JPS61119017A - Manufacture of anisotropic composite magnet - Google Patents

Manufacture of anisotropic composite magnet

Info

Publication number
JPS61119017A
JPS61119017A JP24105584A JP24105584A JPS61119017A JP S61119017 A JPS61119017 A JP S61119017A JP 24105584 A JP24105584 A JP 24105584A JP 24105584 A JP24105584 A JP 24105584A JP S61119017 A JPS61119017 A JP S61119017A
Authority
JP
Japan
Prior art keywords
temperature
mold
flow
molded body
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24105584A
Other languages
Japanese (ja)
Inventor
Chitoshi Hagi
萩 千敏
Shuichi Shiina
椎名 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24105584A priority Critical patent/JPS61119017A/en
Publication of JPS61119017A publication Critical patent/JPS61119017A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enable to manufacture the anisotropic cylindrical composite magnet having few warpages and cracks and excellent characteristics in a highly efficient manner by a method wherein the temperature of a metal mold is adjusted by controlling the difference between the flow-in temperature and the flow-out temperature of a metal mold temperature adjusting medium. CONSTITUTION:The temperature T1 deg.C at the flow-in part X of a metal mold temperature adjusting medium and the temperature T2 deg.C at the flow-out part Y of the medium are controlled in such a manner that they are brought to T1-T2>=20 deg.C. As a result, the generation of a weld mark can be prevented, and the warpage and cracks of a molded body can also be effectively prevented. To be more precise, when the difference between the flow-in temperature and the flow-out temperature is smaller than 20 deg.C, a weld mark is generated at the tip part of the molded body, and it is necessary that the difference of temperature is brought to 20 deg.C or more, because the degree of orientation of magnetic powder decreases by the magnetic field. Also, when the difference of temperature is smaller than 20 deg.C, a large distortion is generated in the center part of the molded body because of the long size of the molded body and a warpage and cracks are also generated on the molded body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強磁性粉末と高分子化合物を含む混練物を磁場
中で射出成形する工程を含む異方性永久磁石の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an anisotropic permanent magnet, which includes a step of injection molding a kneaded material containing ferromagnetic powder and a polymer compound in a magnetic field.

〔従来の技術〕[Conventional technology]

電子写真複写機、ファクシミリ、プリンター等の画像再
生装置(乾式)においては、磁性現像剤(磁性キャリア
とトナーとの混合粉体である二成分現像剤あるいは一成
分系の磁性トナー等)の搬送手段(例えば現像ロールあ
るいはクリーニングロール等)として、非磁性スリーブ
の内部に複数個の磁極を有する永久磁石部材を設置し1
両者を相対的に回転させるように構成したマグネットロ
ールが一般に使用されている。
In image reproducing devices (dry type) such as electrophotographic copying machines, facsimile machines, and printers, a means for transporting magnetic developer (two-component developer that is a mixed powder of magnetic carrier and toner, or one-component magnetic toner, etc.) A permanent magnet member having a plurality of magnetic poles is installed inside a non-magnetic sleeve as a developing roll or cleaning roll, etc.
A magnetic roll configured to rotate the two relative to each other is generally used.

上記のマグネットロールにも種々の構造のものがあり、
例えば実公昭57−97913号公報に記載されている
ような、フェライト粉末を磁場中でプレス成形後焼結し
て得られる長尺の異方性ブロック磁石を軸の周囲に固定
して形成した永久磁石部材を用いるもの、あるいはハー
ドフェライトからなる円筒状永久磁石を軸に固着して形
成した永久磁石部材を用いるもの(例えば特公昭55−
6907号公報、特公昭53−47043号公報谷照)
なビジ挙げられる。しかるに前者の場合は、組立工数が
大となるおよび低温減磁が生ずるなどの問題があり、一
方接者の場合は磁極間部分にも磁石材料が使用されかつ
焼結体の密度も約5 g /cm3と大きいため重量が
大となるという問題がある。またフェライト磁石は、一
般に、材料自体が脆弱であることから焼結時あるいは焼
結後にクラックや割れが発生し易く、歩留が悪いという
問題もある。
The above magnetic rolls also have various structures,
For example, as described in Japanese Utility Model Publication No. 57-97913, a permanent magnet is formed by fixing a long anisotropic block magnet obtained by press-forming ferrite powder in a magnetic field and then sintering it around a shaft. Those using a magnetic member, or those using a permanent magnet member formed by fixing a cylindrical permanent magnet made of hard ferrite to a shaft (for example,
Publication No. 6907, Special Publication No. 53-47043 (Tani Teru)
There are many business activities. However, in the former case, there are problems such as increased assembly man-hours and low-temperature demagnetization, while in the case of the contact type, magnetic material is also used in the part between the magnetic poles and the density of the sintered body is about 5 g. /cm3, so there is a problem that the weight is large. In addition, ferrite magnets generally have the problem of poor yields because the material itself is brittle and tends to crack or crack during or after sintering.

これに対して、主として軽量化のために強磁性粉末(一
般にはフェライト粉末が使用される)と高分子化合物(
一般にはゴム又はプラスチック材料が使用される)を主
体とする混練物を押出成形あるいは、射出成形の手法に
より円筒状に一体に成形し、ついで冷却固化後着磁した
いわゆる複合磁石を用いたマグネットセールが提案され
、実用化が検討されている。(例えば特開昭56−10
8207号 同57−130407号、同57−164
509号等の各公報参照)なお生産性の点からは、射出
成形が有利゛ である。
On the other hand, ferromagnetic powder (generally ferrite powder is used) and polymer compounds (
A magnetic sail using a so-called composite magnet, which is made by integrally molding a kneaded material (generally made of rubber or plastic material) into a cylindrical shape by extrusion molding or injection molding, and then magnetizing it after cooling and solidifying it. has been proposed and its practical application is being considered. (For example, JP-A-56-10
No. 8207 No. 57-130407, No. 57-164
(Refer to various publications such as No. 509) Injection molding is advantageous from the viewpoint of productivity.

この円筒状複合磁石を製造する場合、複合磁石は焼結磁
石よりも密度が低いのでフェライト磁石と同等の磁気特
性を得るためには、冷却固化が完了するまでの間に強磁
性粉末の磁化容易軸を着磁後の磁石内部の磁力線方向に
一致させる。いわゆる異方性化の工程が必要なことは周
知である。
When manufacturing this cylindrical composite magnet, since composite magnets have a lower density than sintered magnets, in order to obtain magnetic properties equivalent to ferrite magnets, it is necessary to easily magnetize the ferromagnetic powder before cooling and solidifying. Align the axis with the direction of the lines of magnetic force inside the magnet after magnetization. It is well known that a so-called anisotropy process is necessary.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

ところで上述した異方性円筒状複合磁石の製造過程にお
いては、射出成形後の被成形物の固化のために、成形円
金型の周囲に加熱又は冷却媒体(通常は水又は油が使用
されている)を流すことが行なわれている。しかしてマ
グネットロールに使用される円筒状複合磁石は、一般に
長さ/直径が5以上と長尺であるため、初期に射出され
た溶融物は充填が完了するまでに固化が始まり成形体の
先端部にウェルドマークが発生し磁場による磁粉の配向
度が低下すること、および反りや割れが発生し易くなる
という問題が伴っていた。
By the way, in the manufacturing process of the above-mentioned anisotropic cylindrical composite magnet, a heating or cooling medium (usually water or oil is used around the circular mold) to solidify the molded object after injection molding. ) is being carried out. However, since the cylindrical composite magnet used in magnet rolls is generally long with a length/diameter of 5 or more, the initially injected molten material begins to solidify by the time filling is completed and the tip of the molded object There were problems in that weld marks were generated in the magnetic field, the degree of orientation of the magnetic particles due to the magnetic field was reduced, and warping and cracking were more likely to occur.

本発明の目的は、上述した従来技術の問題点を解消し、
生産能率を向上しうる異方性複合磁石の製造方法を提供
することである。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a method for manufacturing an anisotropic composite magnet that can improve production efficiency.

本発明の他の目的は、ソリ、曲り等を含む寸法不良や外
観不良を防止しうる異方性複合磁石の製造方法を提供す
ることである。
Another object of the present invention is to provide a method for manufacturing an anisotropic composite magnet that can prevent dimensional defects and appearance defects including warpage, bending, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の異方性複合磁石の製造方法は、強磁性粉末と高
分子化合物を主体とする混練物を磁場の存在下、円筒状
の成形空間を有する金型内で射出成形する工程と、前記
金型の周囲に金型温度1Ijlly用媒体を通過させて
成形体を固化する工程を含む異方性複合磁石の製造方法
において、前記金型温度調節用媒体の流入温度とその流
出温度との差を20℃以上に制陣して金型温度の調節を
行うことを特徴とするものである。
The method for producing an anisotropic composite magnet of the present invention includes the steps of injection molding a kneaded material mainly consisting of ferromagnetic powder and a polymer compound in a mold having a cylindrical molding space in the presence of a magnetic field; In a method for manufacturing an anisotropic composite magnet, which includes a step of solidifying a molded body by passing a medium for controlling the mold temperature around the mold, the difference between the inlet temperature of the mold temperature adjusting medium and the outflow temperature thereof The mold temperature is controlled by controlling the temperature to 20°C or higher.

以下本発明の詳細を製造工程に従って説明する。The details of the present invention will be explained below according to the manufacturing process.

まず本発明では原料混練物は、通常の複合磁石に使用さ
れる次のような材料を用いて準備する。
First, in the present invention, the raw material kneaded material is prepared using the following materials used in ordinary composite magnets.

強磁性粉末としては、T3ayエライトあるいは9rフ
エライト等のマグネットブランバイト型詰am造な有す
るフェライト粉末、AJ−Ni−Co系磁石粉末、Fe
−Cr−Co系磁石粉末、希土類コバルト磁石粉末等の
公知の磁石粉末が使用できる。
Examples of the ferromagnetic powder include ferrite powder having a magnetic brambite-type structure such as T3ay elite or 9r ferrite, AJ-Ni-Co magnet powder, Fe
Known magnet powders such as -Cr-Co magnet powder and rare earth cobalt magnet powder can be used.

高分子化合物としては、種々の熱可塑性樹脂、例えばポ
リアミド樹脂、ポリエチレン、エチレン酢酸ビニル共重
合体、エチレンエチルアクリレート共重合体、ポリプロ
ピレン等が使用できる。またこのほかにも、成形性を改
善するためにステアリン酸カルシウム等の滑剤を少量(
Wk重量%)加えてもよく、更に強磁性粉末のぬれ性を
改善するために、その表面を有機ケイ素化合物、有機チ
タネート化合物などで予め処理しておいてもよい。
As the polymer compound, various thermoplastic resins such as polyamide resin, polyethylene, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, polypropylene, etc. can be used. In addition to this, a small amount of lubricant such as calcium stearate (
Furthermore, in order to improve the wettability of the ferromagnetic powder, the surface of the ferromagnetic powder may be previously treated with an organosilicon compound, an organotitanate compound, or the like.

強磁性粉末の配合量は、強磁性粉末:W脂=80〜94
 : 20〜6の重量比となるようにすることが好まし
い。これは、強磁性粉末の配合量が上記範囲より少ない
と磁気特性が低下し、その配合量が上記範囲より多いと
成形が実質的に困難となるからである。
The blending amount of the ferromagnetic powder is ferromagnetic powder: W fat = 80 to 94
: It is preferable that the weight ratio is 20 to 6. This is because if the amount of ferromagnetic powder blended is less than the above range, the magnetic properties will deteriorate, and if the blend amount is greater than the above range, molding will become substantially difficult.

次に上記原料混練物は所定の金型内に射出し、磁場を印
加しながら成形し、ついで固化してから成形体を取出す
。ここで射出成形は電磁石による磁場中で行なってもよ
いが、設備の小型化および簡略化などの点から永久磁石
による磁場中で行なう (例えば特願昭58−1021
27号、同58−117857号参照)かもしくはパル
ス磁場による磁場中で行なう(例えば特願昭58−14
5441号参照)あるいはパルス磁場と永久磁石による
磁場を併用して行なう(例えば特願昭58−11786
2号参照)ことが好ましい。
Next, the raw material kneaded material is injected into a predetermined mold, molded while applying a magnetic field, solidified, and then the molded product is taken out. Although the injection molding may be carried out in a magnetic field by an electromagnet, it is preferred to carry out the injection molding in a magnetic field by a permanent magnet in order to downsize and simplify the equipment (for example, Japanese Patent Application No. 58-1021
27, No. 58-117857) or in a magnetic field using a pulsed magnetic field (for example, Japanese Patent Application No. 58-14).
5441) or by using a combination of a pulsed magnetic field and a magnetic field generated by a permanent magnet (for example, Japanese Patent Application No. 11786/1986).
(see No. 2) is preferred.

以下上述の特願昭58−117857号に記載の如くの
射出成形用金型を用いた場合についてこの工程を説明す
る。
This process will be described below using an injection mold as described in Japanese Patent Application No. 58-117857.

第1図は本発明に使用される射出成形用金型の一例を示
す横断面図、第2図は第1図のA−A断面図である。
FIG. 1 is a cross-sectional view showing an example of an injection mold used in the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG.

まず第1図において、金型は、内部にコア2を同心に設
けてなる円筒状の成形空間1を有している。成形空間1
の周囲には、半径方向に着磁した永久磁石31〜3.と
、円周方向に着磁した永久磁石41〜44 と、非磁性
スペーサ5が設置されている。
First, in FIG. 1, a mold has a cylindrical molding space 1 in which a core 2 is provided concentrically. Molding space 1
Permanent magnets 31 to 3. are surrounded by radially magnetized permanent magnets 31 to 3. , permanent magnets 41 to 44 magnetized in the circumferential direction, and a nonmagnetic spacer 5 are installed.

またこれらの外周は軟磁性体からなるヨーク6で包囲さ
れ、かつ、永久磁石31〜3.の内側にも軟磁性体から
なるヨーク71〜7.が設げられている。
Further, the outer periphery of these is surrounded by a yoke 6 made of a soft magnetic material, and permanent magnets 31 to 3. The yokes 71 to 7. are also made of soft magnetic material inside the yokes 71 to 7. is provided.

更に、ヨーク6の外周には、円筒状のカバー8が装着さ
れ、円筒状カバー8の外側にも円筒状カバー18が装着
されている。円筒状カバー8の内壁には金型温度調節用
媒体の流路9が又円筒状カバー18の内壁には冷却用媒
体の流路17がスパイラル状に形成されている。なお、
冷却用媒体の流路17は金型射出側のみに形成されてい
る。
Further, a cylindrical cover 8 is attached to the outer periphery of the yoke 6, and a cylindrical cover 18 is also attached to the outside of the cylindrical cover 8. A flow path 9 for a mold temperature regulating medium is formed in the inner wall of the cylindrical cover 8, and a flow path 17 for a cooling medium is formed in a spiral shape in the inner wall of the cylindrical cover 18. In addition,
The cooling medium flow path 17 is formed only on the mold injection side.

次に、第2図において、10は突出ピンであり、その先
端には押出スリーブ11が固着されている、また押出ス
リーブ11の反対側には型板12および型板13が設け
られ、型板13にはスプール14が設けられ、 II板
12にはスプール14に連通するランナー15およびノ
ズル16が設けられ、ノズル16の一端は図示しないゲ
ートを介して成形空間1と連通している。
Next, in FIG. 2, 10 is a protruding pin, and an extrusion sleeve 11 is fixed to the tip thereof.A template 12 and a template 13 are provided on the opposite side of the extrusion sleeve 11. 13 is provided with a spool 14, and the II plate 12 is provided with a runner 15 and a nozzle 16 that communicate with the spool 14, and one end of the nozzle 16 communicates with the molding space 1 via a gate (not shown).

上記金型内で射出成形を行う場合、所定温度に加熱され
た金型内に射出された原料混練物は、スプール14、ラ
ンナー15およびノズル16を経て成形空間1内に充填
され、上述した磁場により配向される。しかる後流路9
に金型温度#l!fI用媒体を流路17に冷却用媒体を
通して熱交換することにより被成形物の固化を行ってか
ら、型板12と型板13を分離して成形体をスプール等
における成形片と分離し、また突出ビン10を突出して
成形体を金型から取出す。
When injection molding is performed in the mold, the raw material mixture injected into the mold heated to a predetermined temperature is filled into the molding space 1 through the spool 14, runner 15 and nozzle 16, and is filled with the magnetic field described above. Oriented by Then flow path 9
Mold temperature #l! After solidifying the object to be molded by passing the fI medium through the cooling medium through the flow path 17 and exchanging heat, the mold plate 12 and the mold plate 13 are separated to separate the molded object from the molded piece on the spool or the like, Further, the protruding bottle 10 is protruded and the molded body is taken out from the mold.

この固化過程について本発明者等が種々検討した結果、
金型温度調節用媒体の流入部(第2図Xで示す)での温
度(以下流入温度といい、71℃で示す)と、該媒体の
流出部(第2図Yで示す)での温度C以下流出温度とい
い71℃で示す)とを、T、−T、220℃となるよう
に制御することによりウェルドマークが防止でき、しか
も成形体のソリや割れを有効に防止できることを見出し
た。
As a result of various studies conducted by the present inventors regarding this solidification process,
The temperature at the inlet of the mold temperature control medium (shown as X in Figure 2) (hereinafter referred to as inflow temperature, shown at 71°C) and the temperature at the outlet of the medium (shown as Y in Figure 2) It was discovered that weld marks can be prevented by controlling the outflow temperature (71°C) below T, -T, 220°C, and warping and cracking of the molded product can be effectively prevented. .

すなわち、流入温度と流出温度の差が20℃より小さい
場合には成形体先端部にウェルドマークが発生し、磁場
による磁粉の配向度が低下するので上記温度差を20℃
以上とする必要がある。また上記温度差が20℃より小
さいと、成形体が長尺であるため成形体の中央において
大きな歪が発生してしまい成形体にソリや割れが発生す
る。しかるに上記温度差が20℃以上であれば、成形体
が均一に冷却されるため歪を小さくでき、成形体のソリ
や割れを防止することができる。なお流入温度は樹脂の
種類に応じて設定すればよい。流入温度と流出温度の差
を20℃以上とするためには金型温度調節用媒体および
冷却用媒体の流量および温度を調節すればよい。例えば
金型温度調節用媒体として所定の温度に加熱した水を用
い冷却用媒体として所定の温度の水を用いてT、−T、
220℃となるように各媒体の流量を適宜設定すればよ
い。但し金型の温度コントロールの容易さの点から各媒
体の流量はレイノズル数(Re)がaooo以上になる
様に設定するのが望ましくT+Tt≧20℃となるよう
に各媒体の温度を選択する方がよい。なおレイノルズ数
(Re)は媒体を流す管の直径をd、媒体の流速なV、
媒体の密麿をρ、媒体の粘度なμとすると、 Re=d−v・ρ/μで表わされる。
In other words, if the difference between the inflow temperature and the outflow temperature is less than 20°C, weld marks will occur at the tip of the compact, and the degree of orientation of the magnetic particles due to the magnetic field will decrease.
It is necessary to do more than that. Further, if the temperature difference is smaller than 20° C., since the molded product is long, a large strain will occur in the center of the molded product, causing warpage or cracking in the molded product. However, if the above-mentioned temperature difference is 20° C. or more, the molded body is uniformly cooled, so that distortion can be reduced and warping and cracking of the molded body can be prevented. Note that the inflow temperature may be set depending on the type of resin. In order to make the difference between the inflow temperature and the outflow temperature 20° C. or more, the flow rates and temperatures of the mold temperature adjusting medium and the cooling medium may be adjusted. For example, using water heated to a predetermined temperature as a mold temperature adjustment medium and using water at a predetermined temperature as a cooling medium, T, -T,
The flow rate of each medium may be appropriately set so that the temperature becomes 220°C. However, from the viewpoint of ease of mold temperature control, it is desirable to set the flow rate of each medium so that the Raynozzle number (Re) is aooo or more, and it is preferable to select the temperature of each medium so that T+Tt≧20℃. Good. The Reynolds number (Re) is defined by the diameter of the pipe through which the medium flows, d, the flow velocity of the medium, V,
If the density of the medium is ρ and the viscosity of the medium is μ, then Re=dv·ρ/μ.

このようにして得られた成形体は必要に応じて外径を所
定の寸法に加工し、ついて軸を固定した後異方性化方向
と同方向に着磁して、第3図に示すようなマグネットロ
ールが得られる。第3図において、19は円筒状複合磁
石、2aは軸を示している。ただし、インサート成形を
行って・軸20を円筒状複合磁石19と一体に成形して
もよい。
The outer diameter of the thus obtained compact is machined to a predetermined size as required, and after the shaft is fixed, it is magnetized in the same direction as the anisotropy direction, as shown in Fig. 3. You can get a magnetic roll. In FIG. 3, 19 is a cylindrical composite magnet, and 2a is a shaft. However, the shaft 20 may be molded integrally with the cylindrical composite magnet 19 by insert molding.

以下本発明を実施例および比較例によって更に詳細に説
明するが、これにより本発明が限定されるものではない
EXAMPLES The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

〔実施例および比較例〕[Examples and comparative examples]

平均粒径1μmのBaフェライト粉末7.65kgにポ
リアミド樹脂(ナイロン6:商品名) 135kgを加
えて250℃でニーダにより混練した。この混練物を第
1図および第2図に示す金型を備えた実験用射出成形機
に投入し、温度270℃1圧力900kU/cdの条件
で金型内に射出し固化した。ここで金型の永久磁石とし
てはBrが9.oooG、 IHCが1o、ooooe
の希土類コバルト磁石(日立金属製H−22A)を用い
、成形空間の磁束密度分布は第4@に示す通りとした。
135 kg of polyamide resin (nylon 6: trade name) was added to 7.65 kg of Ba ferrite powder having an average particle size of 1 μm, and the mixture was kneaded at 250° C. using a kneader. This kneaded material was put into an experimental injection molding machine equipped with the mold shown in FIGS. 1 and 2, and was injected into the mold at a temperature of 270° C. and a pressure of 900 kU/cd and solidified. Here, the permanent magnet of the mold has a Br of 9. oooG, IHC is 1o, ooooo
A rare earth cobalt magnet (H-22A manufactured by Hitachi Metals) was used, and the magnetic flux density distribution in the molding space was as shown in No. 4 @.

得られた成形体(外径sowxf4.内径12.11 
、長さ260B)に軸を固着し、ついで着磁を施して第
3図に示す通りのマグネットロールが得られた。このマ
グネツ)o−ルの磁束密度分布を測定したところ、第5
図に示す波形が得られた。
The obtained molded body (outer diameter sowxf4.inner diameter 12.11
, length 260B), and then magnetized to obtain a magnet roll as shown in FIG. When we measured the magnetic flux density distribution of this magnetic roller, we found that
The waveform shown in the figure was obtained.

上記成形過程において、金型温度調整用媒体と冷却用媒
体の流量を各々b=soooになるように設定し、金型
温度調整用媒体として120℃の水を用いて、冷却水の
温度を調整してその流出温度を種々変化させて、ウェル
ドマークの有無および寸法、外観を測定・評価した。そ
の結果を第1表に示す。
In the above molding process, the flow rates of the mold temperature adjustment medium and cooling medium are each set so that b = sooo, and the temperature of the cooling water is adjusted using 120°C water as the mold temperature adjustment medium. The presence or absence of weld marks, dimensions, and appearance were measured and evaluated by varying the outflow temperature. The results are shown in Table 1.

第   1   表 (注) 測定値は10本の平均値 第1表から明らかなように、温度差が本発明の範囲内に
ある実験墓5〜7によれば、ウェルドマークの発生、ソ
リ、割れのすべてについて、実験墓1.2よりも良好な
結果が得られることがわかる。
Table 1 (Note) The measured values are the average values for 10 samples.As is clear from Table 1, according to experimental graves 5 to 7, where the temperature difference was within the range of the present invention, weld marks, warping, and cracks were observed. It can be seen that better results than Experimental Grave 1.2 can be obtained for all of the above.

〔発明の効果〕〔Effect of the invention〕

以上に記述の如く、本発明によれば、ソリや割れが少く
しかも磁気特性に優れた異方性円筒状複合磁石を高能率
で製造することができる。
As described above, according to the present invention, an anisotropic cylindrical composite magnet with less warpage and cracking and excellent magnetic properties can be manufactured with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

911図は本発明に使用される金型の一例を示す横断両
図、第2図は第1図のA−A断面図、第3図はマグネッ
トロールの斜視図、第4図は第1図の金型の内面の磁束
密度分布を示す図、第5図は本発明により得られたマグ
ネットロールの磁束密度分布を示す図である。 1:成形空間、     2:コア、 3.4=永永久層、    9二流路。
Figure 911 is a cross-sectional view showing an example of a mold used in the present invention, Figure 2 is a sectional view taken along line A-A in Figure 1, Figure 3 is a perspective view of the magnet roll, and Figure 4 is Figure 1. FIG. 5 is a diagram showing the magnetic flux density distribution on the inner surface of the mold, and FIG. 5 is a diagram showing the magnetic flux density distribution of the magnet roll obtained by the present invention. 1: molding space, 2: core, 3.4=permanent layer, 9 two channels.

Claims (1)

【特許請求の範囲】[Claims] 1、強磁性粉末と高分子化合物を主体とする混練物を磁
場の存在下、円筒状の成形空間を有する金型内で射出成
形する工程と、前記金型の周囲に金型温度調節用媒体を
通過させて成形体を固化する工程を含む異方性複合磁石
の製造方法において、前記金型温度調節用媒体の流入温
度とその流出温度との差を20℃以上に制御して金型温
度の調節を行なうことを特徴とする異方性複合磁石の製
造方法。
1. A step of injection molding a kneaded material mainly consisting of ferromagnetic powder and a polymer compound in a mold having a cylindrical molding space in the presence of a magnetic field, and a mold temperature adjusting medium is provided around the mold. In the method for producing an anisotropic composite magnet, which includes a step of solidifying the molded body by passing the medium through the mold, the mold temperature is controlled by controlling the difference between the inflow temperature and the outflow temperature of the mold temperature adjusting medium to 20°C or more. 1. A method for manufacturing an anisotropic composite magnet, the method comprising adjusting:
JP24105584A 1984-11-15 1984-11-15 Manufacture of anisotropic composite magnet Pending JPS61119017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24105584A JPS61119017A (en) 1984-11-15 1984-11-15 Manufacture of anisotropic composite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24105584A JPS61119017A (en) 1984-11-15 1984-11-15 Manufacture of anisotropic composite magnet

Publications (1)

Publication Number Publication Date
JPS61119017A true JPS61119017A (en) 1986-06-06

Family

ID=17068635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24105584A Pending JPS61119017A (en) 1984-11-15 1984-11-15 Manufacture of anisotropic composite magnet

Country Status (1)

Country Link
JP (1) JPS61119017A (en)

Similar Documents

Publication Publication Date Title
JP3745509B2 (en) Cylindrical resin magnet molding equipment
EP0016960B1 (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
JP2004193543A (en) Hybrid material for magnet, molded magnet and method of manufacturing it, development magnet roller, development unit, process cartridge, and image forming apparatus
JPS61119017A (en) Manufacture of anisotropic composite magnet
JP3963913B2 (en) Mold for molding bonded magnet for magnet roll and molding method
JPS61164215A (en) Manufacture of thin-walled cylindrical magnet
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JP3774876B2 (en) Cylindrical radial anisotropic magnet forming device
JPS60218813A (en) Manufacture of anisotropic composite magnet
JPS60229321A (en) Manufacture of anisotropic magnet roll
JP4344193B2 (en) Magnetic seal member and manufacturing method thereof
JP2000081789A (en) Magnet roll
JPS60220917A (en) Manufacture for anisotropic magnetic roll
JPS60246614A (en) Manufacture of anisotropic magnet roll
JPS60218812A (en) Manufacture of anisotropic composite magnet
JP4932344B2 (en) Manufacturing method of long magnet compact
JPS60202913A (en) Manufacture of anisotropic magnet roll
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS60202912A (en) Manufacture of anisotropic magnet roll
JPS6179213A (en) Manufacture of magnetic roll
JPS61125010A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPH04122008A (en) Production method for anisotropic magnet roll
JPH04107819U (en) Multipolar anisotropic cylindrical or solid cylindrical magnet mold
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor