JPS60202913A - Manufacture of anisotropic magnet roll - Google Patents

Manufacture of anisotropic magnet roll

Info

Publication number
JPS60202913A
JPS60202913A JP6030784A JP6030784A JPS60202913A JP S60202913 A JPS60202913 A JP S60202913A JP 6030784 A JP6030784 A JP 6030784A JP 6030784 A JP6030784 A JP 6030784A JP S60202913 A JPS60202913 A JP S60202913A
Authority
JP
Japan
Prior art keywords
molding space
magnetic
magnet
molding
magnet roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6030784A
Other languages
Japanese (ja)
Inventor
Chitoshi Hagi
萩 千敏
Satoru Koizumi
悟 小泉
Shuichi Shiina
椎名 修一
Kazunori Tawara
田原 一憲
Kenichi Kawana
川名 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6030784A priority Critical patent/JPS60202913A/en
Publication of JPS60202913A publication Critical patent/JPS60202913A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain an anisotropic composite magnet having excellent dimensional stability and magnetic characteristics by fitting a plurality of injection ports on a circumference concentric to a molding space in the end surface thereof and arranging the injection ports among magnetic poles for a magnetic circuit in the periphery of the molding space. CONSTITUTION:A plurality of injection ports 81-83 are mounted on a circumference concentric to a molding space 1 in the end surface of the molding space 1. The injection ports 81-83 are disposed where corresponding to sections among magnetic poles for a magnetic circuit consisting of yokes 71-73 fitted around the molding space 1 and a core 2 at that time. A kneaded material is introduced into the molding space 1 from the injection ports 81-83, thus manufacturing an anisotropic magnet roll.

Description

【発明の詳細な説明】 本発明は強磁性粉末と高分子化合物を含む混線物を磁場
中で射出成形する工程を含む異方性マグネットロールの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an anisotropic magnet roll, which includes a step of injection molding a mixed material containing a ferromagnetic powder and a polymer compound in a magnetic field.

電子写真複写機・ファクシミリ・プリンター等の画像再
生装置(乾式)においては、磁性現像剤(磁性キャリア
とトナーとの混合粉体である二成分現像剤あるいは一成
分系の磁性トナー等)の搬送手段(例えば現像ロールあ
るいはクリーニングロール等)として、非磁性スリーブ
の内部に複数個の磁極を有する永久磁石部材を設置し、
両者を相対的に回転させるように構成したマグネットロ
ールが一般的に使用されている。
In image reproducing devices (dry type) such as electrophotographic copiers, facsimiles, and printers, it is a means for transporting magnetic developer (two-component developer that is a mixed powder of magnetic carrier and toner, or one-component magnetic toner, etc.) A permanent magnet member having a plurality of magnetic poles is installed inside a non-magnetic sleeve as a developing roll or cleaning roll, etc.
A magnetic roll configured to rotate both relative to each other is generally used.

上記のマグネットロールにも種々の構造のものがあり、
例えば実公昭57−9798号公報に記載されているよ
うな、フェライト粉末を磁場中でプレス成形後焼結して
得られる長尺の異方性ブロック磁石を軸の周囲に固定し
て形成した永久磁石部材を用いるもの、あるいはハード
フェライトからなる円筒状永久磁石を軸に固着して形成
した永久磁石部材を用いるもの(例えば特公昭55−6
907号公報、特公昭53−47043号公報参照)な
どが挙げられる。
The above magnetic rolls also have various structures,
For example, as described in Utility Model Publication No. 57-9798, a permanent magnet is formed by fixing a long anisotropic block magnet obtained by press-molding ferrite powder in a magnetic field and then sintering it around a shaft. Those using a magnetic member, or those using a permanent magnet member formed by fixing a cylindrical permanent magnet made of hard ferrite to a shaft (for example,
907, and Japanese Patent Publication No. 53-47043).

しかるに前者の場合は、組立工鹸フとなるおよび低温減
磁が生ずるなどの問題があり、一方接者の場合は磁極間
部分にも磁石材料が使用されかつ焼結体の密度も約5(
]/cmと犬ぎいため重量が大となるという問題がある
。またフェライト磁石は、一般に、拐料自体が脆弱であ
ることから焼結時あるいは焼結後にクラックや割れが発
生し易く、歩留が悪いという問題もある。
However, in the former case, there are problems such as assembly failure and low-temperature demagnetization, while in the case of joints, magnetic material is also used in the part between the magnetic poles, and the density of the sintered body is about 5 (
]/cm, so there is a problem that the weight is large. In addition, ferrite magnets generally have a problem in that since the particles themselves are fragile, they tend to crack or break during or after sintering, resulting in poor yields.

これに対して、主として軽量化のために強磁性粉末(一
般にはフェライト粉末が使用される)と高分子化合物(
一般にはゴム又はプラスチック材料が使用される)を主
体とする混線物を押出成形あるいは、射出成形の手法に
より円筒状に一体に成形し、ついで冷却固化後着磁した
いわゆる複合磁石を用いたマグネットロールが提案され
、実用化が検詞され−(いる。(例えば特開昭56−1
08207号、同57−130407号、同57−16
450号等の各公報参照) この円筒状磁石を製造する場合、複合磁石は焼結磁6よ
りも密度が低いのでフェライト磁石と同等の磁気特性を
得るためには、冷却固化が完了するまでの間に強磁性粉
末の磁化容易軸を着磁後の磁石内部の磁力線方向に一致
させる。いわゆる異方性化の工程が必要なことは周知で
ある。(例えば特開昭51−62396号公報参照)異
方性複合磁石を射出成形の手法により製造する場合、一
般にプラスチックの射出成形と同様に原料混線物をノズ
ル口からスプルー、ランナーを経て注入口(ゲート)か
ら金型の成形空間(キャごティ)内に射出して成形品を
得ている。(例えば特開昭51−21198号及び同5
1−21199号の各公報参照)その場合、成形品形状
が複雑な場合キャビティ内各部共に均一に原料混線物の
充填を行なうために各種ゲート(例えばフィルムゲート
、リングゲート、あるいはダイレクトゲート等)が提案
されでいる。さらにゲート位置は成形品を使用づる場合
寸法精度、磁気特性等の物性上問題とならない位置に設
けるのが普通である。
On the other hand, ferromagnetic powder (generally ferrite powder is used) and polymer compounds (
A magnet roll using a so-called composite magnet, which is made by integrally molding a mixed material (generally made of rubber or plastic material) into a cylindrical shape by extrusion molding or injection molding, and then magnetizing it after cooling and solidifying it. was proposed, and practical application was carried out.
No. 08207, No. 57-130407, No. 57-16
(Refer to various publications such as No. 450) When manufacturing this cylindrical magnet, since the composite magnet has a lower density than sintered magnet 6, in order to obtain the same magnetic properties as a ferrite magnet, it is necessary to wait until cooling solidification is completed. In the meantime, the axis of easy magnetization of the ferromagnetic powder is aligned with the direction of the lines of magnetic force inside the magnet after magnetization. It is well known that a so-called anisotropy process is necessary. (For example, see Japanese Patent Application Laid-Open No. 51-62396.) When manufacturing anisotropic composite magnets by injection molding, raw materials are generally mixed from the nozzle opening through the sprue, runner, and injection port (as in plastic injection molding). The molded product is obtained by injecting into the molding space (cagoty) of the mold from the mold gate. (For example, JP-A No. 51-21198 and No. 5
(Refer to each publication No. 1-21199) In that case, if the shape of the molded product is complex, various gates (for example, film gate, ring gate, or direct gate) may be used to uniformly fill each part of the cavity with the raw material contaminants. It has been proposed. Furthermore, when a molded product is used, the gate position is usually located at a position that does not pose problems in terms of physical properties such as dimensional accuracy and magnetic properties.

しかるにマグネットロールに組み込まれる異方性円筒状
複合磁石は長尺(通常は長さ/直径が5以上)であるた
め、均一充填するには円筒状成形空間(キャビティ)の
外周面上よりフィルムゲート、多点ピンポイントゲート
等の注入口を設は原料混練物を導入する方法が有効であ
るが、キャビディ外周には異方性を付!jさゼるための
vA場発生用の磁気回路が設置されており、更に円筒状
複合磁石の磁気特性を損う等の問題があり、この方法を
実施=+“ることは困難である。従って混線物の導入は
金型成形空間(キトビティ)の端面にゲートを設りる方
が有利である。この場合1、リンググー1〜又はビンポ
イントゲートが考えられるがリンググー1へは均一充填
には有効であるが離型時のゲート切断が困難であり、1
点のビンポイントゲートでは充填不足やウェルディング
ラインが発生し均一充填が困難で十分な磁気特性が得ら
れないという問題があった。
However, since the anisotropic cylindrical composite magnet incorporated into the magnet roll is long (usually with a length/diameter of 5 or more), in order to uniformly fill the magnet, a film gate is placed on the outer circumferential surface of the cylindrical molding space (cavity). It is effective to introduce the kneaded raw material by installing an injection port such as a multi-point pinpoint gate, but it is effective to introduce anisotropy to the outer circumference of the cavity! Since a magnetic circuit for generating a vA field is installed to generate a cylindrical composite magnet, there are problems such as damaging the magnetic properties of the cylindrical composite magnet, making it difficult to implement this method. Therefore, it is more advantageous to install a gate on the end face of the mold molding space (kitobiti) for introducing the crosstalk.In this case, 1, ring goo 1 ~ or bottle point gate can be considered, but it is difficult to uniformly fill ring goo 1. Although it is effective, it is difficult to cut the gate during mold release, and 1
In the point bin point gate, insufficient filling and welding lines occur, making it difficult to fill uniformly and making it impossible to obtain sufficient magnetic properties.

本発明の目的は、上述の従来技術の問題点を解消し、寸
法安定性と磁気特性が良好な異方性複合磁石、特に異方
性円筒状複合磁石を備えた異方性マグネットロールを得
ることのできる製造方法を提供することである。
An object of the present invention is to solve the problems of the prior art described above and obtain an anisotropic composite magnet with good dimensional stability and magnetic properties, particularly an anisotropic magnet roll equipped with an anisotropic cylindrical composite magnet. The objective is to provide a manufacturing method that can

本発明は強磁性粉末と高分子化合物を主体とする混線物
を磁場存在下、円筒状成形空間を有する金型内で射出成
形する工程を含む異方性マグネットロールの製造方法に
おいて、前記成形空間の端面に成形空間と同心の円周上
に複数個の注入口を設レノかつ該注入口を前記成形空間
の周囲に設()られた磁気回路の磁極間に対応する位置
に配置し、該注入口より前記混線物を前記成形空間内に
尋人することを特徴とする異方性マグネットロールの製
造方法である。
The present invention provides a method for manufacturing an anisotropic magnet roll, which includes a step of injection molding a mixed material mainly consisting of ferromagnetic powder and a polymer compound in a mold having a cylindrical molding space in the presence of a magnetic field. A plurality of inlets are provided on the end face of the molding space on a circumference concentric with the molding space, and the inlets are arranged at positions corresponding to between the magnetic poles of a magnetic circuit provided around the molding space. This method of manufacturing an anisotropic magnet roll is characterized in that the mixed material is introduced into the molding space through an injection port.

以下本発明の詳IIIを図面により説明する。The details of the present invention will be explained below with reference to the drawings.

第1図は本発明に使用される射出成形用金型の一例を示
1横断面図、第2図は第1図のA−A断面図である。
FIG. 1 is a cross-sectional view showing an example of an injection mold used in the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1.

両図において、金型は内部にコア2を同心に設けてなる
円筒状の成形空間1を有している。
In both figures, the mold has a cylindrical molding space 1 in which a core 2 is provided concentrically.

成形空間1の周囲には、半径方向に着磁した永久磁石3
1〜33と、円周方向に着磁した永久磁石41〜44と
、非磁性スペーサ5が設置されている。またこれらの外
周は軟磁性体からなるヨーク6で包囲されかつ、永久磁
石31〜33の内側73 にも軟磁性体からなるヨーク71〜−/−+が設けられ
ている。このようにして永久磁石とヨークの組合せによ
り、永久磁石の磁束は有効に成形空間内に収束され、十
分なる磁場配向が可能となる。
Permanent magnets 3 magnetized in the radial direction are arranged around the molding space 1.
1 to 33, permanent magnets 41 to 44 magnetized in the circumferential direction, and a nonmagnetic spacer 5 are installed. Further, their outer peripheries are surrounded by a yoke 6 made of a soft magnetic material, and yokes 71 to -/-+ made of a soft magnetic material are also provided inside 73 of the permanent magnets 31 to 33. In this way, the combination of the permanent magnet and the yoke effectively converges the magnetic flux of the permanent magnet within the molding space, making it possible to achieve sufficient magnetic field orientation.

(なお磁気回路の説明については、特願昭58−117
857号参照) そしてノズル口16の一端は金型磁気回路により形成さ
れる磁極、すなわちヨーク71.72.73と]ア2の
中間部に位置するビンポイントゲート81.82.83
に連通している。上記金型により射出成形を行なう場合
は、原料混線物を所定温度に加熱された金型に射出する
と、該混線物はノズル口16から注入されスプルー12
、ランナー13を経て、3点ビンポイントゲート81.
82.83より成形空間1内に充填される。上記混練物
が成形空間1に進む間に磁場により配向され、つむ)で
冷却固化される。しかる後型板10および型板11突出
して成形体を金型から取出す。この場合成形空間1内に
注入された混線物ビンポイントゲートが3点(8+ 、
82.83 )あるため、成形空間1内に均一に充填さ
れ、しかもゲート位置ガ金型磁気回路の極間に対応する
位置にあるため、混線物は適度に固化し、混練物中の強
磁性粉末は適度な磁場配向性が得られる。従って磁極近
傍と磁極間での成形体密度差が小さくなり割れのない、
かつ寸法精度の良好な成形体が得られる。
(For an explanation of the magnetic circuit, please refer to Japanese Patent Application No. 58-117
857) One end of the nozzle opening 16 is a magnetic pole formed by the mold magnetic circuit, that is, a bin point gate 81.82.83 located in the middle of the yoke 71.72.73 and ]A2.
is connected to. When injection molding is performed using the above-mentioned mold, when the raw material contaminant is injected into the mold heated to a predetermined temperature, the contaminant is injected from the nozzle port 16 and is inserted into the sprue 12.
, through runner 13, to 3-point bin point gate 81.
The molding space 1 is filled from 82.83. While the kneaded material advances to the molding space 1, it is oriented by a magnetic field, and is cooled and solidified by spinning. Thereafter, the mold plate 10 and the mold plate 11 are protruded and the molded body is taken out from the mold. In this case, there are 3 points (8+, 8+,
82.83), the molding space 1 is filled uniformly, and the gate position is located at a position corresponding to the poles of the mold magnetic circuit, so that the mixed material solidifies appropriately, and the ferromagnetism in the kneaded material is The powder can be oriented appropriately in the magnetic field. Therefore, the difference in the density of the compact between the magnetic poles and the magnetic poles is small, and there is no cracking.
Moreover, a molded article with good dimensional accuracy can be obtained.

なお第2図において15は突出ビンであり、その先端に
は下台9が固着されている。また下台9の反対側には型
板10および11が設けられ、型板10および11には
ノズル口16とスプルー12が設けられている。一方型
板10にはスプルー12に連通ずるランナー13が設け
られ、3点のビンポイントゲート81〜83に連通され
ているため、均一充填が可能となり良好な磁場配向性が
得られる。
In FIG. 2, 15 is a protruding bottle, and a lower stand 9 is fixed to the tip thereof. Further, on the opposite side of the lower stand 9, templates 10 and 11 are provided, and the templates 10 and 11 are provided with a nozzle port 16 and a sprue 12. On the other hand, the mold plate 10 is provided with a runner 13 that communicates with the sprue 12 and communicates with the three bin point gates 81 to 83, so that uniform filling is possible and good magnetic field orientation is obtained.

このようにして得られた成形体は、必要に応じて外径を
所定の寸法に加工し、ついで軸を固定した後異方性方向
と同方向に着磁して、第3図に示すようなマグネットロ
ールが得られる。第3図においC11Gは外周に3極を
有する円筒状磁石、17は軸をそれぞれ示している。
The molded body thus obtained is processed to have a predetermined outer diameter as required, and then the shaft is fixed and then magnetized in the same direction as the anisotropic direction, as shown in Figure 3. You can get a magnetic roll. In FIG. 3, C11G is a cylindrical magnet having three poles on the outer periphery, and 17 is a shaft.

なお第2図においてコア2の代替として下台9にマグネ
ットロールの軸を立設することにより一体用出成形マグ
ネットロールの製造も可能となる。
In addition, in FIG. 2, by erecting the shaft of the magnet roll on the lower stand 9 instead of the core 2, it is also possible to manufacture an integral molded magnet roll.

上記の説明では、3極の着磁を施した円筒状磁石の製造
について述べたが、金型の磁石の数をふやJことにより
5極以上のものを製造できることはもちろlυ、磁石配
置を変更することにより4極、6極、8極等の偶数極の
ものが得られるしく特願昭58−102127号参照)
、又多数個数も可能である(特願D:(58−1559
75号参照)。なお、本発明は永久磁石方式の金型に限
らず、永久磁石とパルス磁Aを使用した金型や電磁石方
式の金型にも適用できるが、設備の小型化および簡略化
の点から永久磁石式金型が最も適当である。
In the above explanation, we talked about manufacturing a cylindrical magnet with 3 pole magnetization, but it is of course possible to manufacture 5 or more poles by increasing the number of magnets in the mold. By changing the number of poles, even number poles such as 4 poles, 6 poles, 8 poles, etc. can be obtained.
(Patent application D: (58-1559)
(See No. 75). Note that the present invention is not limited to permanent magnet type molds, but can also be applied to molds using permanent magnets and pulsed magnets A, and electromagnet type molds. A type mold is most suitable.

また本発明では原料混線物は、通常の複合磁石に使用さ
れる次のような材料を用いて準備すればよい。
Further, in the present invention, the raw material mixed material may be prepared using the following materials used in ordinary composite magnets.

強磁性粉末としては、3aフエライトあるいは3rフエ
ライト等のマグネットブランバイト型結晶構造を有する
フェライト粉末、Aα−Ni −CO系磁石粉末、Fe
 −Cr−Go系磁石粉末、希土類コバルト磁石粉末、
希土類鉄磁石粉末等の公知の磁石粉末が使用できる。ま
た高分子化合物としては、種々の熱可塑性樹脂、例えば
ポリアミド樹脂、ポリエチレン、エチレン酢酸ビニル共
重合体、エチレンエチルアクリレート共重合体、ポリプ
ロピレン等が使用できる。またこの他にも、成形性を改
善Jるためにステアリン酸カルシウム等の滑剤を少量(
数重量%)加えてもよく、更に強磁性粉末のぬれ性を改
善覆るために、その表面を有機ケイ素化合物、有機チタ
ネート化合物で予め処理Jることもできる。強磁性粉末
の配合量は、強磁性粉末:樹脂−80〜94 : 20
〜6の重ω比となるようにすることが好ましい。これは
、強磁性粉末の配合mが上記範囲より少いと磁気特性が
低下し、その配合量が上記範囲より多いと成形が実質的
に困nとなるからである。
Examples of the ferromagnetic powder include ferrite powder having a magnetic brambite crystal structure such as 3a ferrite or 3r ferrite, Aα-Ni-CO magnetic powder, Fe
-Cr-Go magnet powder, rare earth cobalt magnet powder,
Known magnet powders such as rare earth iron magnet powders can be used. Further, as the polymer compound, various thermoplastic resins such as polyamide resin, polyethylene, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, polypropylene, etc. can be used. Additionally, in order to improve moldability, a small amount of lubricant such as calcium stearate (
Furthermore, in order to improve the wettability of the ferromagnetic powder, the surface of the ferromagnetic powder can be pretreated with an organosilicon compound or an organotitanate compound. The blending ratio of the ferromagnetic powder is ferromagnetic powder:resin -80 to 94:20
It is preferable to have a gravity ω ratio of ˜6. This is because if the amount of ferromagnetic powder is less than the above range, the magnetic properties will deteriorate, and if the amount is more than the above range, molding will become substantially difficult.

以下本発明を実施例によって更に詳細に説明づるが、こ
れにより本発明が限定されるものではない。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.

〈実施例〉 平均粒径1μmの3aフェライト粉末7.65kQにポ
リアミド樹脂(ナイロン6) 1,35kilを加え2
50℃でニーダ−により混練した。この混線物を第1図
に示す磁気回路を有する金型を用い(A)各磁極間に対
応する位置に3点のビンポイントゲートを用いた場合(
B)各磁極上に対応する位置に3点のビンポイントゲー
トを用いた場合(C)リングゲートを用いた場合(D>
第1図におけるビンポイントゲート82.83を閉じて
1点のビンポイントゲートを用いl〔場合につき各々2
0本づつ同一条件にて射出成形した。この時の射出成形
条件を第1表に示づ。又ここで使用した金型の永久磁石
としては3r 9.OKG、1ト1c 10KOeの希
土類コバルト磁石(日立金属製H−22A )であり成
型空間の表面の磁束密度分布は第4図に示す通りである
。得られた成形体(外径30n+mφ、内径12mmφ
、長さ260111m >に軸を固着し、ついで成形時
の異方性方向と同一方向に着磁を施し第3図に示す通り
のマグネットロールを得た。第2表にこれら4種のゲー
トを用い作成したマグネットロールのN極における表面
磁束密度および成型体の割れ、そりの測定結果(平均値
)を示す。第2表(C)のリングゲートを用いた場合は
、磁気特性も良好で、成形体に割れもなくソリも小さい
が離型時のゲート部で切断がすべて出来ない問題点があ
 つ ノこ 。
<Example> 1.35 kg of polyamide resin (nylon 6) was added to 7.65 kQ of 3a ferrite powder with an average particle size of 1 μm.
The mixture was kneaded using a kneader at 50°C. When this crosstalk is handled using a mold with the magnetic circuit shown in Figure 1 (A) and three bin point gates are used at positions corresponding to each magnetic pole (
B) When three bin point gates are used at positions corresponding to each magnetic pole (C) When a ring gate is used (D>
Close the bin point gates 82 and 83 in Figure 1 and use one bin point gate [2 in each case]
Each piece was injection molded under the same conditions. The injection molding conditions at this time are shown in Table 1. Also, the permanent magnet of the mold used here was 3r9. The magnet was a rare earth cobalt magnet (H-22A manufactured by Hitachi Metals) of OKG, 1 ton, 1 c, 10 KOe, and the magnetic flux density distribution on the surface of the molding space was as shown in FIG. The obtained molded body (outer diameter 30n+mφ, inner diameter 12mmφ
, a length of 260111 m>, and then magnetized in the same direction as the anisotropic direction during molding to obtain a magnet roll as shown in FIG. Table 2 shows the measurement results (average values) of surface magnetic flux density at the N pole of magnet rolls prepared using these four types of gates, as well as cracks and warpage of molded bodies. When the ring gate shown in Table 2 (C) is used, the magnetic properties are good and the molded product has no cracks and warpage is small, but there is a problem that all the cuts cannot be made at the gate part when releasing the mold. .

第2表に示す通り本発明法−に従ってビンポイントゲー
トを磁気回路の各磁極間に対応する位置に配置すること
により磁気特性も良好で、割れがなくしかもソリの小さ
い寸法安定性に優れた異方性マグネットロールを得るこ
とかできた。
As shown in Table 2, by arranging the bin point gates at positions corresponding to the respective magnetic poles of the magnetic circuit according to the method of the present invention, the magnetic properties are good, there is no cracking, there is no warpage, and the dimensional stability is excellent. I was able to obtain a directional magnet roll.

第1表 成形条件Table 1 Molding condition

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される金型の位置例をポリ断面図
、第2図は第1図のA−A断面図、第3図はマグネット
ロールの斜視図、第4図は第1図に示す金型の内面の磁
束密度分布を示す図である。 1:成形空間、2:コア、3.4:永久磁石、81.8
2.83:ピンポイントゲート第 l 目 漆2 @ 第3 図 7
Fig. 1 is a poly sectional view showing an example of the position of the mold used in the present invention, Fig. 2 is a sectional view taken along line A-A in Fig. 1, Fig. 3 is a perspective view of the magnet roll, and Fig. 4 is a It is a figure which shows the magnetic flux density distribution on the inner surface of the metal mold|die shown in a figure. 1: Molding space, 2: Core, 3.4: Permanent magnet, 81.8
2.83: Pinpoint gate No. 1 Lacquer 2 @ No. 3 Figure 7

Claims (1)

【特許請求の範囲】 1、強磁性粉末と高分子化合物を主体とする混線物を磁
場の存在下、円筒状成形空間を有する金型内で射出成形
する工程を含む異方性マグネットロールの製造方法にお
いて、前記成形空間の端面に成形空間と同心の円周上に
複数個の注入口を設け、かつ該注入口を前記成形空間の
周囲に設けられた磁気回路の磁極間に対応する位置に配
置し、該注入口より前記混線物を前記成形空間内に導入
することを特徴とする異方性マグネットロールの製造方
法。 2、永久磁石による磁場中で射出成形する特許請求の範
囲第1項記載の異方性マグネットロールの製造方法。
[Claims] 1. Manufacture of an anisotropic magnet roll including the step of injection molding a mixed material mainly composed of ferromagnetic powder and a polymer compound in a mold having a cylindrical molding space in the presence of a magnetic field. In the method, a plurality of injection ports are provided on an end surface of the molding space on a circumference concentric with the molding space, and the injection ports are positioned at positions corresponding to between magnetic poles of a magnetic circuit provided around the molding space. A method for manufacturing an anisotropic magnet roll, characterized in that the mixed wire is introduced into the molding space through the injection port. 2. The method for manufacturing an anisotropic magnet roll according to claim 1, which involves injection molding in a magnetic field of permanent magnets.
JP6030784A 1984-03-28 1984-03-28 Manufacture of anisotropic magnet roll Pending JPS60202913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030784A JPS60202913A (en) 1984-03-28 1984-03-28 Manufacture of anisotropic magnet roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030784A JPS60202913A (en) 1984-03-28 1984-03-28 Manufacture of anisotropic magnet roll

Publications (1)

Publication Number Publication Date
JPS60202913A true JPS60202913A (en) 1985-10-14

Family

ID=13138368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030784A Pending JPS60202913A (en) 1984-03-28 1984-03-28 Manufacture of anisotropic magnet roll

Country Status (1)

Country Link
JP (1) JPS60202913A (en)

Similar Documents

Publication Publication Date Title
EP0016960B1 (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
US4441875A (en) Mold apparatus for forming article under influence of magnetic field
JPS60202913A (en) Manufacture of anisotropic magnet roll
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPS60202912A (en) Manufacture of anisotropic magnet roll
JPS60229321A (en) Manufacture of anisotropic magnet roll
JPS60246614A (en) Manufacture of anisotropic magnet roll
GB2226789A (en) Injection moulding permanent magnets
JPS60218812A (en) Manufacture of anisotropic composite magnet
JPS61125010A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS6179213A (en) Manufacture of magnetic roll
JPH0343707Y2 (en)
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPH01275113A (en) Manufacturing device for rotary plastic magnet
JPS60220917A (en) Manufacture for anisotropic magnetic roll
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JP2000081789A (en) Magnet roll
JPH04122008A (en) Production method for anisotropic magnet roll
JP2906211B2 (en) Magnet roll molding method and molding die
JPS62247512A (en) Manufacture of multipolar anisotropy cylindrical magnet and device therefor
JPS6257203A (en) Multiple-pole anisotropic cylindrical magnet and manufacture thereof
JPH0376763B2 (en)
JPS61125011A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS6212105A (en) Magnet roll