JPS6111759B2 - - Google Patents

Info

Publication number
JPS6111759B2
JPS6111759B2 JP18751880A JP18751880A JPS6111759B2 JP S6111759 B2 JPS6111759 B2 JP S6111759B2 JP 18751880 A JP18751880 A JP 18751880A JP 18751880 A JP18751880 A JP 18751880A JP S6111759 B2 JPS6111759 B2 JP S6111759B2
Authority
JP
Japan
Prior art keywords
notch
heating
steel bar
cutting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18751880A
Other languages
Japanese (ja)
Other versions
JPS57112987A (en
Inventor
Sanechika Aoyama
Masahiko Kato
Osamu Furuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aichi Steel Corp
Original Assignee
Toyota Central R&D Labs Inc
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Aichi Steel Corp filed Critical Toyota Central R&D Labs Inc
Priority to JP18751880A priority Critical patent/JPS57112987A/en
Publication of JPS57112987A publication Critical patent/JPS57112987A/en
Publication of JPS6111759B2 publication Critical patent/JPS6111759B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、棒鋼または鋼管(以下、棒鋼と総称
する)の切断部表面に周方向の切欠きを形成し、
該切欠き近辺を急熱急冷することにより切欠き底
より棒鋼の中心方向にわれを発生せしめて後、切
欠き部に機械的荷重を加えて棒鋼を切断する方
法、特にこの切断方法における切欠き形成手段に
関するもので、われを発生せしめるに適した切欠
きを作業性よく形成すること、そしてそのわれに
よつて小さい機械的荷重で確実に棒鋼を破断せし
めることを目的とする。 鍛造素材は鍛造作業に先立つて棒鋼から一定寸
法に切断される。この切断手段として従来から剪
断または鋸による切断が一般に行なわれている。 このうち、剪断が最も広く行なわれているが、
特に軸受鋼、工具鋼の如き高炭素の硬質鋼の場合
には軟化熱処理を必要として経費が高くつく上
に、平坦な切断面が得られない。更に、切断に大
きな剪断力を必要とするため、切断機は大型、高
価となり、かつ切断時に大きな振動と騒音を伴な
い作業環境を悪くする等の問題があつた。 鋸による切断は、切断面も良好で振動、騒音を
伴なわない利点をもつが作業が非能率的であつ
た。 また、棒鋼を切断する場合、予め周方向に切欠
きをつけてから機械的に破断する方法も試みられ
ているが、切欠き部に機械的荷重を加えるのみで
は破断面が切欠き底と一致せず、重量のばらつき
が大きく、切断面も平滑でなく、鍛造時の据込み
工程で倒れや傾きを生じ、能率、歩留りの低下を
招く。 そこで発明者らは先に、棒鋼の切断位置に周方
向に切欠きを設け、該切欠き周辺に加熱冷却処理
を施して切欠き底より棒鋼の中心方向に向うわれ
を発生せしめ、その後切欠き部に機械的荷重を加
えて棒鋼を切断する方法を開発した(特許第
970416号、特公昭54−2425号)。この方法によれ
ば切断時に振動騒音がなく、小さい機械的荷重に
より切断することができ、しかも切断面は極めて
平滑である。 なお、この方法において切欠き底にわれを発生
させるための加熱冷却処理は2つの方法がとられ
得る。即ち、第1の方法は切欠き周辺を表面と内
部に大きな温度差が生じるように、かつ切欠き底
が鋼材のA3変態点に達しない温度において急加
熱急冷を行ない、切欠き底にわれを発生せしめる
ものである(以下、1回法という)。この方法は
操作は簡単であるが、比較的細い棒鋼については
切断に必要な深いわれが発生しにくいことがあ
る。 第2の方法は、切欠き周辺を急加熱急冷して表
面部のみに焼入れを行なつた後、先の熱処理より
も低い温度で、かつ切欠き底が鋼材のA3変態点
に至らない温度で急加熱急冷するものであり(以
下、2回法という)、棒鋼の径の大小にかかわら
ず、切断に必要なわれを発生させることができ
る。急加熱手段としては高周波加熱等が用いら
れ、急冷手段としては水冷などを行なう。われは
冷却の過程で発生する。 ところで、発明者らの開発した上記切断方法に
おいて、棒鋼に切欠きをつける手段としては切
削、塑性加工いずれでもよいが、切欠き加工法
は、切断位置を正しく定めることが容易であるこ
とは勿論、以後の熱処理によつて確実に切欠き底
よりわれが発生するものであること、そして加工
作業が短時間かつ容易に、更に低コストであるこ
とが要求される。 発明者らは種々の実験研究を行なつた結果、棒
鋼の切断位置を400℃以上の温度で、かつ棒鋼に
再結晶が生じない条件のもとで加熱して該部分に
転造によつて切欠きを形成することにより上記の
要求が満足され得ることを確認したのである。即
ち本発明は、棒鋼の表面に周方向に切欠きを形成
する切欠き形成工程と、切欠き周辺を加熱冷却し
て切欠き底より棒鋼の中心方向へ向くわれを発生
せしめるわれ形成工程と、われを有する切欠き部
に機械的荷重を加えて棒鋼を切断する切断工程と
よりなる鋼材の切断方法において、上記切欠き形
成工程で、先ず棒鋼表面の切欠きを形成すべき部
位を400℃以上、かつ鋼材に再結晶を生じない温
度範囲に加熱し、次いで加熱した表面部に転造に
より周方向の切欠きを形成することを特徴とする
ものである。 以下、本発明を発明者らの行なつた実験に基づ
いて説明する。 まづ、従来の切削による切欠き形成について実
験した。直径38〜70mmの軸受鋼(SUJ2材、圧延
のままのもの)に開き角度60゜、切欠き底半径
0.25mm、深さ1.5mmの環状切欠きを旋削(以下、
切削切欠きという)し、切削切欠き周辺に急熱急
冷を施した。この場合は熱処理条件を適切に選ぶ
ことにより、鋼棒の軸径にかかわらず、切断に必
要なわれ発生率は100%であつた。 しかしながら、切削加工による切欠き形成で
は、高炭素硬質鋼の場合、市販の切削用バイトで
は摩耗や欠けが生じやすく工具寿命が短い。また
バイト先端が摩耗して切欠き底半径が大きくなる
と応力集中係数が小さくなつて、われ発生率を低
下させ、またバイト先端に欠けが生じると切欠き
底に複数の溝が形成されるようになり、破断面は
複数の面からなり、以後の鍛造に適さない。更
に、切削速度を上げるには棒鋼または工具を高速
回転させる必要があつて装置が複雑となる。 このように切削による切欠き形成は切削に要す
る時間の短縮に限度があるとともに、工具費を含
めた切欠き形成コストが大きい等、実用的に大き
な問題がある。 この点、転造による切欠き形成は有利な面があ
る。通常、切欠き形成のための転造は、円盤状の
転造ロールの切欠き形成部を棒鋼面に押し付ける
ことにより行なわれるが、切削のように尖鋭な工
具による加工でないために、転造ロールの径、転
造方法にもよるが、ロール先端の摩耗、破損は少
ない。また転造加工によれば、棒鋼の回転は低速
であり、しかもわずかの回転数において加工を終
了し、種々の径の棒鋼に対し装置は簡単で加工時
間も短い。 しかし、転造による切欠き形成には、切削切欠
きにはみられない別の難点がある。 下記の表は、あらかじめ常温(20℃)における
冷間転造によつて切欠きを形成した棒鋼につき、
われ発生に最適と認められる加熱冷却処理を施
し、われの発生率をみた実験結果の一例を示すも
のである。
The present invention forms a circumferential notch on the cut surface of a steel bar or steel pipe (hereinafter collectively referred to as steel bar),
A method of cutting a steel bar by rapidly heating and cooling the vicinity of the notch to generate a crack from the bottom of the notch toward the center of the steel bar, and then applying a mechanical load to the notch, especially the notch in this cutting method. This invention relates to a forming means, and aims to form a notch suitable for generating a crack with good workability, and to use the crack to reliably break a steel bar with a small mechanical load. The forged material is cut to a certain size from a steel bar prior to the forging operation. Conventionally, shearing or sawing has been commonly used as this cutting means. Of these, shearing is the most widely used,
In particular, in the case of high-carbon hard steels such as bearing steel and tool steel, softening heat treatment is required, which increases costs and makes it impossible to obtain a flat cut surface. Furthermore, since a large shearing force is required for cutting, the cutting machine is large and expensive, and also produces large vibrations and noise during cutting, resulting in a poor working environment. Cutting with a saw has the advantage of producing a good cut surface and being free from vibration and noise, but the work is inefficient. In addition, when cutting a steel bar, attempts have been made to make a notch in the circumferential direction in advance and then break it mechanically, but if only a mechanical load is applied to the notch, the fracture surface will match the bottom of the notch. There is a large variation in weight, the cut surface is not smooth, and the upsetting process during forging causes collapse and inclination, resulting in a decrease in efficiency and yield. Therefore, the inventors first provided a notch in the circumferential direction at the cutting position of the steel bar, heated and cooled the area around the notch to generate warpage from the bottom of the notch toward the center of the bar, and then removed the notch. Developed a method for cutting steel bars by applying mechanical loads to the parts (patent no.
970416, Special Publication No. 54-2425). According to this method, there is no vibration noise during cutting, cutting can be performed with a small mechanical load, and the cut surface is extremely smooth. In this method, two methods can be used for the heating and cooling treatment to generate cracks at the bottom of the notch. That is, the first method is to rapidly heat and cool the area around the notch so that there is a large temperature difference between the surface and the inside, and at a temperature that does not reach the A3 transformation point of the steel material at the bottom of the notch. (hereinafter referred to as the one-time method). Although this method is easy to operate, it may be difficult to produce the deep cracks necessary for cutting relatively thin steel bars. The second method is to harden only the surface area by rapidly heating and cooling the area around the notch, then at a temperature lower than the previous heat treatment and at a temperature at which the bottom of the notch does not reach the A3 transformation point of the steel material. This method involves rapid heating and cooling (hereinafter referred to as the two-step method), and can generate the cracks necessary for cutting regardless of the diameter of the steel bar. High frequency heating or the like is used as the rapid heating means, and water cooling or the like is used as the rapid cooling means. We are generated during the cooling process. By the way, in the above-mentioned cutting method developed by the inventors, cutting or plastic working may be used as a means of notching the steel bar, but it goes without saying that the notching method makes it easy to determine the cutting position correctly. It is required that the subsequent heat treatment reliably causes cracks to occur at the bottom of the notch, and that the processing work is short, easy, and low cost. As a result of various experimental studies, the inventors found that by heating the cut position of the steel bar at a temperature of 400°C or higher and under conditions that do not cause recrystallization of the steel bar, the cut position of the steel bar is rolled. It has been confirmed that the above requirements can be met by forming a notch. That is, the present invention includes a notch forming step in which a notch is formed in the circumferential direction on the surface of a steel bar, a warp forming step in which the periphery of the notch is heated and cooled to generate a warp directed from the bottom of the notch toward the center of the steel bar, In a steel cutting method that includes a cutting process in which a mechanical load is applied to a notch portion having cracks to cut the steel bar, in the notch forming process, first, the portion of the steel bar surface where the notch is to be formed is heated to a temperature of 400°C or above. , and is characterized by heating the steel material to a temperature range that does not cause recrystallization, and then forming circumferential notches in the heated surface portion by rolling. The present invention will be explained below based on experiments conducted by the inventors. First, we experimented with notch formation using conventional cutting. Bearing steel with a diameter of 38 to 70 mm (SUJ2 material, as rolled) with an opening angle of 60° and a notch bottom radius.
Turning an annular notch of 0.25 mm and depth of 1.5 mm (hereinafter referred to as
(referred to as a cutting notch) and then rapidly heating and cooling the area around the cutting notch. In this case, by appropriately selecting the heat treatment conditions, the incidence of cracking required for cutting was 100%, regardless of the shaft diameter of the steel bar. However, when notches are formed by cutting, in the case of high carbon hard steel, commercially available cutting tools are prone to wear and chipping and have a short tool life. In addition, when the tip of the cutting tool wears and the radius of the notch bottom increases, the stress concentration factor decreases, reducing the incidence of cracking, and when the tip of the cutting tool becomes chipped, multiple grooves are formed at the bottom of the notch. Therefore, the fracture surface consists of multiple surfaces, making it unsuitable for subsequent forging. Furthermore, in order to increase the cutting speed, it is necessary to rotate the steel bar or tool at high speed, which makes the device complicated. As described above, notch formation by cutting has a limit in reducing the time required for cutting, and there are serious problems in practical terms, such as high cost for notch formation including tool costs. In this respect, forming the notch by rolling has an advantage. Normally, rolling for notch formation is performed by pressing the notch forming part of a disc-shaped rolling roll against the steel bar surface, but since the process is not performed with a sharp tool unlike cutting, the rolling roll Although it depends on the diameter of the roll and the rolling method, there is little wear or damage at the tip of the roll. Further, according to rolling processing, the rotation speed of the steel bar is low, and the processing is completed at a small number of rotations, and the equipment is simple and the processing time is short for steel bars of various diameters. However, forming notches by rolling has another drawback that is not found in cutting notches. The table below shows steel bars with notches formed in advance by cold rolling at room temperature (20℃).
This is an example of the results of an experiment in which the rate of occurrence of cracks was determined by applying heating and cooling treatment, which is considered to be optimal for the occurrence of cracks.

【表】 この実験では、頂角60゜、先端半径0.15mmおよ
び0.25mmの環状突起のついた2種類の転造ロール
を用い、直径38mmの軸受鋼(SUJ2材)の棒の切
断位置に深さ1.5mm(転造時の盛り上りも含む
値)の環状切欠きを冷間で転造した。そして上記
2回法の熱処理によりわれを発生させた。なお、
表中、加熱時間t1は2回法における1回目の加熱
時間、t2は2回目の加熱時間である。 しかし、本実験の場合は2種類の転造ロールの
いずれの切欠き形状についてもわれ発生率は約80
%にとどまつた。 冷間転造によつて切欠きを形成した場合、切削
切欠きに比べてこのようにわれ発生率が低下する
原因としては、次のことが考えられた。 第1には、冷間転造により切欠き底に発生する
圧縮残留応力の効果があげられる。即ち、切欠き
転造時、ロールは棒鋼の切欠き加工部分を圧縮
し、棒鋼の軸方向についていえばロールと接触し
ている近辺は棒鋼の中心部に対して相対的に展伸
される。そこで、転造終了後には切欠き底付近で
かなりの深さまで棒鋼軸方向に圧縮残留応力が発
生する。 切欠き底にわれが発生するのは加熱冷却処理に
より棒鋼軸方向に引張残留応力が生じ、これがわ
れを発生させるのであるが、冷間転造による切欠
き底付近の上記圧縮残留応力は、その大きさと影
響層の深さから、加熱冷却後に発生する引張残留
応力の大きさを下げる効果をもち、これがわれ発
生率の低下の一原因となるものと認められる。 第2の原因としては、転造加工による切欠き底
近辺の結晶の流動、微細化があげられる。即ち、
冷間転造時にロール先端が鋼材に食い込むと、材
料は棒鋼中心部へ押し付けられ、材料はロール先
端から棒鋼軸方向へ流れる。そのとき結晶は押し
つぶされて微細化するため、加熱冷却によつてた
とえ同じ大きさの引張残留応力が作用しても、わ
れの発生が制約されるものと認められる。 以上の考察にもとずき、切欠きを加工性の良好
な転造により形成し、かつ続いて行なう加熱冷却
の操作により切欠き底に確実にわれを発生せしめ
ることを目的として実験研究を行なつた結果、棒
鋼の切欠き形成部を適切な温度および時間の範囲
で加熱した状態で切欠きを転造により形成すれ
ば、以後の加熱冷却により確実にわれが発生する
ことを確認した。 実験の一例を挙げれば、直径38mmの軸受鋼
(SUJ2材)の棒鋼の表面を高周波加熱により加熱
し、直ちに転造により環状のV字形切欠き(開き
角度60゜、底半径0.25mm、深さ1.5mm)を形成し
た。そして常温まで冷却後、前述の実験における
と同様の加熱冷却(2回法)を行ない、われを発
生せしめた。その結果を図に示す。図より知られ
る如く高周波加熱により切欠きを形成する部位の
最高温度を400℃(加熱時間4秒)、490℃(加熱
時間6秒)、600℃(加熱時間8秒)としたときは
われ発生率は100%であつた。これに対し750℃以
上ではわれ発生率は22%以下となつた。なお、各
実験の実験個数は50個である。 400〜600℃の温度条件でわれ発生率100%の結
果を得たのは、400℃ないしそれ以上に加熱する
と鋼材が軟化し、従つて材料が流れやすくなるた
め、これに切欠き転造を行つた場合、冷間転造の
如く圧縮残留応力の発生や、組織の微細化が生じ
なかつたことによるものと認められる。加熱温度
を400℃に近ずけるに従つてわれ発生率は増大す
るが、例えば300℃に加熱してもわれが発生しな
い場合もあり、安定して確実にわれを発生せしめ
る加熱温度は400℃ないしそれ以上である。 一方、750℃の温度条件の棒鋼については、切
欠き底近辺の組織を顕微鏡観察すると再結晶が生
じて圧延のままの状態よりも結晶が微細化してお
り、これがわれ発生率を低くした原因と認められ
る。 以上より、転造により切欠きを形成する本発明
の切欠き形成工程において、転造に先立つ加熱処
理は、400℃以上で、かつ組織中に再結晶が生じ
ない温度、および時間の範囲内が好ましい。組織
中に再結晶が生じない温度とは、通常、各金属に
固有の再結晶温度をさす。しかし、通常の状態図
に見られる再結晶温度以上の温度になつても、高
周波加熱の場合のように数秒ないし数十秒という
短時間の加熱によつては、組織中に再結晶は生じ
ないので、本発明の加熱温度の上限はいわゆる再
結晶温度に限られない。しかし、電気炉による加
熱のように数十分ないし数時間にも及ぶ長時間の
加熱の場合は、組織中に再結晶が生じやすいので
本発明の加熱温度の上限は再結晶温度に限られ
る。 転造に先立ち棒鋼を加熱する加熱手段としては
特に限定されないが、高周波加熱のように棒鋼の
表面のみを急加熱する手段を用いることが、われ
発生率を上げるために有利である。これは、高周
波加熱等により棒鋼表面部を加熱して切欠きを転
造すると表面のみが加熱された状態で、切欠きが
形成された表面層と棒鋼内部との寸法が平衡状態
に達し、冷却時に棒鋼の高温表面部が収縮を始め
ると表面部は内部により引張られる形となり、冷
却が進んで表面部の変形抵抗が増すと表面部に引
張残留応力が発生することになる。この状態で、
切欠き形成工程に続くわれ形成工程で加熱冷却を
行なえば引張残留応力が更に助長され、その結果
われを発生しやすくする。なお、切欠き形成工程
における転造後に冷却、炉中での徐冷等を行なつ
てもよいが、転造後ただちにわれ形成工程に移行
してもよい。 以上の実験および考察により達成された本発明
を要すれば、棒鋼を400℃以上の温度で、かつ鋼
材に再結晶が生じない条件のもとで加熱し、棒鋼
の周方向に切欠きを転造により形成し、次いで切
欠き部に急熱急冷の熱処理を加えることにより切
欠き底から棒鋼の中心方向へ向うわれを確実性高
く発生させることができる。そしてこのわれ発生
部に機械的荷重を加えれば低い荷重で容易に棒鋼
を切断することができる。また、切欠きを転造す
るに先立ち行なう上記加熱は、高周波加熱の如く
棒鋼表面のみを加熱するのがより効果的であり、
表面のみの加熱は以後のわれ発生をより確実にす
る。 特に本発明は切欠き形成手段として振動騒音も
少なく切欠き形成が迅速になされ、かつ工具の損
耗も少く経済的な転造を用い、しかも上記のわれ
を確実に発生せしめるようになしたことに最大の
意義があり、発明者らが先に開発した上記の鋼材
の切断方法と相まつて鍛造素材の切断における作
業性の改善および品質の向上に大きく貢献するも
のである。
[Table] In this experiment, two types of rolling rolls with annular protrusions with an apex angle of 60° and a tip radius of 0.15 mm and 0.25 mm were used. An annular notch with a diameter of 1.5 mm (including the bulge during rolling) was cold rolled. Then, cracks were generated by the two-step heat treatment described above. In addition,
In the table, heating time t 1 is the first heating time in the two-step method, and t 2 is the second heating time. However, in the case of this experiment, the occurrence rate of cracking was approximately 80 for both notch shapes of the two types of rolling rolls.
It remained at %. The following is thought to be the reason why the occurrence rate of cracking is lower when notches are formed by cold rolling than when notches are cut. The first is the effect of compressive residual stress generated at the notch bottom due to cold rolling. That is, during notch rolling, the roll compresses the notched portion of the steel bar, and in the axial direction of the steel bar, the area in contact with the roll is expanded relative to the center of the steel bar. Therefore, after rolling is completed, compressive residual stress occurs in the axial direction of the steel bar to a considerable depth near the bottom of the notch. The reason why cracks occur at the notch bottom is that tensile residual stress is generated in the axial direction of the steel bar due to heating and cooling treatment, which causes the cracks, but the compressive residual stress near the notch bottom due to cold rolling is Due to its size and the depth of the affected layer, it has the effect of reducing the magnitude of tensile residual stress that occurs after heating and cooling, and this is recognized to be one of the causes of the reduction in the crack occurrence rate. The second cause is the flow and refinement of crystals near the bottom of the notch due to rolling. That is,
When the tip of the roll bites into the steel material during cold rolling, the material is pressed against the center of the steel bar, and the material flows from the tip of the roll in the axial direction of the steel bar. At that time, the crystals are crushed and become finer, so even if the same amount of tensile residual stress is applied by heating and cooling, it is recognized that the occurrence of cracks is restricted. Based on the above considerations, we conducted experimental research with the aim of forming a notch by rolling with good workability, and then ensuring that cracks occur at the bottom of the notch through heating and cooling operations. As a result, it was confirmed that if the notch is formed by rolling while the notch forming part of the steel bar is heated at an appropriate temperature and time range, cracks will definitely occur due to subsequent heating and cooling. To give an example of an experiment, the surface of a 38 mm diameter bearing steel bar (SUJ2 material) was heated by high frequency heating, and then immediately rolled to form an annular V-shaped notch (opening angle 60°, bottom radius 0.25 mm, depth 1.5mm). After cooling to room temperature, heating and cooling (two-step method) similar to those in the above experiment were performed to generate cracks. The results are shown in the figure. As shown in the figure, cracking occurs when the maximum temperature of the part where the notch is formed by high-frequency heating is 400℃ (heating time 4 seconds), 490℃ (heating time 6 seconds), and 600℃ (heating time 8 seconds). The rate was 100%. On the other hand, at temperatures above 750°C, the crack occurrence rate was less than 22%. Note that the number of experiments for each experiment was 50. The reason why we were able to achieve a cracking rate of 100% under temperature conditions of 400 to 600°C is that heating to 400°C or higher softens the steel material, making it easier for the material to flow. This is recognized to be due to the fact that when rolling was carried out, no compressive residual stress or microstructural refinement occurred as in cold rolling. The incidence of cracks increases as the heating temperature approaches 400℃, but for example, there are cases where cracks do not occur even when heated to 300℃, and the heating temperature that will stably and reliably cause cracks is 400℃. Or more. On the other hand, microscopic observation of the structure near the notch bottom of the steel bar heated at 750°C revealed that recrystallization occurred and the crystals became finer than in the as-rolled state, which is thought to be the reason for the low crack occurrence rate. Is recognized. From the above, in the notch forming process of the present invention in which a notch is formed by rolling, the heat treatment prior to rolling is performed at a temperature of 400°C or higher and within a temperature and time range that does not cause recrystallization in the structure. preferable. The temperature at which recrystallization does not occur in the structure usually refers to the recrystallization temperature specific to each metal. However, even if the temperature reaches a temperature higher than the recrystallization temperature seen in a normal phase diagram, recrystallization does not occur in the structure if the heating is performed for a short period of time, from several seconds to tens of seconds, as in the case of high-frequency heating. Therefore, the upper limit of the heating temperature in the present invention is not limited to the so-called recrystallization temperature. However, in the case of long-time heating lasting several tens of minutes to several hours, such as heating in an electric furnace, recrystallization tends to occur in the structure, so the upper limit of the heating temperature in the present invention is limited to the recrystallization temperature. The heating means for heating the steel bar prior to rolling is not particularly limited, but it is advantageous to use a means for rapidly heating only the surface of the steel bar, such as high-frequency heating, in order to increase the crack occurrence rate. This is because when a notch is rolled by heating the surface of the steel bar using high-frequency heating, etc., only the surface is heated, and the dimensions of the surface layer where the notch is formed and the inside of the bar reach an equilibrium state, and then the steel bar is cooled. When the high-temperature surface part of a steel bar begins to contract, the surface part becomes pulled by the inside, and as cooling progresses and the deformation resistance of the surface part increases, tensile residual stress is generated in the surface part. In this state,
If heating and cooling are performed in the warp forming step following the notch forming step, tensile residual stress will be further promoted, and as a result, warps will be more likely to occur. Note that cooling, slow cooling in a furnace, etc. may be performed after rolling in the notch forming step, or the step may be shifted to the crack forming step immediately after rolling. The present invention, which has been achieved through the above experiments and considerations, is achieved by heating a steel bar at a temperature of 400°C or higher and under conditions that do not cause recrystallization in the steel material, and rolling notches in the circumferential direction of the steel bar. By forming the notch portion by heating and rapidly cooling the notch portion, it is possible to reliably generate cracks from the bottom of the notch toward the center of the steel bar. If a mechanical load is applied to this cracking portion, the steel bar can be easily cut with a low load. In addition, it is more effective to heat only the surface of the steel bar, such as by high-frequency heating, for the above-mentioned heating performed prior to rolling the notch.
Heating only the surface makes it more certain that cracks will occur later. Particularly, the present invention uses rolling, which is economical as the notch forming means has little vibration and noise, can quickly form the notch, and has little wear and tear on the tool, and also ensures the occurrence of the above-mentioned cracks. This method has the greatest significance, and together with the above-mentioned steel cutting method that the inventors developed earlier, it greatly contributes to improving the workability and quality of cutting forged materials.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に関する実験結果を示す図である。 The figure is a diagram showing experimental results regarding the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 棒鋼または鋼管表面の周方向に切欠きを形成
する切欠き形成工程と、該切欠きの周辺に加熱冷
却処理を施して切欠き底より棒鋼または鋼管の中
心方向に向うわれを発生せしめるわれ形成工程
と、われを発生せしめた棒鋼または鋼管の切欠き
部に機械的荷重を加えて切断する切断工程よりな
る鋼材の切断方法において、上記切欠き形成工程
では、先ず棒鋼または鋼管表面の切欠きを形成す
べき部位を400℃以上、かつ鋼材に再結晶が生じ
ない温度範囲に加熱し、次いで加熱した部位の棒
鋼または鋼管表面上に転造により周方向の切欠き
を形成することを特徴とする鋼材の切断方法。
1. A notch forming process in which a notch is formed in the circumferential direction on the surface of the steel bar or steel pipe, and a crack formation process in which heating and cooling treatment is applied to the periphery of the notch to generate a warp from the bottom of the notch toward the center of the steel bar or steel pipe. In this method, the notch forming step first involves cutting the notch on the surface of the steel bar or steel pipe. It is characterized by heating the area to be formed to 400°C or higher and within a temperature range in which recrystallization does not occur in the steel material, and then forming circumferential notches by rolling on the surface of the steel bar or steel pipe at the heated area. How to cut steel.
JP18751880A 1980-12-30 1980-12-30 Cutting method for steel material Granted JPS57112987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18751880A JPS57112987A (en) 1980-12-30 1980-12-30 Cutting method for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18751880A JPS57112987A (en) 1980-12-30 1980-12-30 Cutting method for steel material

Publications (2)

Publication Number Publication Date
JPS57112987A JPS57112987A (en) 1982-07-14
JPS6111759B2 true JPS6111759B2 (en) 1986-04-04

Family

ID=16207472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18751880A Granted JPS57112987A (en) 1980-12-30 1980-12-30 Cutting method for steel material

Country Status (1)

Country Link
JP (1) JPS57112987A (en)

Also Published As

Publication number Publication date
JPS57112987A (en) 1982-07-14

Similar Documents

Publication Publication Date Title
EP3597349B1 (en) Friction welding method
US3958732A (en) Method for breaking steel rod into billets
US3537172A (en) Method of friction welding
JPS6111759B2 (en)
US2350667A (en) Cutting tool and manufacture thereof
US3802061A (en) Process for splicing and drawing metallic strand and wire article made thereby
CN108994248A (en) A kind of gear forging technique
RU2578875C1 (en) Method of machining with crushing chips
JP2005046873A (en) Blanking machine and blanking method
JP2005349534A (en) Hot grinding method for forging material
JP5765757B2 (en) Method for manufacturing annular shaped material
KR20130064577A (en) A forging method for monel metal
RU2183681C1 (en) Method for hardening working surfaces of disc cutter
JP2002126940A (en) Method for shearing steel bar
JP3845722B2 (en) Superplastic stainless steel manufacturing method and stainless steel superplastic working method
JP3754563B2 (en) Hot forging method for mold steel or tool steel
JPH07148729A (en) Diamond core bit
JP3377428B2 (en) ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same
SU1512740A1 (en) Method of friction welding
RU2274517C2 (en) Method for securing cutting tip to cutter holder
JP4379260B2 (en) Steel processing method
JP4713344B2 (en) Ultra-fine crystal layer generation method, mechanical component including the ultra-fine crystal layer generated by the ultra-fine crystal layer generation method, mechanical component manufacturing method for manufacturing the mechanical component, and nano-crystal layer generation method, Mechanical component provided with nanocrystal layer generated by nanocrystal layer generation method, and mechanical component manufacturing method for manufacturing the mechanical component
JP4389639B2 (en) Ingot rolling method
SU833424A1 (en) Method of applying coating
RU1794587C (en) Method for production of steel rivets