JPH053561B2 - - Google Patents

Info

Publication number
JPH053561B2
JPH053561B2 JP59238250A JP23825084A JPH053561B2 JP H053561 B2 JPH053561 B2 JP H053561B2 JP 59238250 A JP59238250 A JP 59238250A JP 23825084 A JP23825084 A JP 23825084A JP H053561 B2 JPH053561 B2 JP H053561B2
Authority
JP
Japan
Prior art keywords
anhydride
mol
diglycidyl ether
hydrogen
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59238250A
Other languages
Japanese (ja)
Other versions
JPS61117501A (en
Inventor
Etsuji Sugita
Toshihiro Shintaku
Toshio Suzuki
Keita Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Bakelite Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Bakelite Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59238250A priority Critical patent/JPS61117501A/en
Publication of JPS61117501A publication Critical patent/JPS61117501A/en
Publication of JPH053561B2 publication Critical patent/JPH053561B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は近赤外域における透明性に優れた近赤
外光透過材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a near-infrared light transmitting material that has excellent transparency in the near-infrared region.

更に詳しくは近赤外域の特定波長における材料
固有の吸収損失を少くすることにより、1μm以
上の波長での光の透過率を高めたマイクロレンズ
等の微小光学部品に、適したエポキシ樹脂組成物
よりなる近赤外光透過材料に関する。
More specifically, by reducing the absorption loss inherent to the material at specific wavelengths in the near-infrared region, we have developed an epoxy resin composition suitable for micro-optical components such as microlenses that have increased light transmittance at wavelengths of 1 μm or more. The present invention relates to a near-infrared light transmitting material.

[従来技術] 近年進展する情報化社会に向けて光フアイバー
を用いた光通信システムの開発が急ピツチで進ん
でいる。
[Prior Art] Development of optical communication systems using optical fibers is progressing at a rapid pace in preparation for the information society that has progressed in recent years.

現在の光通信システムの中心は、光フアイバー
を伝送路とし、0.8μm以上の近赤外光を伝送光と
する近赤外光通信システムであり、これ等に使用
される材料は、石英ガラス等の種々のガラス、ニ
オブ酸リチウム等の電気光学結晶である。
The core of current optical communication systems is near-infrared optical communication systems that use optical fibers as transmission paths and transmit near-infrared light of 0.8 μm or more, and the materials used for these systems are quartz glass, etc. various types of glasses, electro-optic crystals such as lithium niobate.

昨今のエレクトロニクス分野に見る広範な有機
材料の使用に比して、光通信分野における有機材
料な使用は極めて少なく、これは近赤外域におけ
る有機材料のデータが殆んどなく、採否の指標に
とまどうことが大きいためである。
Compared to the widespread use of organic materials in the electronics field these days, the use of organic materials in the optical communications field is extremely rare.This is because there is almost no data on organic materials in the near-infrared region, making it difficult to determine whether or not to use them. This is because it is a big deal.

[発明の目的] 本発明は近赤外域での有機材料の光学特性を検
討していく中で、光通信に使用される、あるいは
使用が予想される波長域での光透過率の優れた材
料を得んと研究した結果本発明に至つたものであ
る。
[Objective of the Invention] While studying the optical properties of organic materials in the near-infrared region, the present invention aims to develop materials with excellent light transmittance in the wavelength range that is used or expected to be used in optical communications. As a result of research to obtain this, the present invention has been arrived at.

[発明の構成] 光通信に使用される光の波長は石英光フアイバ
ーの損失特性と半導体レーザによつてきまる。
[Structure of the Invention] The wavelength of light used for optical communication depends on the loss characteristics of the quartz optical fiber and the semiconductor laser.

現在光通信に使用される波長帯は、光フアイバ
ーの損失が比較的少ない0.8〜0.9μm、1dB/Km以
下という低損失域である1.1〜1.35μm、0.2dB/
Km以下の超低損失域である1.55μmの三つの波長
帯である。
The wavelength bands currently used for optical communications are 0.8 to 0.9 μm, where the loss of optical fiber is relatively low, and 1.1 to 1.35 μm, which is a low loss range of 1 dB/Km or less, and 0.2 dB/Km.
There are three wavelength bands of 1.55μm, which is an ultra-low loss region of less than Km.

この三つの波長帯域における種々の有機材料の
損失スペクトルを検討したところ、将来最も多用
される1.2μmを中心とする波長域に大きな吸収ピ
ークを認めた。
When we examined the loss spectra of various organic materials in these three wavelength bands, we found a large absorption peak in the wavelength range centered on 1.2 μm, which will be most frequently used in the future.

解析の結果これは飽和炭素−炭素結合の炭素に
結合する水素、即ちメチル基(−CH3)、メチレ
ン基(>CH2)等のC−H伸縮振動の高次高調波
によるものと判明した。
Analysis revealed that this is due to higher harmonics of C-H stretching vibrations of hydrogen bonded to the carbon of a saturated carbon-carbon bond, such as methyl group (-CH 3 ), methylene group (>CH 2 ), etc. .

飽和炭化水素のC−H伸縮振動による吸収は
3.37〜3.5μmに表われ、一方芳香族等の不飽和炭
化水素のC−H伸縮振動による吸収は3.3μm以
下、例えばベンゼンでは3.25〜3.28μmに表われ
る。
The absorption by C-H stretching vibration of saturated hydrocarbons is
It appears at 3.37 to 3.5 μm, while absorption due to C-H stretching vibration of aromatic and other unsaturated hydrocarbons appears at 3.3 μm or less, for example, at 3.25 to 3.28 μm for benzene.

これらの3次高調波は非調和性のため計算値よ
り若干ずれた波長域に表われるが、前者は1.17〜
1.18μm、後者は1.12〜1.14μm付近となる。
These third harmonics appear in a wavelength range that is slightly different from the calculated value due to anharmonicity, but the former is 1.17~
1.18 μm, and the latter is around 1.12 to 1.14 μm.

今、可視域で最も透明性が優れ広く使われてい
るポリメタクリル酸メチル(PMMA)について
1.2μm域の吸収を見ると1.175μmに吸収極大を持
つピークが認められ、ピークの裾は1.2μmに及
ぶ。
About polymethyl methacrylate (PMMA), which is currently the most transparent and widely used material in the visible range.
Looking at the absorption in the 1.2 μm region, a peak with an absorption maximum at 1.175 μm is observed, and the tail of the peak extends to 1.2 μm.

半導体レーザのスペクトル半値巾を予裕を持つ
て20nmと見込むと、1.175μmの吸収ピークは極
めて有害である。
Assuming that the spectral half-width of a semiconductor laser is 20 nm with a margin, the absorption peak at 1.175 μm is extremely harmful.

また光学部品の挿入損失の内訳を考えると、材
料による吸収損失、散乱損失と接続面でのフレネ
ル反射損失がある。
Furthermore, when considering the breakdown of the insertion loss of optical components, there are absorption loss due to the material, scattering loss, and Fresnel reflection loss at the connection surface.

散乱損失は伝送光を1μm以上の近赤外光に限
つて考えればフイルタによる過が可能な材料で
あれば、0.5μm以上の挟雑物はかなり除き得る
し、レイリー散乱は波長の4乗分の1に比例する
ため、大きな損失要因となり得ない。
Scattering loss is limited to near-infrared light with a wavelength of 1 μm or more, and if the material is filterable, it is possible to remove a large amount of impurities of 0.5 μm or more, and Rayleigh scattering is the fourth power of the wavelength. Since it is proportional to 1, it cannot be a major loss factor.

またフレネル反射損失も界面が平滑で、かつ光
軸が面に垂直であれば屈折率の差が大きくても
高々0.1dB程度でありこれも大きな散乱損失とな
り得ない。
Furthermore, if the interface is smooth and the optical axis is perpendicular to the surface, the Fresnel reflection loss will be about 0.1 dB at most even if the difference in refractive index is large, and this will not result in a large scattering loss.

しかるに、材料固有の吸収損失はランベルトー
ベール(Lambert−Beer)の法則から光路長に
比例し、吸収のある波長域の透過率は低くなり、
光学部品の設計に大きな支障をきたす。
However, the absorption loss inherent to the material is proportional to the optical path length according to Lambert-Beer's law, and the transmittance in the wavelength range where absorption occurs is low.
This poses a major hindrance to the design of optical components.

以上述べてきたように、透過率の改良された材
料を得んとすれば材料固有の吸収損失を低減する
ことが第一である。
As described above, in order to obtain a material with improved transmittance, it is first necessary to reduce the absorption loss inherent in the material.

ここにおいて本発明は近赤外域、特に1.2μm帯
における透過率の優れた材料を提供し、近赤外光
通信に好適な光学部品を得る具体的方法を示した
ものである。
Here, the present invention provides a material with excellent transmittance in the near-infrared region, particularly in the 1.2 μm band, and shows a specific method for obtaining an optical component suitable for near-infrared optical communication.

本発明は官能基濃度(mol/)で表わされた
脂肪族および/または脂環式炭素−炭素飽和結合
の炭素原子に結合する水素官能基濃度が60mol/
以下であることを特徴とする近赤外光の透過率
に優れた近赤外光透過材料に関するものである。
The present invention has a hydrogen functional group concentration (mol/) bonded to a carbon atom of an aliphatic and/or alicyclic carbon-carbon saturated bond of 60 mol/
The present invention relates to a near-infrared light transmitting material having excellent near-infrared light transmittance, which is characterized by the following characteristics.

本発明に用いられる近赤外光透過材料は脂肪族
や脂環式のCH結合の水素濃度、即ちメチル基
(−CH3)やメチレン基(>CH2)等の水素濃度
が60mol/以下である有機材料、とりわけプラ
スチツク材料である。
The near-infrared light transmitting material used in the present invention has a hydrogen concentration of aliphatic or alicyclic CH bonds, that is, a hydrogen concentration of methyl groups (-CH 3 ), methylene groups (>CH 2 ), etc., of 60 mol/or less. Certain organic materials, especially plastic materials.

ここでいう水素官能基濃度は次式(1)により求め
た。
The hydrogen functional group concentration referred to here was determined by the following formula (1).

水素官能基濃度=CH3基、CH2基等の水素原子
数/分子量(またはモノマ単位の分子量)×密度(g/
cm3)×1000…(1) (1)式で表わされる水素官能基濃度は60mol/
以下であることが必要であり、これを越えると
1.17〜1.18μmの吸収損失が大きくなり、光通信
用の光学部品としての設計の自由度に欠け使用に
耐えない。
Hydrogen functional group concentration = number of hydrogen atoms such as CH 3 groups, CH 2 groups / molecular weight (or molecular weight of monomer unit) x density (g/
cm 3 ) × 1000…(1) The hydrogen functional group concentration expressed by formula (1) is 60 mol/
It must be less than or equal to, and if it exceeds
The absorption loss of 1.17 to 1.18 μm becomes large, and there is a lack of freedom in design as an optical component for optical communication, making it unsuitable for use.

この様な有機材料としては芳香環を主とする構
造を持つプラスチツクが好適であり、またフツ素
や塩素のハロゲン元素や重水素でメチル基、メチ
レン基、メチン基の水素を置換した形の構造を持
つプラスチツクが好適である。
Plastics with a structure mainly consisting of aromatic rings are suitable as such organic materials, and plastics with a structure in which the hydrogen of a methyl group, methylene group, or methine group is replaced with a halogen element such as fluorine or chlorine or deuterium are suitable. Preferred are plastics with a

ここでフツ素以外のハロゲン元素が含まれると
屈折率が高くなり、ガラス光フアイバーとの接続
においてフレネル反射損失が大きくなる懸念があ
る。
Here, if a halogen element other than fluorine is contained, the refractive index will increase, and there is a concern that Fresnel reflection loss will increase in connection with a glass optical fiber.

しかし、今透過光パワーPtの入射光パワーPi
に対する割合いは式(2)で表わされる。
However, now the incident light power Pi of the transmitted light power Pt
The ratio to is expressed by equation (2).

(ここにφ1は入射角、n1、n2は媒質の屈折率であ
る。) ここでn1に石英の屈折率1.46、n2に有機材料の
屈折率を高めに見積つて1.7としてもフレネル反
射損失(−10logPt/Pi)は多少の軸のずれを考
慮しても0.025dB(0.58%)程度である。
(Here, φ 1 is the incident angle, and n 1 and n 2 are the refractive index of the medium.) Here, n 1 is the refractive index of quartz, which is 1.46, and n 2 is the refractive index of the organic material, which is estimated to be 1.7. Fresnel return loss (-10logPt/Pi) is about 0.025dB (0.58%) even if some axis deviation is considered.

材料固有の吸収損失に比べれば微々たる数値で
ある。
This value is insignificant compared to the absorption loss inherent to the material.

芳香環を主構造とするプラスチツクとしては、
ビスフエノールAポリカーボネート、ポリサルホ
ン、ポリエーテルエーテルケトン等の所謂エンジ
ニアリングプラスチツクがあり、またビスフエノ
ールA骨格等の芳香族系のエポキシ樹脂がある。
As a plastic whose main structure is an aromatic ring,
There are so-called engineering plastics such as bisphenol A polycarbonate, polysulfone, and polyetheretherketone, and there are also aromatic epoxy resins such as bisphenol A skeleton.

エポキシ樹脂は前述のエンジニアリングプラス
チツクに比べて以下の特徴を持つ。
Epoxy resin has the following characteristics compared to the engineering plastics mentioned above.

エポキシ樹脂を選ぶことにより、常温で低粘度
の液状組成物が得られる。
By selecting an epoxy resin, a liquid composition with low viscosity at room temperature can be obtained.

主剤であるエポキシ樹脂と硬化剤との組合せに
より種々のバリエーシヨンが得られ、(1)式で表わ
される水素官能基濃度をいろいろに調整可能であ
る。
Various variations can be obtained by combining the epoxy resin as the main ingredient and the curing agent, and the hydrogen functional group concentration represented by formula (1) can be adjusted in various ways.

硬化剤に酸無水物を選べば、加温状態での精製
過も可能である。
If an acid anhydride is selected as the curing agent, purification in a heated state is also possible.

又硬化剤の耐熱性も十分に高いものが得られる
等々本発明の目的に非常に有用な材料である。
Furthermore, the heat resistance of the curing agent is also very high, making it a very useful material for the purpose of the present invention.

エポキシ樹脂組成物では、エポキシ樹脂として
ビスフエノールAジグリシジルエーテル、ビスフ
エノールFジグリシジルエーテル、テトラブロモ
ビスフエノールAジグリシジルエーテル、ヘキサ
フルオロビスフエノールAジグリシジルエーテル
等、硬化剤としてm−キシレンジアミン、無水ナ
ジツク酸(5−ノルボルネン−2・3ジカルボン
酸無水物)、無水クロレンド酸(1、4、5、6、
7、7−ヘキサクロロ−5−ノルボルネン−2、
3ジカルボン酸無水物)等が好適である。
In the epoxy resin composition, the epoxy resin is bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, tetrabromobisphenol A diglycidyl ether, hexafluorobisphenol A diglycidyl ether, etc., and the curing agent is m-xylene diamine, Nadic anhydride (5-norbornene-2,3 dicarboxylic anhydride), chlorendic anhydride (1, 4, 5, 6,
7,7-hexachloro-5-norbornene-2,
3 dicarboxylic acid anhydride) and the like are suitable.

これらの配合物は未硬化の状態では液状でフイ
ルタ過によりμmオーダ以上の塵埃等の挟雑物
を除くことができ、散乱損矢を低く押えることが
できる。
These compounds are in a liquid state in an uncured state, and impurities such as dust on the order of μm or more can be removed by passing through a filter, and scattering loss can be kept low.

このため芳香環から成る熱可塑性プラスチツク
が極めて高融点であることと比べて、エポキシ樹
脂は近赤外光透過材料用樹脂として一段と優れて
いる。
Therefore, compared to the extremely high melting point of thermoplastic plastics consisting of aromatic rings, epoxy resins are much better as resins for near-infrared light transmitting materials.

ハロゲンで置換されたハロゲノカーボン化合物
を用いる場合、フツ素以外のハロゲンにおいて
は、そのハロゲン濃度が20mol/以下であるこ
とが好ましい。
When using a halogen-substituted halogenocarbon compound, the halogen concentration of halogens other than fluorine is preferably 20 mol/or less.

ハロゲン濃度が20mol/以上であれば熱や光
に対する安定性が著しく損なわれるためである。
This is because if the halogen concentration is 20 mol/or more, the stability against heat and light will be significantly impaired.

[発明の効果] 以上述べた近赤外光透過材料を用い本発明の方
法に従うと、1.17〜1.18μmのC−H伸縮振動に
よる吸収ピークが減衰し、1.20μm帯への裾ひき
が無くなる、あるいは1.13〜1.14μmのピークが
増えるが全体として吸収ピークが低くなり近赤外
光の透過率が著しく改良される。
[Effects of the Invention] When the above-mentioned near-infrared light transmitting material is used and the method of the present invention is followed, the absorption peak due to C-H stretching vibration of 1.17 to 1.18 μm is attenuated, and the tailing to the 1.20 μm band is eliminated. Alternatively, although the peak at 1.13 to 1.14 μm increases, the overall absorption peak becomes lower, and the transmittance of near-infrared light is significantly improved.

[実施例] 以下本発明を実施例により詳しく説明する。[Example] The present invention will be explained in detail below with reference to Examples.

透過率は日本光学(株)製モノクロメータG250と
ジルコ(株)製PbS検出器によつて測定した。
Transmittance was measured using a monochromator G250 manufactured by Nippon Kogaku Co., Ltd. and a PbS detector manufactured by Zirco Co., Ltd.

実施例 ビスフエノールAジグリシジルエーテル(商品
名エポミツクR−140、三井石油化学工業(株)製)
と無水メチルナジツク酸(メチル−5−ノルボル
ネン−2、3−ジカルボン酸無水物)と無水クロ
レンド酸(1、4、5、6、7、7−ヘキサクロ
ロ−5−ノルボルネン−2、3−ジカルボン酸無
水物)とからなるエポキシ樹脂組成物を80℃に加
温下、平均孔径0.47μmのテトロン製メンブラン
フイルタにより加圧過後、2枚のガラス板の間
に注型し、厚み1.5mmの板を得た。
Example Bisphenol A diglycidyl ether (trade name Epomic R-140, manufactured by Mitsui Petrochemical Industries, Ltd.)
and methylnadic anhydride (methyl-5-norbornene-2,3-dicarboxylic anhydride) and chlorendic anhydride (1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic anhydride) The epoxy resin composition consisting of the above was heated to 80° C., was pressurized through a Tetron membrane filter with an average pore size of 0.47 μm, and then cast between two glass plates to obtain a plate with a thickness of 1.5 mm.

この組成物に含まれる飽和炭素−炭素結合の炭
素に結合する水素官能基濃度は51mol/であ
り、ハロゲン(塩素)濃度は4mol/であつた。
The concentration of hydrogen functional groups bonded to the carbon of the saturated carbon-carbon bond contained in this composition was 51 mol/, and the halogen (chlorine) concentration was 4 mol/.

尚水素官能基濃度は、次のようにして算出され
る。
The hydrogen functional group concentration is calculated as follows.

ビスフエノールAグリシジルエーテルの構造式
は次の通りであり、 エポキシ当量190(n=0.14になる)、密度1.17の
ものを100重量部、 無水メチルナジツク酸 を55重量部、 無水クロレンド酸 を30重量部の割合で配合した水素官能基濃度は、
ビスフエノールAグリシジルエーテルの分とし
て、 16+0.14×12/340+0.14×282 ×1.17×1000×100/100+55+30≒29.4 無水メチルナジツク酸の分として 10/178×1.23×100055/100+55+30≒20.5 無水クロレンド酸の分として 2/371×1.73×100030/100+55+30≒1.5 全体では、水素官能基濃度=29.4+20.5+1.5≒
51となる。
The structural formula of bisphenol A glycidyl ether is as follows, 100 parts by weight of epoxy equivalent 190 (n = 0.14), density 1.17, methylnadic anhydride 55 parts by weight of chlorendic anhydride The hydrogen functional group concentration when 30 parts by weight of
For bisphenol A glycidyl ether, 16 + 0.14 x 12 / 340 + 0.14 x 282 x 1.17 x 1000 x 100 / 100 + 55 + 30 ≒ 29.4 For methyl nadzic anhydride 10 / 178 x 1.23 x 100055 / 100 + 55 + 30 ≒ 20.5 Chlorendo anhydride acid 2/371×1.73×100030/100+55+30≒1.5 Overall, hydrogen functional group concentration=29.4+20.5+1.5≒
It becomes 51.

透過率測定の結果を第1図と第1表に示す。 The results of transmittance measurements are shown in FIG. 1 and Table 1.

比較例 1 脂環式エポキシ樹脂(商品名セロキサイト
#2021、ダイセル化学工業(株)製)と無水メチルナ
ジツク酸とからなるエポキシ樹脂組成物実施例1
と同様にして厚み1.5mmの板を得た。
Comparative Example 1 Example 1 of an epoxy resin composition consisting of an alicyclic epoxy resin (trade name Celoxite #2021, manufactured by Daicel Chemical Industries, Ltd.) and methylnadic anhydride
A plate with a thickness of 1.5 mm was obtained in the same manner as above.

この組成物に含まれる飽和炭素−炭素結合の炭
素に結合する水素官能基濃度は85mol/であつ
た。
The concentration of hydrogen functional groups bonded to the carbon of the saturated carbon-carbon bond contained in this composition was 85 mol/.

透過率測定の結果を第2図と第1表に示す。 The results of transmittance measurements are shown in FIG. 2 and Table 1.

比較例 2 ポリメタクリル酸メチル(PMMA)(パラペツ
トT−10−10協和ガス化学工業(株)製)を射出成形
により厚み1.5mmの板を得た。
Comparative Example 2 A plate having a thickness of 1.5 mm was obtained by injection molding polymethyl methacrylate (PMMA) (Parapet T-10-10 manufactured by Kyowa Gas Chemical Industry Co., Ltd.).

このポリメタクリル酸メチル(PMMA)中に
含まれる飽和炭素−炭素結合の炭素に結合する水
素官能基濃度は95mol/であつた。
The concentration of hydrogen functional groups bonded to the carbon of the saturated carbon-carbon bond contained in this polymethyl methacrylate (PMMA) was 95 mol/.

ポリメタクリル酸メチル モノマー単位分子量=99 モノマー単位中の水素原子数=8 水素官能基濃度=CH3基、CH2基等の水素原子数
/分子量(またはモノマー単位の分子量)×密度(g/
cm3)×1000 =8/99×1.18×1000≒95(mo
l/) 透過率測定結果を第3図と第1表に示す。
Polymethyl methacrylate Molecular weight of monomer unit = 99 Number of hydrogen atoms in monomer unit = 8 Hydrogen functional group concentration = Number of hydrogen atoms such as CH 3 groups, CH 2 groups / Molecular weight (or molecular weight of monomer unit) x Density (g/
cm 3 )×1000 = 8/99×1.18×1000≒95(mo
l/) The transmittance measurement results are shown in Figure 3 and Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のサンプルの1.1〜1.3μmでの
損失スペクトル、第2図は比較例1のサンプルの
1.1〜1.3μmでの損失スペクトル、第3図は比較
例2の1.1〜1.3μmでの損失スペクトルである。
Figure 1 shows the loss spectrum of the example sample at 1.1 to 1.3 μm, and Figure 2 shows the loss spectrum of the comparative example 1 sample.
Loss spectrum at 1.1 to 1.3 μm. FIG. 3 shows the loss spectrum at 1.1 to 1.3 μm of Comparative Example 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ビスフエノールAジグリシジルエーテル、ビ
スフエノールFジグリシジルエーテル、テトラブ
ロモビスフエノールAジグリシジルエーテル、ヘ
キサフルオロビスフエノールAジグリシジルエー
テルの群より選ばれたエポキシ樹脂と、m−キシ
レンジアミン、無水ナジツク酸、無水メチルナジ
ツク酸、無水クロレンド酸の群より選ばれた硬化
剤とからなるエポキシ樹脂組成物であつて、下記
式で定義される水素官能基濃度(mol/)で表
される脂肪族および/または脂環式炭素−炭素飽
和結合の炭素原子に結合する水素濃度が60mol/
以下であることを特徴とする近赤外光透過材
料。 水素官能基濃度=CH3基、CH2基等の水素原子数
/分子量(またはモノマー単位の分子量)×密度(g/
cm3)×1000 (単位:mol/)
[Scope of Claims] 1. An epoxy resin selected from the group of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, tetrabromobisphenol A diglycidyl ether, hexafluorobisphenol A diglycidyl ether, and m- An epoxy resin composition consisting of xylene diamine, a curing agent selected from the group of nadzic anhydride, methyl nadzic anhydride, and chlorendic anhydride, expressed in hydrogen functional group concentration (mol/) defined by the following formula. The hydrogen concentration bonded to the carbon atom of the aliphatic and/or alicyclic carbon-carbon saturated bond is 60 mol/
A near-infrared light transmitting material characterized by: Hydrogen functional group concentration = number of hydrogen atoms such as CH 3 groups, CH 2 groups, etc./molecular weight (or molecular weight of monomer unit) x density (g/
cm 3 )×1000 (unit: mol/)
JP59238250A 1984-11-14 1984-11-14 Near infrared transmittable material Granted JPS61117501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238250A JPS61117501A (en) 1984-11-14 1984-11-14 Near infrared transmittable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238250A JPS61117501A (en) 1984-11-14 1984-11-14 Near infrared transmittable material

Publications (2)

Publication Number Publication Date
JPS61117501A JPS61117501A (en) 1986-06-04
JPH053561B2 true JPH053561B2 (en) 1993-01-18

Family

ID=17027378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238250A Granted JPS61117501A (en) 1984-11-14 1984-11-14 Near infrared transmittable material

Country Status (1)

Country Link
JP (1) JPS61117501A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373901A (en) * 1989-08-16 1991-03-28 Tokuyama Soda Co Ltd Window material for optical measuring instrument
DE19829282B4 (en) * 1998-06-30 2004-07-08 Siemens Ag Optical device and use of the optical device with an epoxy resin whose transmission is stabilized, such epoxy resin and method for producing the epoxy resin
US6470131B1 (en) 2000-11-03 2002-10-22 Corning Incorporated Highly-halogenated low optical loss polymer
CN117581129A (en) * 2021-06-29 2024-02-20 松下知识产权经营株式会社 Resin composition for optical waveguide, dry film using same, and optical waveguide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199713A (en) * 1983-04-27 1984-11-12 Sumitomo Bakelite Co Ltd Adjustment of refractive index of cured epoxy resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199713A (en) * 1983-04-27 1984-11-12 Sumitomo Bakelite Co Ltd Adjustment of refractive index of cured epoxy resin

Also Published As

Publication number Publication date
JPS61117501A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US4968116A (en) Polymer claddings for optical fibre waveguides
KR100542784B1 (en) Refraction index distribution type optical resin materials
Dislich Plastics as optical materials
Nishii et al. Chalcogenide glass fiber with a core–cladding structure
JP2005240028A (en) Transparent composite sheet and display element substrate using the same
CA2068021A1 (en) Process and composition for cladding optic fibers
CN101379421A (en) Flexible optical waveguide and optical module
TW201343704A (en) Optical waveguide forming epoxy resin composition, curable film formed from the epoxy resin composition for formation of optical waveguide, and light transmission flexible printed board
CA2076356C (en) Curable composition for use in optical fiber cladding and optical fiber equipped therewith
JP4589211B2 (en) UV curable liquid resin composition for optics
JP3728441B2 (en) Transparent composite composition
KR20060052462A (en) Low shrinkage, low optical absorbance, low refractive index adhesive composition
Murata et al. UV-curable adhesives for optical communications
GB2064157A (en) Cross-linked polyfluorosiloxane optical waveguide cladding
US4431264A (en) Fluorosiloxane optical cladding
JPH053561B2 (en)
Kaino Linear Optical Properties of Organic Solids
Maruno et al. Fluorine‐containing optical adhesives for optical communications systems
JP3057161B2 (en) Organic optical waveguide
JPH11167030A (en) Distributed refractive index optical resin material
CA2411185A1 (en) Optical adhesive composition and optical device
JPH10239538A (en) Plastic optical fiber machining method
JP2847171B2 (en) Optical waveguide using perfluoro organic polymer material
JPH05112635A (en) Totally fluorinated wholly aromatic polyester and optical part using the same polyester
KR20160119057A (en) Photosensitive resin composition for optical waveguide, photocurable film for formation of optical waveguide core layer, optical waveguide produced by using the resin composition or the photocurable film, and hybrid flexible printed wiring board for optical/electrical transmission

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees