaxial growth have a double heterostructure formed by such a method. However, only one grown wafer can be obtained by one crystal growth, which is inefficient and not suitable for mass production. In order to achieve mass production, it is necessary to grow several wafers at the same time.

本発明は複数のウエハを同時に成長させ、量産
化を図ることを目的としており、第2図a〜dに
本発明のカーボンボート(2枚成長用)を用いた
成長工程をボートの断面図で示す。同図aは降温
開始前の状態を示しており、2枚の成長用基板2
は基板ホルダー1の溝と成長用溶液ホルダー8上
にセツトされている。第1図の溶液ホルダー3に
相当するものは第2図では成長用溶液ホルダー8
と溶液補助ホルダー9である。溶液補助ホルダー
9の各槽が溶液4で満されているのに対し、成長
用溶液ホルダー8は隔槽しか溶液4が存在しない
のもこのボートの特徴であり、第2図bに示すよ
うに、まず石英棒5によつて溶液補助ホルダー9
を図の様にスライドさせると、補助ホルダー9中
の溶液4は成長用溶液ホルダー8の空き槽を通し
て廃液槽11へ落とされる。さらに、溶液補助ホ
ルダー9の槽と成長用溶液ホルダー8の空き槽と
が一致するまでスライドさせると、補助ホルダー
9中の溶液4に次いでカーボンブロツク10も廃
液槽11へ落とされる。この際、第2図cに示す
ように基板ホルダー1とカーボンブロツク10と
の上面が平坦になるようにする。次に、同図cの
状態から石英棒7によつて成長用溶液ホルダー8
を押し、基板ホルダー1および溶液補助ホルダー
9の間をスライドさせる。成長用溶液ホルダー8
の槽に満たされた溶液はスライドによつて、それ
を上下にはさむ2枚の成長用基板2と第2図dの
ように接し、2枚同時に成長が行なわれる。さら
に、成長用溶液ホルダー8をスライドさせ、順次
接触させることによつて2枚の多層膜成長ウエハ
が得られる。
The purpose of the present invention is to simultaneously grow a plurality of wafers and achieve mass production. Figures 2a to 2d show a cross-sectional view of the growth process using the carbon boat (for two-wafer growth) of the present invention. show. Figure a shows the state before the temperature starts to decrease, with two growth substrates 2
are set in the groove of the substrate holder 1 and on the growth solution holder 8. The solution holder 3 in Fig. 1 corresponds to the growth solution holder 8 in Fig. 2.
and a solution auxiliary holder 9. Another feature of this boat is that each tank of the solution auxiliary holder 9 is filled with the solution 4, whereas the growth solution holder 8 only has the solution 4 in the separate tank, as shown in Figure 2b. , first, use the quartz rod 5 to hold the solution auxiliary holder 9.
When the is slid as shown in the figure, the solution 4 in the auxiliary holder 9 is dropped into the waste liquid tank 11 through the empty tank of the growth solution holder 8. Furthermore, when the tank of the auxiliary solution holder 9 is slid until the empty tank of the growth solution holder 8 coincides with each other, the carbon block 10 is also dropped into the waste liquid tank 11 next to the solution 4 in the auxiliary holder 9. At this time, the upper surfaces of the substrate holder 1 and the carbon block 10 are made flat as shown in FIG. 2c. Next, from the state shown in the figure c, the growth solution holder 8 is
Press to slide between the substrate holder 1 and the solution auxiliary holder 9. Growth solution holder 8
The solution filled in the tank is brought into contact with the two growth substrates 2 sandwiched above and below by the slide as shown in FIG. 2d, and the two substrates are grown simultaneously. Furthermore, by sliding the growth solution holder 8 and sequentially bringing them into contact, two multilayer film growth wafers can be obtained.

以上の様なカーボンボートを用いた結晶成長法
の特徴を述べる。第1の特徴は前述の通り、2枚
のウエハが同時に成長でき、非常に能率的である
ということである。量産化のための有効な方法で
ある。第2の特徴は超薄膜の膜厚の制御が容易で
あるということである。成長膜厚は成長開始温
度、過冷却度、冷却速度および成長時間だけでな
く、溶液の厚さにも大きく依存する。溶液の厚さ
を厚くすると成長は非常に速く、0.2μm程度の
膜厚の制御すら難しくなる。また、溶液の厚さを
1mm以下にすると成長速度は著しく低下し、0.1
μm以下の成長層でも再現性よく得られる。とこ
ろが溶液の厚さを初めから1mm以下にすると溶液
中の溶媒が全体的に十分撹拌されず、不均一な層
が得られる。従つて、成長開始前はできるだけ厚
い溶液を用い、溶液全体を均一な組成にした後、
溶液を薄くするのが最もよい方法である。本発明
によれば、成長開始前は成長用溶液ホルダー8と
溶液補助ホルダー9の槽中に、厚い溶液が用意さ
れ、均一な組成にした後、成長用溶液ホルダー8
の槽中の溶液のみを成長に用いている。成長用溶
液ホルダー8の厚みは任意に作製でき、この厚み
を2mmにすると、この槽中の溶液も2mmとなるが
溶液の上下に2枚の基板があり、両方に同時に成
長しているため実質的には1mmの溶液と見なすこ
とができる。この場合、前述のように0.1μm以
下の成長層も再現性よく得られるため、半導体レ
ーザの活性層などを成長させるのに最適である。
厚膜成長の場合は成長用溶液ホルダー8の厚みを
厚くすれば良い。
The characteristics of the crystal growth method using carbon boats as described above will be described. The first feature, as mentioned above, is that two wafers can be grown simultaneously, which is very efficient. This is an effective method for mass production. The second feature is that the thickness of the ultra-thin film can be easily controlled. The thickness of the grown film depends not only on the growth initiation temperature, degree of supercooling, cooling rate, and growth time, but also on the thickness of the solution. When the thickness of the solution is increased, the growth becomes very fast, and it becomes difficult to control even a film thickness of about 0.2 μm. In addition, when the thickness of the solution is reduced to 1 mm or less, the growth rate decreases significantly, 0.1
Even growth layers of micrometers or less can be obtained with good reproducibility. However, if the thickness of the solution is set to 1 mm or less from the beginning, the solvent in the solution will not be sufficiently stirred as a whole, resulting in a non-uniform layer. Therefore, before starting growth, use as thick a solution as possible, and after making the entire solution uniform in composition,
The best method is to dilute the solution. According to the present invention, before the start of growth, a thick solution is prepared in the tanks of the growth solution holder 8 and the solution auxiliary holder 9, and after the solution is made uniform, the growth solution holder 8
Only the solution in the tank is used for growth. The thickness of the growth solution holder 8 can be made arbitrarily; if this thickness is set to 2 mm, the solution in this tank will also be 2 mm, but since there are two substrates above and below the solution, and growth is occurring on both at the same time, Generally speaking, it can be considered as a 1 mm solution. In this case, as mentioned above, a grown layer of 0.1 μm or less can be obtained with good reproducibility, so it is ideal for growing active layers of semiconductor lasers.
In the case of thick film growth, the thickness of the growth solution holder 8 may be increased.

前述の実施例は2枚のウエハを成長させる方法
であつたが、本発明の場合、3枚のウエハを成長
させることもできる。第3図に示すように、廃液
槽11の下に新たな基板ホルダー12を置き、こ
の基板ホルダー12をスライドさせることによつ
て廃液槽11中の溶液に順次接触させ成長させ
る。この方法によれば3枚のウエハを平行して成
長でき、より能率的な結晶成長法である。
Although the above-mentioned embodiment was a method of growing two wafers, in the case of the present invention, it is also possible to grow three wafers. As shown in FIG. 3, a new substrate holder 12 is placed under the waste liquid tank 11, and by sliding this substrate holder 12, the substrate holder 12 is sequentially brought into contact with the solution in the waste liquid tank 11 to cause growth. According to this method, three wafers can be grown in parallel, making it a more efficient crystal growth method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液相成長に用いるカーボンボー
トの断面図、第2図a〜dは本発明の液相成長方
法を示す工程図、第3図は本発明の液相成長装置
の他の実施例を示す断面図である。 1……基板ホルダー、2……成長用基板、3…
…溶液ホルダー、4……溶液、5……石英棒、6
……固定用石英棒、7……成長用溶液ホルダー用
石英棒、8……成長用溶液ホルダー、9……溶液
補助ホルダー、10……カーボンブロツク、11
……廃液槽、12……基板ホルダー。
Figure 1 is a sectional view of a carbon boat used in conventional liquid phase growth, Figures 2 a to d are process diagrams showing the liquid phase growth method of the present invention, and Figure 3 is a diagram of another liquid phase growth apparatus of the present invention. It is a sectional view showing an example. 1... Substrate holder, 2... Growth substrate, 3...
...Solution holder, 4...Solution, 5...Quartz rod, 6
...Fixing quartz rod, 7...Quartz rod for growth solution holder, 8...Growth solution holder, 9...Solution auxiliary holder, 10...Carbon block, 11
...Waste liquid tank, 12...Substrate holder.

Claims (1)

【特許請求の範囲】 1 廃液槽および基板保持部を有する基板保持体
と、溶液排出用貫通孔および溶液成長用貫通孔を
有する補助溶液保持体と、溶液保持部を有する主
溶液保持体とが互いに摺動可能である液相エピタ
キシヤル成長装置を用い、前記溶液保持部と前記
溶液成長用貫通孔とを一致させて前記溶液成長用
貫通孔に成長用溶液を充填し、その後前記溶液保
持部と前記溶液排出用貫通孔と前記廃液槽とを一
致させて前記溶液保持部内の成長用溶液を前記廃
液槽に排出し、その後前記溶液成長用貫通孔と前
記基板保持部とを一致させて前記溶液成長用貫通
孔内の成長用溶液を基板に接触させることを特徴
とする液相エピタキシヤル成長方法。 2 廃液槽および基板保持部を有する基板保持体
と、溶液排出用貫通孔および溶液成長用貫通孔を
有する補助溶液保持体と、溶液保持部を有する主
溶液保持体とを備え、前記溶液保持部と前記溶液
成長用貫通孔とが一致する状態と、前記溶液保持
部と前記溶液排出用貫通孔と前記廃液槽とが一致
する状態と、前記溶液成長用貫通孔と前記基板保
持部とが一致する状態とが成立するように、前記
基板保持部と前記補助溶液保持体と前記主溶液保
持体とが互いに摺動可能に設置されていることを
特徴とする液相エピタキシヤル成長装置。
[Scope of Claims] 1. A substrate holder having a waste liquid tank and a substrate holder, an auxiliary solution holder having a solution discharge through hole and a solution growth through hole, and a main solution holder having a solution holding portion. Using a liquid phase epitaxial growth apparatus that is slidable relative to each other, the solution holding part and the solution growth through hole are aligned, the growth solution is filled into the solution growth through hole, and then the solution holding part is filled with a growth solution. and the solution discharge through-hole and the waste liquid tank are aligned to discharge the growth solution in the solution holding section to the waste liquid tank, and then the solution growth through-hole and the substrate holding section are aligned and the A liquid phase epitaxial growth method characterized by bringing a growth solution in a solution growth through-hole into contact with a substrate. 2. A substrate holder having a waste liquid tank and a substrate holder, an auxiliary solution holder having a solution discharge through hole and a solution growth through hole, and a main solution holder having a solution holding part, the solution holding part and the through-hole for solution growth match, a state where the solution holding part, the through-hole for solution discharge, and the waste liquid tank match, and a state where the through-hole for solution growth and the substrate holding part match. The liquid phase epitaxial growth apparatus is characterized in that the substrate holder, the auxiliary solution holder, and the main solution holder are installed so as to be able to slide relative to each other so that a state in which the auxiliary solution holder and the main solution holder are slidable relative to each other.
JP3503780A 1980-03-18 1980-03-18 Epitaxial growing method and device of liquid phase Granted JPS56134594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3503780A JPS56134594A (en) 1980-03-18 1980-03-18 Epitaxial growing method and device of liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3503780A JPS56134594A (en) 1980-03-18 1980-03-18 Epitaxial growing method and device of liquid phase

Publications (2)

Publication Number Publication Date
JPS56134594A JPS56134594A (en) 1981-10-21
JPS6111919B2 true JPS6111919B2 (en) 1986-04-05

Family

ID=12430848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3503780A Granted JPS56134594A (en) 1980-03-18 1980-03-18 Epitaxial growing method and device of liquid phase

Country Status (1)

Country Link
JP (1) JPS56134594A (en)

Also Published As

Publication number Publication date
JPS56134594A (en) 1981-10-21

Similar Documents

Publication Publication Date Title
US7615115B2 (en) Liquid-phase growth apparatus and method
US3765959A (en) Method for the liquid phase epitaxial growth of semiconductor crystals
JPS6111919B2 (en)
US3533856A (en) Method for solution growth of gallium arsenide and gallium phosphide
US3809010A (en) Apparatus for growing of epitaxial layers
US3589336A (en) Horizontal liquid phase epitaxy apparatus
JPS63244613A (en) Susceptor for vapor growth
USRE28140E (en) Bergh ctal
US3804060A (en) Liquid epitaxy apparatus
JPS58120600A (en) Epitaxial growth method of 2-5 family compound semiconductor
GB1348528A (en) Methods of and apparatus for growing crystals from solutions
JPS5886723A (en) Growing device for semiconductor crystal
JPS5478377A (en) Method and apparatus for growing semiconductor crystal
JPH029444B2 (en)
JPH06279178A (en) Production of semiconductor device and device therefor
JPS62128522A (en) Liquid growth method
JPH02157185A (en) Method and device for liquid phase epitaxy
JPS5852323B2 (en) Liquid phase epitaxial growth method
JPS59104121A (en) Iii-v group compound semiconductor liquid phase epitaxial growth and semiconductor substrates supporter to be used therefor
JPH0519516B2 (en)
JPS6472988A (en) Liquid phase growing method
JPS5834929B2 (en) Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi
JPS6153192A (en) Method of liquid-phase epitaxial growth
JPS6229396B2 (en)
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method