JPS61117501A - Near infrared transmittable material - Google Patents

Near infrared transmittable material

Info

Publication number
JPS61117501A
JPS61117501A JP59238250A JP23825084A JPS61117501A JP S61117501 A JPS61117501 A JP S61117501A JP 59238250 A JP59238250 A JP 59238250A JP 23825084 A JP23825084 A JP 23825084A JP S61117501 A JPS61117501 A JP S61117501A
Authority
JP
Japan
Prior art keywords
carbon
compsn
epoxy resin
functional group
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59238250A
Other languages
Japanese (ja)
Other versions
JPH053561B2 (en
Inventor
Etsuji Sugita
杉田 悦治
Toshihiro Shintaku
新宅 敏宏
Toshio Suzuki
敏夫 鈴木
Keita Inui
乾 恵太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Bakelite Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Bakelite Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59238250A priority Critical patent/JPS61117501A/en
Publication of JPS61117501A publication Critical patent/JPS61117501A/en
Publication of JPH053561B2 publication Critical patent/JPH053561B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To improve the transmittivity of near IR light by using an epoxy resin compsn. having the specific concn. of hydrogen functional group for the carbon atom of an aliphat. and/or alicyclic carbon-carbon satd. bond. CONSTITUTION:The epoxy resin compsn. having <=60mol/l concn. of the hydrogen functional group to be coupled to the carbon atom of the aliphat. and/or alicyclic carbon-carbon satd. bond is used. The absorption peak owing to 1.17-1.18mum C-H stretching vibration is attenuated and the tailing to 1.20mum band is eliminated or 1.13-1.14mum peak increases but the absorption peak as a whole decreases and the transmittivity of the near IR is increased. The liquid compsn. having low viscosity at an ordinary temp. is obtd. by using the epoxy resin as such org. material and the compsn. can be adjusted to the desired concn. of the hydrogen functional group by combination of the epoxy resin which is the principal material and hardener. The compsn. is liquid in an uncured state and therefore extraneous matter can be easily removed by filtration, by which the scattering loss is prevented and the compsn. is usable as the excellent near IR transmittable material.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は近赤外域における透明性に優れた近赤外光透過
材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a near-infrared light transmitting material that has excellent transparency in the near-infrared region.

更に詳しくは近赤外域の特定波長における材料固有の吸
収損失を少くすることにより、1μm以上の波長での光
の透過率を高めたマイクロレンズ等の微小光学部品に、
適したエポキシ樹脂組成物よりなる近赤外光透過材料に
関する。
More specifically, by reducing the material-specific absorption loss at specific wavelengths in the near-infrared region, we are developing micro-optical components such as microlenses that have increased light transmittance at wavelengths of 1 μm or more.
The present invention relates to a near-infrared light transmitting material made of a suitable epoxy resin composition.

[従来技術] 近年進展する情報化社会に向けて光ファイバーを用いた
光通信システムの開発が急ピッチで進んでいる。
[Prior Art] Development of optical communication systems using optical fibers is progressing at a rapid pace in preparation for the information society that has progressed in recent years.

現在の光通信システムの中心は、光77バーを伝送路と
し、0.8μm以上の近赤外光を伝送光とする近赤外光
通信システムであり、これ等に使用される材料は、石英
ガラス等の種々のガラス、ニオブ酸リチウム等の電気光
学結晶である。
The core of the current optical communication system is a near-infrared optical communication system that uses optical 77 bars as a transmission path and near-infrared light of 0.8 μm or more as the transmitted light, and the material used for these is quartz. These include various glasses such as glass, and electro-optic crystals such as lithium niobate.

昨今のエレクトロニクス分野に見る広範な有機材料の使
用に比して、光通信分野における有機材料の使用は極め
て少なく、これは近赤外域における有機材料のデータが
殆んどなく、採否の指標にとまどうことが大すいためで
ある。
Compared to the widespread use of organic materials in the electronics field these days, the use of organic materials in the optical communications field is extremely small, and this is because there is almost no data on organic materials in the near-infrared region, making it difficult to determine whether or not to use them. This is because it is very important.

[発明の目的1 本発明は近赤外域での有機材料の光学特性を検討してい
く中で、光通信に使用される、あるいは使用が予想され
る波長域での光透過率の優れた材料を得んと研究した結
果本発明に至ったものである。
[Objective of the Invention 1] While studying the optical properties of organic materials in the near-infrared region, the present invention aims to develop materials with excellent light transmittance in the wavelength range that is used or expected to be used in optical communications. The present invention was achieved as a result of research aimed at obtaining a solution.

[発明の構成1 光通信に使用される光の波長は石英光ファイバーの損失
特性と半導体レーザによってきまる。
[Configuration 1 of the Invention The wavelength of light used for optical communication is determined by the loss characteristics of the quartz optical fiber and the semiconductor laser.

現在光通信に使用される波長帯は、光ファイバーの損失
が比較的少ない0.8〜0.9μ館、1dB/km以下
という低損失域である1、1−1.35μ―、0.2d
B/ka+以下の超低損失域である1、55μmの三つ
の波長帯である。
The wavelength bands currently used for optical communications are 0.8 to 0.9μ, which has relatively low loss in optical fibers, and 1, 1 to 1.35μ, and 0.2d, which have a low loss of less than 1dB/km.
There are three wavelength bands of 1 and 55 μm, which are ultra-low loss regions below B/ka+.

この三つの波長域における種々の有機材料の損失スペク
トルを検討したところ、将来最も多用される1、2μm
を中心とする波長域に天外な吸収ピークを認めた。
After examining the loss spectra of various organic materials in these three wavelength ranges, we found that 1 and 2 μm, which will be most frequently used in the future,
An extraordinary absorption peak was observed in the wavelength range centered on .

解析の結果これは飽和炭素−炭素結合の炭素に結合する
水素、即ちメチル基(−CH3)、メチレン基(>CH
2)等のC−H伸縮振動の高次高調波によるものと判明
した。
As a result of analysis, this is hydrogen bonded to the carbon of a saturated carbon-carbon bond, that is, methyl group (-CH3), methylene group (>CH
It was found that the vibration was caused by high-order harmonics of C-H stretching vibrations such as 2).

飽和炭化水素のC−H伸縮振動による吸収は3.37〜
3.5μ−に表われ、一方芳香族等の不飽和炭化水素の
C−H伸縮振動による吸収は3.3μm以下、例えばベ
ンゼンでは3.25〜3.28μ輪に表われる。
Absorption due to C-H stretching vibration of saturated hydrocarbons is 3.37~
On the other hand, absorption due to C--H stretching vibration of unsaturated hydrocarbons such as aromatics appears at 3.3 .mu.m or less, for example, in benzene, it appears at 3.25 to 3.28 .mu.m.

これらの3次高調波は非調和性のため計算値より若干ず
れた波長域に表われるが、前者は1.17〜1.18μ
船、後者は1.12〜1.14μ−1近となる。
These third harmonics appear in a wavelength range slightly different from the calculated value due to anharmonicity, but the former is 1.17 to 1.18μ.
For ships, the latter is close to 1.12 to 1.14 μ-1.

今、可視域で最も透明性が優れ広く使われているポリメ
タクリル酸メチル(PMMA)について1.2μ飴域の
吸収を見ると1.175μ輸に吸収極大を持つピークが
認められ、ピークの裾は1.2μ輸に及ぶ。
Looking at the absorption of polymethyl methacrylate (PMMA), which is currently the most transparent and widely used material in the visible range, in the 1.2 μm region, a peak with an absorption maximum at 1.175 μm is observed, and the tail of the peak amount to 1.2 μm.

半導体レーザのスペクトル半値中を予裕を持って20曲
と見込むと、1,175μ鴫の吸収ピークは極めて有害
である。
Assuming that there are 20 songs within the half-maximum spectrum of the semiconductor laser, the absorption peak at 1,175 μm is extremely harmful.

また光学部品の挿入損失の内訳を考えると、材料による
吸収損失、散乱損失と接続面でのフレネル反射損失があ
る。
Furthermore, when considering the breakdown of the insertion loss of optical components, there are absorption loss due to the material, scattering loss, and Fresnel reflection loss at the connection surface.

散乱損失は伝送光を1μm以上の近赤外光に限って考え
ればフィルタによるテ過が可能な材料であれば、0゜5
/7I11以上の挟雑物はかなり除き得るし、レイリー
散乱は波長の4乗分の1に比例するため、大きな損失要
因となり得ない。
Considering that the transmitted light is limited to near-infrared light of 1 μm or more, the scattering loss is 0°5 if the material can be filtered by a filter.
Since impurities of /7I11 or more can be considerably removed, and Rayleigh scattering is proportional to 1/4th power of the wavelength, it cannot become a major loss factor.

またフレネル反射損失も界面が平滑で、かつ光軸が面に
垂直であれば屈折率の差が大きくても高々0.1dB程
度でありこれも大きな散乱損失となり得ない。
Furthermore, if the interface is smooth and the optical axis is perpendicular to the surface, the Fresnel reflection loss will be about 0.1 dB at most even if the difference in refractive index is large, and this will not result in a large scattering loss.

しかるに、材料固有の吸収損失はランベルト−ベール(
Lambert−Beer)の法則から光路長に比例し
、吸収のある波長域の透過率は低くなり、光学部品の設
計に大きな支障を鰺たす。
However, the material-specific absorption loss is Lambert-Beer (
According to Lambert-Beer's law, the transmittance in a wavelength range where absorption occurs decreases in proportion to the optical path length, which poses a major problem in the design of optical components.

以上述べて外だように、透過率の改良された材料を得ん
とすれば材料固有の吸収損失を低減することが第一であ
る。
As stated above, in order to obtain a material with improved transmittance, the first step is to reduce the absorption loss inherent in the material.

ここにおいて本発明は近赤外域、特に1.2μ輸帯にお
ける透過率の優れた材料を提供し、近赤外光通信に好適
な光学部品を得る具体的方法を示したものである。
Here, the present invention provides a material with excellent transmittance in the near-infrared region, particularly in the 1.2μ band, and shows a specific method for obtaining an optical component suitable for near-infrared optical communication.

本発明は官能基濃度(mol/l)で表わされた脂肪族
お上び/または脂環式炭素−炭素飽和結合の炭素原子に
結合する水素官能基濃度が60mol/l以下であるこ
とを特徴とする近赤外光の透過率に優れた近赤外光透過
材料に関するものである。
The present invention requires that the concentration of hydrogen functional groups bonded to carbon atoms of aliphatic and/or alicyclic carbon-carbon saturated bonds expressed in terms of functional group concentration (mol/l) is 60 mol/l or less. The present invention relates to a near-infrared light transmitting material that is characterized by excellent near-infrared light transmittance.

本発明に用いられる近赤外光透過材料は脂肪族や脂環式
のCH結合の水素濃度、即ちメチル基(−CH,)やメ
チレン基(>CH2)等の水素濃度が60mol/l以
下である有機材料、とりわけプラスチック材料である。
The near-infrared light transmitting material used in the present invention has a hydrogen concentration of aliphatic or alicyclic CH bonds, that is, a hydrogen concentration of methyl groups (-CH,), methylene groups (>CH2), etc., of 60 mol/l or less. Some organic materials, especially plastic materials.

ここでいう水素官能基濃度は次式(1)により求めた。The hydrogen functional group concentration here was determined by the following formula (1).

×密度(g/am3)X100O−−−−−−(1)(
1)式で表わされる水素官能基濃度は601110+/
1以下であることが必要であり、これを越えると1.1
7〜1゜18μmの吸収損失が大きくなり、光通信用の
光学部品としての設計の自由度に欠は使用に耐えない。
×Density (g/am3)X100O---(1)(
1) The hydrogen functional group concentration expressed by the formula is 601110+/
It must be less than 1, and if it exceeds 1.1
The absorption loss becomes large in the range of 7 to 1.18 μm, and it cannot be used as an optical component for optical communication unless there is a degree of freedom in design.

この様な有機材料としては芳香環を主とする構造を持つ
プラスチックが好適であり、またフッ素や塩素のハロゲ
ン元素や重水素でメチル基、メチレン基、メチン基の水
素を置換した形の構造を持つプラスチックが好適である
Plastics with a structure consisting mainly of aromatic rings are suitable as such organic materials, and plastics with a structure in which the hydrogen of a methyl group, methylene group, or methine group is replaced with halogen elements such as fluorine or chlorine or deuterium are suitable. Plastics with 300 mm are preferred.

ここでフッ素以外のハl1175/ン元素が含まれると
屈折率が高くなり、ガラス光ファイバーとの接続におい
でフレネル反射損失が大きくなる懸念がある。
Here, if a halogen element other than fluorine is contained, the refractive index will increase, and there is a concern that Fresnel reflection loss will increase when connecting to a glass optical fiber.

しかし、今透過光パワーPtの入射光パワーPiに対す
る割合いは式(2)で表わされる。
However, the ratio of the transmitted light power Pt to the incident light power Pi is now expressed by equation (2).

(ここにφ、は入射角、n1t12は媒質の屈折率であ
る。)ここでnlに石英の屈折率1.46、n2に有機
材料の屈折率を高めに見積って1.7としてもフレネル
反射損失(−10logPt/Pi)は多少の軸ずれを
考慮しても0.025dB(0,58%)程度である。
(Here, φ is the incident angle, and n1t12 is the refractive index of the medium.) Here, nl is the refractive index of quartz, which is 1.46, and n2 is the refractive index of the organic material, which is estimated to be 1.7. The loss (-10logPt/Pi) is about 0.025 dB (0.58%) even if some axis deviation is considered.

材料固有の吸収損失に比べれば微々たる数値である。This value is insignificant compared to the absorption loss inherent to the material.

芳香環を主構造とするプラスチックとしては、ビスフェ
ノールAポリカーボネート、ポリサルホン、ポリエーテ
ルエーテルケトン等の所謂エンジニアリングプラスチッ
クがあり、またビスフェノールA骨格等の芳香族系のエ
ポキシ樹脂がある。
Plastics having an aromatic ring as a main structure include so-called engineering plastics such as bisphenol A polycarbonate, polysulfone, and polyetheretherketone, and aromatic epoxy resins such as a bisphenol A skeleton.

エポキシ樹脂は前述のエンジニアリングプラスチックに
比べて以下の特徴を持つ。
Epoxy resin has the following characteristics compared to the engineering plastics mentioned above.

エポキシ樹脂を選ぶことにより、常温で低粘度の液状組
成物が得られる。
By selecting an epoxy resin, a liquid composition with low viscosity at room temperature can be obtained.

主剤であるエポキシ樹脂と硬化剤との組合せにより種々
のバリエーションが得られ、(1)式で表わされる水素
官能基濃度をいろいろに調整可能である。
Various variations can be obtained by combining the epoxy resin as the main ingredient and the curing agent, and the hydrogen functional group concentration represented by formula (1) can be adjusted in various ways.

硬化剤に酸無水物を選べば、加温状態での精製)デ過も
可能である。
If an acid anhydride is selected as the curing agent, purification (purification) and defiltration in a heated state is also possible.

又硬化物の耐熱性も十分に高いものが得られる等々本発
明の目的に非常に有用な材料である。
Furthermore, the cured product has sufficiently high heat resistance, making it a very useful material for the purpose of the present invention.

エポキシ樹脂組成物では、エポキシ樹脂としてビスフェ
ノールAグリシジルエーテル、ビスフェノールFジグリ
シジルエーテル、テトラブロモビスフェノールAジグリ
シジルエーテル、ヘキサフルオロビスフェノールAジグ
リシジルエーテル等、硬化剤としてm−キシレンジアミ
ン、無水ナジック酸(5−ノルボルネン−2舎3ジカル
ボン酸無水物)、無水クロレンド酸(1,4,5,6,
7,7−ヘキサクロロ−5−ノルボルネン−2,3ジカ
ルボン酸無水物)等が好適である。
In the epoxy resin composition, the epoxy resin is bisphenol A glycidyl ether, bisphenol F diglycidyl ether, tetrabromobisphenol A diglycidyl ether, hexafluorobisphenol A diglycidyl ether, etc., and the curing agent is m-xylene diamine, nadic anhydride (5 -Norbornene-2-3 dicarboxylic acid anhydride), chlorendic anhydride (1,4,5,6,
7,7-hexachloro-5-norbornene-2,3 dicarboxylic acid anhydride) and the like are suitable.

これらの配合物は未硬化の状態では液状でフィルタi濾
過によりμmオーグ以上の塵埃等の狭雑物を除くことか
でと、散乱損失を低く押えることがでトる。
These compounds are in a liquid state in an uncured state, and scattering loss can be kept low by removing impurities such as dust of μm or more by filtration with a filter.

このため芳香環から成る熱可塑性プラスチックが極めて
高融点であることと比べて、エポキシ樹脂は近赤外光透
過材料用樹脂として一段と優れている。
For this reason, compared to the extremely high melting point of thermoplastic plastics consisting of aromatic rings, epoxy resins are much better as resins for materials that transmit near-infrared light.

ハロゲンで置換されたハロゲンカーボン化合物を用いる
場合、フッ素以外のハロゲンにおいては、そのハロゲン
濃度が20mol/l以下であることが好ましい。
When using a halogen-carbon compound substituted with halogen, the halogen concentration of halogens other than fluorine is preferably 20 mol/l or less.

ハロゲン濃度が20mol/l以上であれば熱や光に対
する安定性が著しく損なわれるためである。
This is because if the halogen concentration is 20 mol/l or more, the stability against heat and light will be significantly impaired.

[発明の効果1 以上述べた近赤外光透過材料を用い本発明の方法に従う
と、1.17〜1.18μ鎮のC−H伸縮振動による吸
収ピークが減衰し、1.20μm帯への裾ひトが無くな
る、あるいは1.13〜1.14μmのピークが増える
が全体として吸収ピークが低くなり近赤外光の透過率が
著しく改良される。
[Effect of the invention 1] When the above-mentioned near-infrared light transmitting material is used and the method of the present invention is followed, the absorption peak due to the C-H stretching vibration of 1.17 to 1.18 μm is attenuated, and the absorption peak in the 1.20 μm band is reduced. Although the skirt disappears or the peak at 1.13 to 1.14 μm increases, the overall absorption peak becomes lower and the transmittance of near-infrared light is significantly improved.

[実施例1 以下本発明を実施例により詳しく説明する。[Example 1 The present invention will be explained in detail below with reference to Examples.

透過率は日本光学(株)製モノクロメータG250とジ
ルコ(株)製PbS検出器によって測定した。
The transmittance was measured using a monochromator G250 manufactured by Nippon Kogaku Co., Ltd. and a PbS detector manufactured by Zirco Co., Ltd.

実施例 ビスフェノールAジグリシジルエーテル(商品名工ボミ
ックR−140.三井石油化学工業(株)製)と無水メ
チルナジック酸(メチル−5−ノルボルネン−2,3−
ジカルボン酸無水物)と無水クロレンド酸(1,4,5
,6,7゜7−へキサクロロ−5−ノルボルネン−2,
3−ジカルボン酸無水物)とからなるエポキシ樹脂組成
物を80℃に加温下、平均孔径0.47μ輸のテトロン
製メンブランフィルタにより加圧r過後、2枚のガラス
板の間に注型し、厚み1.5輪輪の板を得た。
Examples Bisphenol A diglycidyl ether (trade name Kobomic R-140, manufactured by Mitsui Petrochemical Industries, Ltd.) and methylnadic anhydride (methyl-5-norbornene-2,3-
dicarboxylic anhydride) and chlorendic anhydride (1,4,5
,6,7゜7-hexachloro-5-norbornene-2,
An epoxy resin composition consisting of 3-dicarboxylic anhydride) was heated to 80°C, passed through a Tetron membrane filter with an average pore size of 0.47 μm, and then poured between two glass plates. 1. A board with five wheels was obtained.

この組成物に含まれる飽和炭素−炭素結合の炭素に結合
する水素官能基濃度は51mol/lであり、ハロゲン
(塩素)濃度は4馳o1/lであった。
The concentration of hydrogen functional groups bonded to the carbon of the saturated carbon-carbon bond contained in this composition was 51 mol/l, and the halogen (chlorine) concentration was 4 mol/l.

透過率測定の結果を第1図と第1表に示す。The results of transmittance measurements are shown in FIG. 1 and Table 1.

比較例1 脂環式エポキシ樹脂(商品名セロキサイ)#2021゜
ダイセル化学工業(株)製)と無水メチルナジック酸と
からなるエポキシ樹脂組成物を実施例1と同様にして厚
み1.5mmの板を得た。
Comparative Example 1 An epoxy resin composition consisting of an alicyclic epoxy resin (trade name: Celoxai #2021 (manufactured by Daicel Chemical Industries, Ltd.)) and methyl nadic anhydride was prepared in the same manner as in Example 1 to form a 1.5 mm thick plate. I got it.

この組成物に含まれる飽和炭素−炭素結合の炭素に結合
する水素官能基濃度は85mol/lであった。
The concentration of hydrogen functional groups bonded to the carbon of the saturated carbon-carbon bond contained in this composition was 85 mol/l.

透過率測定の結果を第2図と第1表に示す。The results of transmittance measurements are shown in FIG. 2 and Table 1.

比較例2 ポリメタクリル酸メチル(PMMA)(パラペットニー
10−10協和ガス化学工業(株)製)を射出成形によ
り厚み1.5−の板を得た。
Comparative Example 2 A 1.5-thick plate was obtained by injection molding polymethyl methacrylate (PMMA) (Parapetney 10-10 manufactured by Kyowa Gas Chemical Industry Co., Ltd.).

二のポリメタクリル酸メチル(PMMA)中に含まれる
飽和炭素−炭素結合の炭素に結合する水素官能基濃度は
95輸01/1であった。
The concentration of hydrogen functional groups bonded to the carbons of the saturated carbon-carbon bonds contained in the second polymethyl methacrylate (PMMA) was 95%.

透過率測定結果を第3図と第1表に示す。The transmittance measurement results are shown in FIG. 3 and Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のサンプルの1.1〜1.3μmでの損
失スペクトル、第2図は比較例1のサンプルの1.1〜
1.3μ−での損失スペクトル、第3図は比較例2の1
゜1〜1.3μ−での損失スペクトルである。 特許出願人   日本電信電話公社 住友ベークライト株式会社 第1図 WAVE LENGTH(7zm) 第2図
Figure 1 shows the loss spectrum of the example sample at 1.1 to 1.3 μm, and Figure 2 shows the loss spectrum of the comparative example 1 sample at 1.1 to 1.3 μm.
Loss spectrum at 1.3μ-, Figure 3 is Comparative Example 2-1
It is a loss spectrum at 1 to 1.3μ. Patent applicant Nippon Telegraph and Telephone Public Corporation Sumitomo Bakelite Co., Ltd. Figure 1 WAVE LENGTH (7zm) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 官能基濃度(mol/l)で表わされた脂肪族および/
または脂環式炭素−炭素飽和結合の炭素原子に結合する
水素官能基濃度が60mol/l以下のエポキシ樹脂組
成物よりなることを特徴とする近赤外光透過材料。
Aliphatic and/or expressed as functional group concentration (mol/l)
Alternatively, a near-infrared light transmitting material comprising an epoxy resin composition having a concentration of hydrogen functional groups bonded to carbon atoms of an alicyclic carbon-carbon saturated bond of 60 mol/l or less.
JP59238250A 1984-11-14 1984-11-14 Near infrared transmittable material Granted JPS61117501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238250A JPS61117501A (en) 1984-11-14 1984-11-14 Near infrared transmittable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238250A JPS61117501A (en) 1984-11-14 1984-11-14 Near infrared transmittable material

Publications (2)

Publication Number Publication Date
JPS61117501A true JPS61117501A (en) 1986-06-04
JPH053561B2 JPH053561B2 (en) 1993-01-18

Family

ID=17027378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238250A Granted JPS61117501A (en) 1984-11-14 1984-11-14 Near infrared transmittable material

Country Status (1)

Country Link
JP (1) JPS61117501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373901A (en) * 1989-08-16 1991-03-28 Tokuyama Soda Co Ltd Window material for optical measuring instrument
DE19829282A1 (en) * 1998-06-30 2000-01-13 Siemens Ag Optical apparatus to detect X-rays in computer tomographs
US6470131B1 (en) 2000-11-03 2002-10-22 Corning Incorporated Highly-halogenated low optical loss polymer
WO2023276622A1 (en) * 2021-06-29 2023-01-05 パナソニックIpマネジメント株式会社 Resin composition for optical waveguide, and dry film and optical waveguide using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199713A (en) * 1983-04-27 1984-11-12 Sumitomo Bakelite Co Ltd Adjustment of refractive index of cured epoxy resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199713A (en) * 1983-04-27 1984-11-12 Sumitomo Bakelite Co Ltd Adjustment of refractive index of cured epoxy resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373901A (en) * 1989-08-16 1991-03-28 Tokuyama Soda Co Ltd Window material for optical measuring instrument
DE19829282A1 (en) * 1998-06-30 2000-01-13 Siemens Ag Optical apparatus to detect X-rays in computer tomographs
DE19829282B4 (en) * 1998-06-30 2004-07-08 Siemens Ag Optical device and use of the optical device with an epoxy resin whose transmission is stabilized, such epoxy resin and method for producing the epoxy resin
US6470131B1 (en) 2000-11-03 2002-10-22 Corning Incorporated Highly-halogenated low optical loss polymer
US6610813B2 (en) 2000-11-03 2003-08-26 Corning Incorporated Highly-halogenated low optical loss polymer
WO2023276622A1 (en) * 2021-06-29 2023-01-05 パナソニックIpマネジメント株式会社 Resin composition for optical waveguide, and dry film and optical waveguide using same

Also Published As

Publication number Publication date
JPH053561B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
Dislich Plastics as optical materials
TW394859B (en) Graded-refractive-index optical plastic material and method for its production
JP3818344B2 (en) Process for producing fluorine-containing aliphatic ring structure-containing polymer
WO1995028660A1 (en) Refractive index distribution type optical resin and production method thereof
JPS61117501A (en) Near infrared transmittable material
DE4435992C2 (en) Plastic optical elements
JPH048734A (en) Fluorinated polyimide copolymer and its preparation
JPS61190304A (en) Light transmitting fiber
Maruno et al. Fluorine‐containing optical adhesives for optical communications systems
JP3530630B2 (en) Method of manufacturing refractive index distribution type optical fiber and base material thereof
JP3674878B2 (en) Polyimide optical waveguide
Kaino Linear Optical Properties of Organic Solids
JPH11167030A (en) Distributed refractive index optical resin material
JPS6043613A (en) Light-transmittable fiber
JPS6120909A (en) Plastic optical fiber
JP3057161B2 (en) Organic optical waveguide
CA2411185A1 (en) Optical adhesive composition and optical device
JP2847171B2 (en) Optical waveguide using perfluoro organic polymer material
JPS61208001A (en) Optical circuit parts for near infrared light
JPH04255716A (en) Production of perfluorinated copolymer
JP2940645B2 (en) Heat resistant plastic optical fiber
JP3723250B2 (en) Manufacturing method of base material for refractive index distribution type optical fiber manufacturing
JP2836069B2 (en) Plastic clad optical transmission fiber
JPH0343423A (en) Polysiloxane and optical element comprising polysiloxane
JPH04174403A (en) Abrasion resistant infrared ray absorbing filter produced by coating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees