JP4344193B2 - Magnetic seal member and manufacturing method thereof - Google Patents

Magnetic seal member and manufacturing method thereof Download PDF

Info

Publication number
JP4344193B2
JP4344193B2 JP2003284404A JP2003284404A JP4344193B2 JP 4344193 B2 JP4344193 B2 JP 4344193B2 JP 2003284404 A JP2003284404 A JP 2003284404A JP 2003284404 A JP2003284404 A JP 2003284404A JP 4344193 B2 JP4344193 B2 JP 4344193B2
Authority
JP
Japan
Prior art keywords
magnetic
resin
magnet
seal member
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003284404A
Other languages
Japanese (ja)
Other versions
JP2005049801A (en
Inventor
啓介 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2003284404A priority Critical patent/JP4344193B2/en
Publication of JP2005049801A publication Critical patent/JP2005049801A/en
Application granted granted Critical
Publication of JP4344193B2 publication Critical patent/JP4344193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Sealing Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、複写機やレーザービームプリンタ等の電子写真装置において、磁性トナーを収容する容器からの磁性トナーの漏れを防止する磁気シール部材及びその製造方法に関するものである。   The present invention relates to a magnetic seal member for preventing leakage of magnetic toner from a container for storing magnetic toner in an electrophotographic apparatus such as a copying machine or a laser beam printer, and a manufacturing method thereof.

従来、複写機やレーザービームプリンタ等の電子写真装置において、現像剤担持体の両端部に、現像領域外に磁性トナーが流出することを防止するためのシール部材が設けてある。このシール部材には、磁気吸引を利用する非接触の磁気シール部材が使用されている。磁気シール部材は、磁性トナーを磁気吸引するための樹脂磁石と樹脂磁石の磁力線が現像担持体の外側に発散することを防止するため、透磁率の高い鉄製のヨークを積層している。   2. Description of the Related Art Conventionally, in electrophotographic apparatuses such as copying machines and laser beam printers, seal members for preventing magnetic toner from flowing out of a developing region are provided at both ends of a developer carrier. As this seal member, a non-contact magnetic seal member using magnetic attraction is used. The magnetic seal member is formed by laminating a resin magnet for magnetically attracting magnetic toner and an iron yoke having a high magnetic permeability in order to prevent the magnetic lines of force of the resin magnet from diverging outside the developing carrier.

樹脂磁石と打ち抜き等で作製された磁性体ヨークが積層されてなる略半円筒状の磁性シール部材の磁石のバリの形成を防止する技術が特開平11−166626号公報に紹介されている。
特開平11−166626号公報
Japanese Patent Laid-Open No. 11-166626 introduces a technique for preventing the formation of burr in a magnet of a substantially semi-cylindrical magnetic seal member in which a resin magnet and a magnetic yoke produced by punching or the like are laminated.
JP-A-11-166626

しかしながら、従来の磁気シール部材は、磁石のバリの形成を防止することはできるが、プレス等の打ち抜きにより作製された鉄製のヨークを金型に挿入して成形するため、ヨークの方向を揃えるパーツフィーダーやヨークを金型内に挿入するロボット等の専用の設備が必要となり、部品コストが上がる要因となる。また、金型と挿入するヨークの内径を完全に同じ寸法にすることは極めて難しく、積層境界面に段差が発生し内径の寸法が不均一になりやすい。さらに、樹脂磁石に異方性磁石を用いる場合、金型内に磁性粉を配向させるための永久磁石が配置されているため、成形前に挿入されたヨークは永久磁石の磁気吸引により姿勢を保持することが困難であり、生産の中断を生じやすく、そのための特別の処置が必要であるという課題を完全に解決するものではなかった。   However, the conventional magnetic seal member can prevent the burr of the magnet from being formed. However, since the iron yoke produced by punching such as a press is inserted into the mold and molded, the parts to align the direction of the yoke Dedicated equipment such as a robot that inserts the feeder and yoke into the mold is required, which increases the cost of parts. In addition, it is extremely difficult to make the inner diameter of the mold and the yoke to be inserted completely the same, and a step is generated on the boundary surface between the layers, and the inner diameter tends to be uneven. Furthermore, when an anisotropic magnet is used as the resin magnet, a permanent magnet for orienting the magnetic powder is placed in the mold, so the yoke inserted before molding maintains its posture by magnetic attraction of the permanent magnet. The problem of being difficult to do, prone to production interruptions, and requiring special measures for that, has not been completely solved.

従って本発明は上述した課題に鑑みてなされたものであり、その目的は低コストかつ寸法精度が良好であり、しかも生産性に優れた磁気シール部材を提供するものである。   Accordingly, the present invention has been made in view of the above-described problems, and an object thereof is to provide a magnetic seal member that is low in cost, has good dimensional accuracy, and is excellent in productivity.

本発明者は、上述した課題を解決するべく、鋭意研究の結果、透磁率の高い鉄などのヨークを用いなくても、軟質磁性合金粉末を分散した樹脂でも透磁率の高い鉄などのヨークと同様に樹脂磁石の磁力線の発散を防止できることを見出した。   In order to solve the above-mentioned problems, the present inventor has intensively studied and, as a result, without using a yoke with high magnetic permeability, such as iron with high permeability even with a resin in which soft magnetic alloy powder is dispersed. Similarly, it was found that the divergence of the magnetic field lines of the resin magnet can be prevented.

即ち、本発明に係わる磁気シール部材は、ヨーク部と磁石部とを有する電子写真用の磁気シール部材で、磁石部が硬質磁性合金粉末と樹脂バインダーとを含む樹脂磁石層からなり、該樹脂磁石層上に軟質磁性合金粉末と樹脂バインダーとを含む層をヨーク部として積層したことを特徴とする磁気シール部材である。   That is, the magnetic seal member according to the present invention is a magnetic seal member for electrophotography having a yoke portion and a magnet portion, and the magnet portion is composed of a resin magnet layer containing hard magnetic alloy powder and a resin binder, and the resin magnet A magnetic seal member characterized in that a layer containing a soft magnetic alloy powder and a resin binder is laminated on the layer as a yoke portion.

磁石部に用いられる樹脂と、ヨーク部に用いられる樹脂が同一樹脂であることが好ましい。また、ヨーク部を形成するための樹脂はアミド樹脂であることが好ましい。   The resin used for the magnet part and the resin used for the yoke part are preferably the same resin. The resin for forming the yoke part is preferably an amide resin.

本発明のヨーク部と磁石部とを有する電子写真用の磁気シール部材の製造法は、金型に、硬質磁性合金粉末と樹脂バインダーを含む原料組成物を注入して所定形状の磁性層と、軟質磁性合金粉末と樹脂バインダーを含む原料組成物を注入してヨーク部となる層とを積層成形する工程と、磁性層の所定部を磁化して磁石部となる樹脂磁石層を得る工程とを有することを特徴とするものである。   The method of manufacturing a magnetic seal member for electrophotography having a yoke portion and a magnet portion according to the present invention includes injecting a raw material composition containing a hard magnetic alloy powder and a resin binder into a mold, and a magnetic layer having a predetermined shape, Injecting a raw material composition containing a soft magnetic alloy powder and a resin binder to laminate and form a layer to be a yoke part; and magnetizing a predetermined part of the magnetic layer to obtain a resin magnet layer to be a magnet part It is characterized by having.

以上説明したように、本発明の磁気シール部材の製造方法では、低コストかつ寸法精度が良好であり、しかも生産性に優れた磁気シール部材を提供することができる。   As described above, according to the method for manufacturing a magnetic seal member of the present invention, it is possible to provide a magnetic seal member that is low in cost, good in dimensional accuracy, and excellent in productivity.

本発明に係る磁気シール部材1は、図1に示す如く、図示形状の樹脂結合型磁石としての、樹脂磁石2の一側に、該樹脂磁石2との間で磁気回路を形成する相似形を呈する軟質磁性合金粉末を分散した樹脂からなるヨーク3を成形手段により接合することで得られるものであり、約120°〜240°の円弧形状の一部の内向き円筒面部1aと直線状部1bとで構成される。また、磁気シール部材1の幅は、樹脂磁石2が幅2〜5mm、前記ヨークが幅0.3〜3mmである。さらに、本実施形態における円弧内周の半径の範囲はR5〜15mmである。   As shown in FIG. 1, the magnetic seal member 1 according to the present invention has a similar shape that forms a magnetic circuit with the resin magnet 2 on one side of the resin magnet 2 as a resin-bonded magnet of the illustrated shape. It is obtained by joining a yoke 3 made of a resin in which soft magnetic alloy powder is dispersed by molding means, and has a part of an inward cylindrical surface 1a and a linear part 1b having an arc shape of about 120 ° to 240 °. It consists of. The magnetic seal member 1 has a width of 2 to 5 mm for the resin magnet 2 and 0.3 to 3 mm for the yoke. Furthermore, the radius range of the inner circumference of the arc in this embodiment is R5 to 15 mm.

樹脂磁石2に用いる磁性粉末としては希土類元素磁性粉末とフェライト磁性粉末を使用することが知られている。希土類元素磁性粉末としては、希土類元素R1−Co系磁性粉末、希土類元素R2−Fe−B系磁性粉末、または希土類元素R3−Fe−N系磁性粉末等の硬質磁性合金粉末を用いることができる。ここで、希土類元素R1およびR3はSmを含む一種類以上の希土類元素からなり、希土類元素R2はNdを含む一種類以上の希土類元素からなる。 As the magnetic powder used for the resin magnet 2, it is known to use rare earth element magnetic powder and ferrite magnetic powder. As the rare earth element magnetic powder, a hard magnetic alloy powder such as a rare earth element R 1 —Co based magnetic powder, a rare earth element R 2 —Fe—B based magnetic powder, or a rare earth element R 3 —Fe—N based magnetic powder is used. Can do. Here, the rare earth elements R 1 and R 3 are composed of one or more rare earth elements including Sm, and the rare earth element R 2 is composed of one or more rare earth elements including Nd.

従って、希土類元素R1−Co系磁性粉末にはSm−Co系磁性粉末、Smの一部をNd、Pr、Y、Ce、Dyからなる合金の一種または二種以上で置換したSm−Co系磁性粉末、Sm−Co−Cu−Fe系においてZr、Hf、Tiからなる一種又は二種以上を添加した磁性粉末などが含まれる。 Accordingly, the rare earth element R 1 —Co based magnetic powder is Sm—Co based magnetic powder, and Sm—Co based powder in which a part of Sm is replaced with one or more of alloys composed of Nd, Pr, Y, Ce, and Dy. Magnetic powder, magnetic powder to which one or more of Zr, Hf and Ti are added in the Sm—Co—Cu—Fe system are included.

希土類元素R2−Fe−B系磁性粉末には、Nd−Fe−B系磁性粉末、Ndの一部をDy、Pr、Yからなる合金の一種又は二種以上で置換したNd−Fe−B系磁性粉末、Nd−Fe−B−Co系磁性粉末、Nd−Fe−B−Co系においてGa、Zr、Hf、Al、Cu、Mn、Ti、Siからなる合金の一種又は二種以上添加した塑性からなる磁性粉末などが含まれる。 The rare earth element R 2 —Fe—B based magnetic powder includes Nd—Fe—B based magnetic powder, Nd—Fe—B in which a part of Nd is substituted with one or more of Dy, Pr and Y alloys. One type or two or more types of alloys composed of Ga, Zr, Hf, Al, Cu, Mn, Ti, and Si are added in the system magnetic powder, Nd—Fe—B—Co system magnetic powder, and Nd—Fe—B—Co system. Magnetic powder made of plastic is included.

これらの磁性粉末には急冷凝固法により製造された磁性粉末を熱間静水圧成形法(HIP法)により成形し、次いで固めた磁性粉末のバルクを塑性加工した後、粉砕して得られる。   These magnetic powders are obtained by forming a magnetic powder produced by a rapid solidification method by a hot isostatic pressing method (HIP method), then plastically processing the bulk of the hardened magnetic powder and then pulverizing it.

また、水素処理法(HDDR法)により製造された磁性粉末がある。   Moreover, there is a magnetic powder produced by a hydrogen treatment method (HDDR method).

これに対し、フェライト磁性粉末としては、Sr系、Ba系のフェライトが良く知られ、製造方法は特開2001−284112号公報等に開示されている。これら希土類元素磁性粉末とフェライト磁性粉末とを1種類、或いは2種類以上組合せて用いることができる。   On the other hand, as the ferrite magnetic powder, Sr-based and Ba-based ferrites are well known, and the manufacturing method is disclosed in Japanese Patent Application Laid-Open No. 2001-284112. These rare earth element magnetic powders and ferrite magnetic powders can be used singly or in combination of two or more.

上記の磁性粉末を微粉化したのちに、造粒した磁性粉末として使うこともできる。微粉化された粒子は小さな粒子のために磁界を印可されたときに動きやすく容易に磁場方向に配向しやすい。   It can also be used as a granulated magnetic powder after the above magnetic powder is pulverized. Micronized particles are easy to move when applied with a magnetic field due to the small particles, and are easily oriented in the direction of the magnetic field.

バインダーとしての熱可塑性樹脂は、所定の形状に成形可能なものであればよく、目的とする樹脂磁石の用途等に応じて適宜選定され、特に制限されるものではないが、具体的には、12ナイロン、6ナイロン、6,6ナイロン等のポリアミド、ポリフェニレンサルファイド(PPS)、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)やポリブチレンテフタレート(PBT)等のポリエステル、ポリカーボネート、ポリエーテルケトン、ポリエーテルイミド、ポリアセタール等の熱可塑性樹脂が挙げられ、これらの1種又は2種以上を混合して用いることができる。なお、これらの中では特にポリアミド、ポリフェニレンサルファイドが、成形性、磁性粉との親和性、力学物性、価格等の点から特に好ましく用いられる。   The thermoplastic resin as the binder is not particularly limited as long as it can be molded into a predetermined shape, and is appropriately selected according to the intended use of the resin magnet. Polyamide such as 12 nylon, 6 nylon, 6, 6 nylon, polyphenylene sulfide (PPS), polystyrene, acrylonitrile-butadiene-styrene copolymer, polyethylene, polypropylene, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc. Examples thereof include thermoplastic resins such as polyester, polycarbonate, polyetherketone, polyetherimide, and polyacetal, and one or more of these may be used in combination. Of these, polyamide and polyphenylene sulfide are particularly preferably used from the viewpoints of moldability, affinity with magnetic powder, mechanical properties, price, and the like.

この磁性粉には、必要に応じて適宜な表面処理を施すことができ、例えば予め磁性粉にカップリング処理を施して上記樹脂原料と混合することができる。この場合、カップリング剤としては、シラン系やチタネート系のカップリング剤などが使用できる。また、目的に応じて、従来から常用される可塑剤、安定剤、滑剤、補強剤なども適宜使用される。   The magnetic powder can be subjected to an appropriate surface treatment as required. For example, the magnetic powder can be subjected to a coupling treatment in advance and mixed with the resin raw material. In this case, a silane or titanate coupling agent can be used as the coupling agent. In addition, conventionally used plasticizers, stabilizers, lubricants, reinforcing agents and the like are also appropriately used depending on the purpose.

磁性粉末の平均粒径は0.5〜500μm、特に10〜100μmであることが好ましく、この磁性粉の粒径があまりに小さすぎると樹脂バインダーとの混合が困難となり磁性粉末の均一性が極端に低下する場合があり、一方磁性粉の粒径が大きすぎると、良好な磁気特性を有する樹脂磁石やヨークを得ることが困難となる場合があるからである。   The average particle size of the magnetic powder is preferably 0.5 to 500 μm, particularly preferably 10 to 100 μm. If the particle size of the magnetic powder is too small, mixing with the resin binder becomes difficult and the uniformity of the magnetic powder is extremely high. On the other hand, if the particle size of the magnetic powder is too large, it may be difficult to obtain a resin magnet or yoke having good magnetic properties.

また、ヨークの軟質磁性合金粉末はFe−Si−Al合金粉末、Fe−Si合金粉末、Ni−Fe合金粉末、Fe−Co合金粉末、鉄紛、ソフトフェライト粉末などが挙げられ、これらを1種、或いは2種以上組合せて用いられる。   Examples of the soft magnetic alloy powder of the yoke include Fe-Si-Al alloy powder, Fe-Si alloy powder, Ni-Fe alloy powder, Fe-Co alloy powder, iron powder, and soft ferrite powder. Or two or more types are used in combination.

ヨークの軟質磁性合金粉末は、最大比透磁率が1200以上2000000以下であれば良い。また、軟質磁性合金粉末は、原料を高周波溶解等で溶解しインゴットを製造した後、ジョークラッシャー、ボールミル、振動ミルのような粉砕機を用いて希望する粒度の粉末を得るか、溶湯金属から直接合金粉末をガスアトマイズ法、水アトマイズ法等により得ることが知られている。また、別の方法としては、ロール急冷法、すなわち高速回転する冷却ロールの周面に溶湯金属をノズルから自然落下させて周面上で急冷凝固させ、フレーク状粉末を得、これを粉砕して粉末を製造する方法がある。詳細は、特許2003−64455号公報、特許公開2002−80945号公報、特許公開2000−290758号公報、特開2002−206151号公報等を参照されたい。   The soft magnetic alloy powder of the yoke may have a maximum relative permeability of 1200 or more and 2000000 or less. Soft magnetic alloy powder can be obtained by melting the raw material by high frequency melting or the like to produce an ingot, and then using a crusher such as a jaw crusher, ball mill, or vibration mill to obtain a desired particle size or directly from the molten metal. It is known to obtain an alloy powder by a gas atomization method, a water atomization method, or the like. As another method, a roll rapid cooling method, that is, a molten metal is naturally dropped from a nozzle onto the peripheral surface of a high-speed rotating cooling roll and rapidly cooled and solidified on the peripheral surface to obtain a flaky powder, which is pulverized. There are methods for producing powders. For details, refer to Japanese Patent Publication No. 2003-64455, Japanese Patent Publication No. 2002-80945, Japanese Patent Publication No. 2000-290758, Japanese Patent Laid-Open No. 2002-206151, and the like.

これらの樹脂と硬質磁性合金粉末と軟質磁性合金粉末の組合せは、電子写真装置に要求される磁気シール特性に応じて最適なものを適宜選定することができる。   The optimum combination of these resin, hard magnetic alloy powder, and soft magnetic alloy powder can be appropriately selected according to the magnetic seal characteristics required for the electrophotographic apparatus.

磁石部位とヨーク部位を一体化する成形手段としては、コアバック方式又はコア回転方式による2色成形方法が好適に用いられる。また、この成形手段は、同一の金型内で磁石部位とヨーク部位を形成するため、積層境界面の段差が小さく、良好な寸法精度が得られる。   As a molding means for integrating the magnet portion and the yoke portion, a two-color molding method using a core back method or a core rotation method is preferably used. In addition, since the molding means forms the magnet part and the yoke part in the same mold, the step on the laminated boundary surface is small and good dimensional accuracy can be obtained.

図4は2色成形方法の概略を示す図で、金型5の上型と下型との間隔を樹脂磁石2の幅(本例では3mm)に合わせ、金型に磁石部位となる硬質磁性合金粉末を分散させた樹脂バインダーを注入口6から注入し樹脂磁石2となる層を形成する。   FIG. 4 is a diagram showing an outline of the two-color molding method. The distance between the upper mold and the lower mold of the mold 5 is adjusted to the width of the resin magnet 2 (3 mm in this example), and the hard magnet that becomes a magnet part in the mold is shown. A resin binder in which alloy powder is dispersed is injected from the injection port 6 to form a layer that becomes the resin magnet 2.

樹脂磁石2の着磁方法としては、Nd−Fe−Bなどの等方性磁石の場合は、成形後に磁場発生装置により磁場を印加する。一方、フェライトのような異方性磁石の場合には、成形中に磁紛を配向させる必要があるため、金型内に配置された永久磁石などにより磁場を印加する。   As a method of magnetizing the resin magnet 2, in the case of an isotropic magnet such as Nd—Fe—B, a magnetic field is applied by a magnetic field generator after molding. On the other hand, in the case of an anisotropic magnet such as ferrite, since it is necessary to orient the magnetic particles during molding, a magnetic field is applied by a permanent magnet or the like disposed in the mold.

次に、金型の上型と樹脂磁石2の表面との間隙を設けるように移動し(本例では1.5mm)、軟質磁性合金粉末を分散させた樹脂バインダーを注入口7から注入し樹脂磁石2に軟質磁性合金粉末を分散させた樹脂からなるヨークが積層された磁気シール部材1が製造される。   Next, the mold is moved so as to provide a gap between the upper mold of the mold and the surface of the resin magnet 2 (1.5 mm in this example), and a resin binder in which soft magnetic alloy powder is dispersed is injected from the injection port 7 and resin is injected. A magnetic seal member 1 is manufactured in which a yoke made of a resin in which a soft magnetic alloy powder is dispersed in a magnet 2 is laminated.

本例では、熱可塑型の樹脂を用いたので少なくとも軟質磁性合金粉末と樹脂バインダーを含む原料を260℃に加熱して注入した。熱可塑性の樹脂であるので、注入後温度が下がると硬化する。一方、熱硬化性の樹脂を用いた場合は熱を加えて樹脂を硬化させる必要がある。   In this example, since a thermoplastic resin was used, a raw material containing at least a soft magnetic alloy powder and a resin binder was heated to 260 ° C. and injected. Since it is a thermoplastic resin, it hardens when the temperature drops after injection. On the other hand, when a thermosetting resin is used, it is necessary to apply heat to cure the resin.

硬質磁性合金粉末を分散させた樹脂及び軟質磁性合金粉末を分散させた樹脂の硬化は各々の樹脂を注入直後に硬化させてもよいし、未硬化状態で積層形態が維持されるものであれば各々の樹脂を積層後硬化させても良い。   The resin in which the hard magnetic alloy powder is dispersed and the resin in which the soft magnetic alloy powder is dispersed may be cured immediately after the injection, or if the laminated form is maintained in an uncured state. Each resin may be cured after being laminated.

尚、金型に磁石部位となる硬質磁性合金粉末を分散させた樹脂バインダーを先に注入し、軟質磁性合金粉末を分散させた樹脂バインダーを後から注入するように説明しているが、軟質磁性合金粉末を分散させた樹脂バインダーを先に注入し、ヨーク層を形成後、軟質磁性合金粉末を分散させた樹脂バインダーを注入し積層後磁場を印加して樹脂磁石2とヨークとが積層された磁気シール材を製造することもできる。   It is explained that the resin binder in which the hard magnetic alloy powder serving as the magnet part is dispersed in the mold is injected first, and the resin binder in which the soft magnetic alloy powder is dispersed is injected later. The resin binder in which the alloy powder is dispersed is injected first, and after the yoke layer is formed, the resin binder in which the soft magnetic alloy powder is dispersed is injected, and after lamination, the magnetic field is applied to laminate the resin magnet 2 and the yoke. A magnetic sealing material can also be manufactured.

ヨークに用いる樹脂バインダーについては特に示さないが、樹脂磁石にもちいられる樹脂バインダーであれば特に問題なく用いることができる。   The resin binder used for the yoke is not particularly shown, but any resin binder used for the resin magnet can be used without any particular problem.

従来の鉄製ヨークを挿入する場合は、永久磁石の磁気吸引の影響を受け、金型内で姿勢を保持することが困難であるが、本実施形態のヨーク3は成形手段により形成されるため、その問題が発生することはない。   When inserting a conventional iron yoke, it is difficult to maintain the posture in the mold due to the influence of magnetic attraction of the permanent magnet, but the yoke 3 of the present embodiment is formed by molding means, That problem never happens.

更に、同一金型内で成形されるので、磁気シール部材1と樹脂磁石2との積層境界面の段差は、5μm以下であり、これは従来の鉄製ヨークを挿入成形した磁気シール部材の25μmに比べて、1/5程度に改善された。   Further, since the molding is performed in the same mold, the step on the laminated boundary surface between the magnetic seal member 1 and the resin magnet 2 is 5 μm or less, which is 25 μm of the magnetic seal member in which a conventional iron yoke is inserted and molded. Compared to 1/5, it was improved.

更に、従来のように鉄製ヨークを製造し、金型に挿入する必要がないので製造装置の構造は鉄製ヨークを製造し、金型に挿入するロボット部が不要となり構造が簡単になる。   Further, since it is not necessary to manufacture an iron yoke and insert it into a mold as in the prior art, the structure of the manufacturing apparatus is simple because the iron yoke is manufactured and a robot part to be inserted into the mold is not required.

本実施形態の磁気シール部材1は、図2に示すように内周面のラジアル方向に複数の磁極がNS交互に着磁され、現像担持体の表面における法線方向の磁力は最大で100〜250mT程度である。但し、磁力パターンは、現像機構に応じて適宜設定され、これに限定されるものではなく、そのシール性に応じて直線部又は外周面に着磁することも可能である。   As shown in FIG. 2, the magnetic seal member 1 of the present embodiment has a plurality of magnetic poles NS alternately magnetized in the radial direction of the inner peripheral surface, and the magnetic force in the normal direction on the surface of the development carrier is 100 to 100 at maximum. It is about 250 mT. However, the magnetic force pattern is appropriately set according to the developing mechanism, and is not limited to this, and it is possible to magnetize the linear portion or the outer peripheral surface according to the sealing property.

図3に示すように樹脂磁石2から発散する磁力線をヨーク3に集中させ、ヨーク上の磁力は特に限定されるものではないが、通常30mT以下にする必要があるとされ、本発明によればFe−Si−Al合金粉末等の軟質磁性合金粉末を分散した樹脂によって、このような磁力の収束を達成することができる。   As shown in FIG. 3, the magnetic field lines emanating from the resin magnet 2 are concentrated on the yoke 3, and the magnetic force on the yoke is not particularly limited, but it is usually required to be 30 mT or less. Such convergence of magnetic force can be achieved by a resin in which soft magnetic alloy powder such as Fe-Si-Al alloy powder is dispersed.

粒径10μm〜200μmのNd−Fe−B合金粉末92質量%と12ナイロン8質量%からなる樹脂磁石と粒径1μm〜50μmのFe−Si−Al合金粉末90質量%と12ナイロン10質量%からなるヨークをコアバック方式の2色成形方法により、樹脂磁石の幅が3mm、ヨークの幅が1mm、円弧半径がR8.5mmの磁気シール部材を製造した。また、磁極数はラジアル方向にNS交互に6極とした。   From a resin magnet composed of 92% by mass of Nd—Fe—B alloy powder having a particle size of 10 μm to 200 μm and 8% by mass of 12 nylon, 90% by mass of Fe—Si—Al alloy powder having a particle size of 1 μm to 50 μm, and 10% by mass of 12 nylon. A magnetic seal member having a resin magnet width of 3 mm, a yoke width of 1 mm, and an arc radius of R8.5 mm was manufactured by a core back type two-color molding method. In addition, the number of magnetic poles was 6 in alternating NS in the radial direction.

硬質磁性粉末の着磁は、Nd−Fe−B合金粉末のように等方性磁石の場合は、成形後に磁場を印加する。これに対し、フェライトのような異方性磁石の場合は、成形中に磁場を印加すれば良い。   In the case of an isotropic magnet such as an Nd—Fe—B alloy powder, a magnetic field is applied after forming the hard magnetic powder. On the other hand, in the case of an anisotropic magnet such as ferrite, a magnetic field may be applied during molding.

磁性粉末を分散させる樹脂は、磁性体の酸化を生じさせる物質の透過性が低いことが要求される。このような物質の透過性が高いと磁性体の表面が酸化し、樹脂磁石の場合は磁力が低下する。ヨークの場合は、透磁率が低下し磁束の漏れが生じる。   The resin in which the magnetic powder is dispersed is required to have a low permeability of a substance that causes oxidation of the magnetic material. When the permeability of such a substance is high, the surface of the magnetic material is oxidized, and in the case of a resin magnet, the magnetic force is reduced. In the case of a yoke, the magnetic permeability decreases and magnetic flux leakage occurs.

また、磁石とヨークの用いる樹脂バインダーは同一であることが好ましい。同一樹脂バインダーを用いることで、金型の温度を変える必要がなく、更に、樹脂磁石とヨークとが剥がれることがない。磁石とヨークの用いる樹脂を変えることもできるが、この場合は、同じ金型温度で成形できる樹脂を組み合わせることが好ましい。   The resin binder used by the magnet and the yoke is preferably the same. By using the same resin binder, it is not necessary to change the temperature of the mold, and the resin magnet and the yoke are not peeled off. Although the resin used for the magnet and the yoke can be changed, in this case, it is preferable to combine resins that can be molded at the same mold temperature.

本実施例では、軟質磁性合金粉末としてFe−Si−Al合金粉末を用いたが、軟質磁性合金であれば材料・組成比が問題であるのではなく、比透磁率が1200以上200000以下であれば特に問題はない。   In this example, Fe-Si-Al alloy powder was used as the soft magnetic alloy powder. However, if the soft magnetic alloy is used, the material / composition ratio is not a problem, and the relative magnetic permeability is 1200 to 200,000. There is no particular problem.

ヨークを樹脂で成形する場合、軟質磁性合金粉末は、96質量%以下であれば、軟質磁性合金粉末が樹脂バインダーと均一に混合される。下限は、磁石層の磁力の強度と磁束の漏れの基準により適宜設定することとなる。   When the yoke is formed of resin, if the soft magnetic alloy powder is 96% by mass or less, the soft magnetic alloy powder is uniformly mixed with the resin binder. The lower limit is appropriately set according to the strength of the magnetic force of the magnet layer and the standard for leakage of magnetic flux.

本実施例は、熱可塑型の樹脂を用いて説明したが、熱硬化型の樹脂を用いても良い。   Although the present embodiment has been described using a thermoplastic resin, a thermosetting resin may be used.

この磁気シール部材の磁力を測定したところ、現像担持体の表面R8.0における樹脂磁石部の法線方向の最大磁力が156mTで、ヨーク上の磁力が12mTであった。(テスラメーターGX-100日本電磁測器株式会社)この磁気特性は、従来の鉄製ヨークを挿入成形した磁気シール部材と同等の性能である。また、樹脂磁石とヨークの積層境界面の段差は、5μm以下であり、これは従来の鉄製ヨークをインサート成形した磁気シール部材の25μmに比べて、1/5程度に低減された。   When the magnetic force of the magnetic seal member was measured, the maximum magnetic force in the normal direction of the resin magnet portion on the surface R8.0 of the developing carrier was 156 mT, and the magnetic force on the yoke was 12 mT. (Tesrameter GX-100 Nippon Electromagnetic Sokki Co., Ltd.) This magnetic characteristic is equivalent to that of a magnetic seal member in which a conventional iron yoke is inserted and molded. Further, the step at the laminated boundary surface between the resin magnet and the yoke was 5 μm or less, which was reduced to about 1/5 compared with 25 μm of the magnetic seal member in which the conventional iron yoke was insert-molded.

従って、上記の製法によって、電子写真装置に求められる磁気特性を満たし、寸法精度の良好な磁気シール部材が得られることが確認できた。   Therefore, it was confirmed that the above-described manufacturing method can provide a magnetic seal member that satisfies the magnetic characteristics required for the electrophotographic apparatus and has good dimensional accuracy.

実施例に係る磁気シール部材を示す斜視図である。It is a perspective view which shows the magnetic seal member which concerns on an Example. 実施例に係る磁気シール部材の磁力パターンを示す側面図である。It is a side view which shows the magnetic force pattern of the magnetic seal member which concerns on an Example. 実施例に係る磁気シール部材の磁力線を示す図2のA-A断面図である。It is AA sectional drawing of FIG. 2 which shows the magnetic force line of the magnetic seal member based on an Example. 2色成形方法の概略を示す図である。It is a figure which shows the outline of a 2 color shaping | molding method.

符号の説明Explanation of symbols

1 磁気シール部材
1a 円筒面部
1b 直線状部
2 樹脂磁石
3 ヨーク
4 磁力線
5 金型
6、7 注入口
DESCRIPTION OF SYMBOLS 1 Magnetic seal member 1a Cylindrical surface part 1b Linear part 2 Resin magnet 3 Yoke 4 Magnetic field line 5 Die 6, 7 Inlet

Claims (5)

ヨーク部と磁石部とを有する電子写真用の磁気シール部材であって
前記磁石部が硬質磁性合金粉末と樹脂バインダーとを含む樹脂磁石層からなり、該樹脂磁石層上に軟質磁性合金粉末と樹脂バインダーとを含む層を前記ヨーク部として積層し
前記磁石部と前記ヨーク部との積層境界面の段差が5μm以下であることを特徴とする磁気シール部材。
A magnetic seal member for electrophotography having a yoke portion and the magnet portion,
The magnet part is composed of a resin magnet layer containing a hard magnetic alloy powder and a resin binder, and a layer containing a soft magnetic alloy powder and a resin binder is laminated on the resin magnet layer as the yoke part ,
A magnetic seal member , wherein a step of a laminated boundary surface between the magnet portion and the yoke portion is 5 μm or less .
前記磁石部に用いられる樹脂と、前記ヨーク部に用いられる樹脂と、が同一樹脂であることを特徴とする請求項1に記載の磁気シール部材。 Magnetic seal member according to claim 1, wherein the resin used in the magnet part, and the resin used in the yoke portion, that but the same resin. 前記ヨーク部を形成するための樹脂がポリアミドまたはポリフェニレンサルファイドであることを特徴とする請求項1に記載の磁気シール部材。   The magnetic seal member according to claim 1, wherein the resin for forming the yoke portion is polyamide or polyphenylene sulfide. ヨーク部と磁石部とを有する電子写真用の磁気シール部材の製造方法であって
金型に、硬質磁性合金粉末と樹脂バインダーを含む原料組成物を注入して所定形状の磁性層を形成する工程と、前記金型に、軟質磁性合金粉末と樹脂バインダーを含む原料組成物を注入してヨーク部となる層を形成する工程と、からなり前記磁性層と前記ヨーク部となる層とを積層成形する工程と、
前記磁性層の所定部を磁化して磁石部となる樹脂磁石層を得る工程と、を有することを特徴とする磁気シール部材の製造方法。
A method of manufacturing a magnetic seal member for electrophotography having a yoke portion and the magnet portion,
Injecting a raw material composition containing a hard magnetic alloy powder and a resin binder into a mold to form a magnetic layer having a predetermined shape, and injecting a raw material composition containing a soft magnetic alloy powder and a resin binder into the mold Forming a layer to be the yoke portion, and laminating the magnetic layer and the layer to be the yoke portion ,
And a step of magnetizing a predetermined portion of the magnetic layer to obtain a resin magnet layer to be a magnet portion.
前記磁石部に用いられる樹脂と、前記ヨーク部に用いられる樹脂と、が同一樹脂であることを特徴とする請求項4に記載の磁気シール部材の製造方法。The method for manufacturing a magnetic seal member according to claim 4, wherein the resin used for the magnet portion and the resin used for the yoke portion are the same resin.
JP2003284404A 2003-07-31 2003-07-31 Magnetic seal member and manufacturing method thereof Expired - Fee Related JP4344193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284404A JP4344193B2 (en) 2003-07-31 2003-07-31 Magnetic seal member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284404A JP4344193B2 (en) 2003-07-31 2003-07-31 Magnetic seal member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005049801A JP2005049801A (en) 2005-02-24
JP4344193B2 true JP4344193B2 (en) 2009-10-14

Family

ID=34269023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284404A Expired - Fee Related JP4344193B2 (en) 2003-07-31 2003-07-31 Magnetic seal member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4344193B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339565A (en) * 2005-06-06 2006-12-14 Daido Electronics Co Ltd Yoke-integrated magnet
JP5114126B2 (en) * 2007-08-06 2013-01-09 キヤノン化成株式会社 Magnetic seal member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005049801A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP6870356B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JP4358743B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
JP2006217702A (en) Manufacturing method of motor stator , motor rotor, and motor core
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP4344193B2 (en) Magnetic seal member and manufacturing method thereof
JP5114126B2 (en) Magnetic seal member and manufacturing method thereof
JP2000081789A (en) Magnet roll
JP2000068120A (en) Magnet roller
JP2005317845A (en) Anisotropic bond magnet and its manufacturing method
JP2003151825A (en) Magnet roller
JPH10177928A (en) Molding device for cylindrical radial anisotropic magnet
JP7354729B2 (en) Mold for forming anisotropic bonded magnet and manufacturing method using the same
JPH0376764B2 (en)
JP2677004B2 (en) Magnetic field orientation molding apparatus for bonded magnets and magnetic field orientation molding method for bonded magnets using the apparatus
JP6878882B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JP3525228B2 (en) Extrusion mold for magnet roll and method for manufacturing magnet roll using the extrusion mold
JPH0471205A (en) Manufacture of bond magnet
JP2005308869A (en) Magnetic seal member
JP2001291628A (en) Magnet roller and its manufacturing method
JP2500270Y2 (en) Multi-pole anisotropic cylindrical or solid cylindrical magnet molding die
JP2002343661A (en) Cylindrical bonded magnet and coreless motor
JPS62232107A (en) Anisotropic resin magnet
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPS60220917A (en) Manufacture for anisotropic magnetic roll
EP1253604A1 (en) Magnet roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees