JP2847171B2 - Optical waveguide using perfluoro organic polymer material - Google Patents

Optical waveguide using perfluoro organic polymer material

Info

Publication number
JP2847171B2
JP2847171B2 JP31791390A JP31791390A JP2847171B2 JP 2847171 B2 JP2847171 B2 JP 2847171B2 JP 31791390 A JP31791390 A JP 31791390A JP 31791390 A JP31791390 A JP 31791390A JP 2847171 B2 JP2847171 B2 JP 2847171B2
Authority
JP
Japan
Prior art keywords
optical waveguide
polymer material
organic polymer
carbon
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31791390A
Other languages
Japanese (ja)
Other versions
JPH04190202A (en
Inventor
慎治 安藤
二三男 山本
重邦 佐々木
松浦  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP31791390A priority Critical patent/JP2847171B2/en
Publication of JPH04190202A publication Critical patent/JPH04190202A/en
Application granted granted Critical
Publication of JP2847171B2 publication Critical patent/JP2847171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導波路、特に光電子集積回路(OEIC)にお
ける回路部品として使用可能なプラスチック光導波路に
関する。
The present invention relates to an optical waveguide, and more particularly to a plastic optical waveguide that can be used as a circuit component in an optoelectronic integrated circuit (OEIC).

〔従来の技術〕[Conventional technology]

有機高分子材料(プラスチック)は、無機系の材料に
比べて軽量であり、耐衝撃性、加工性に優れ、取扱いが
容易であるなどの特長を有しているため、これまでも光
ファイバーや光ディスク用基板、光学用レンズなど様々
な光学用途に用いられてきた。中でもポリメチルメタク
リレート(PMMA)やポリスチレン(PS)のように可視域
(波長=0.4〜0.8μm)での透明性の高いものがプラス
チック光学材料として主に用いられてきた。
Organic polymer materials (plastics) are lighter than inorganic materials, have excellent impact resistance, workability, and are easy to handle. It has been used for various optical applications such as substrates for optical and optical lenses. Among them, those having high transparency in the visible region (wavelength = 0.4 to 0.8 μm) such as polymethyl methacrylate (PMMA) and polystyrene (PS) have been mainly used as plastic optical materials.

一方、石英系低損失光ファイバーの開発により光通信
システムの実用化に伴い、種々の光通信用部品の開発が
望まれている。またこれらの光部品を高密度に実装する
光配線技術、特に光導波路技術の確立が望まれている。
On the other hand, with the practical use of optical communication systems due to the development of silica-based low-loss optical fibers, development of various optical communication components has been desired. It is also desired to establish an optical wiring technology for mounting these optical components at a high density, particularly an optical waveguide technology.

プラスチックをOEICにおける光導波路など、近赤外域
(0.8〜2.0μm)での光学材料として用いる場合、無機
系の材料と比較してまず問題となるのは大きな光損失で
ある。プラスチックにおける損失原因には大きく分けて
光の散乱と光の吸収の2つがあるが、光通信に用いられ
る波長が今後、長波長域へ移る(0.85μmから1.3μm
〜1.65μmへ)に従って、後者の原因つまり分子構造に
本質的な振動吸収による損失が支配的となり、プラスチ
ックの導光特性に大きな制約をもたらすものと考えられ
ている。特にPMMAやPSに代表される従来のプラスチック
は可視域において高い導光特性を示すものの、近赤外域
では大きな光透過損失(1dB/cm以上)を引起こす。これ
は分子鎖内のアルキル基やフェニル基の炭素−水素結合
(C−H結合)の高調波がこの波長域に存在するためで
あるが、C−H結合の基本振動が元々低波長側にありそ
れらの高調波の吸収強度が次数が高くなっても減衰しに
くいことが、大きな光損失の主たる原因となっている。
このC−H結合に起因する高調波吸収を小さくし、かつ
吸収波長をより長波長側へシフトさせるために、分子鎖
内の水素を重水素(D)あるいはフッ素(F)で置換す
ることが提案されており、PMMAやPS中の水素を重水素あ
るいはフッ素で置換した材料について既に検討がなされ
ている〔例えば戒能俊邦、アプライド フィジクス レ
ターズ(Appl.Phys.Lett.)第48巻、第757頁(1986年)
参照〕。これまでの研究によりこれらのプラスチック
は、近赤外域において良好な導光特性を示すことが明ら
かにされており、例えばPSのフッ素化と重水素化によっ
て0.04dB/cm以下の低損失化が達成されている。
When plastic is used as an optical material in the near-infrared region (0.8 to 2.0 μm) such as an optical waveguide in OEIC, the first problem is a large light loss as compared with inorganic materials. There are two main causes of loss in plastics: light scattering and light absorption. Wavelengths used for optical communication will shift to longer wavelengths in the future (0.85 μm to 1.3 μm
It is thought that the latter cause, ie, the loss due to vibrational absorption, which is essential to the molecular structure, becomes dominant according to (up to 1.65 μm), and greatly imposes restrictions on the light-guiding properties of plastics. In particular, conventional plastics represented by PMMA and PS exhibit high light-guiding characteristics in the visible region, but cause a large light transmission loss (1 dB / cm or more) in the near-infrared region. This is because the harmonics of the carbon-hydrogen bond (CH bond) of the alkyl group or the phenyl group in the molecular chain exist in this wavelength range, but the fundamental vibration of the CH bond originally shifts to the lower wavelength side. The fact that the absorption intensity of those harmonics is hardly attenuated even when the order is high is a major cause of large optical loss.
In order to reduce the harmonic absorption due to the C—H bond and shift the absorption wavelength to longer wavelengths, it is necessary to replace hydrogen in the molecular chain with deuterium (D) or fluorine (F). Proposals have already been made on materials in which hydrogen in PMMA or PS has been replaced with deuterium or fluorine [for example, Toshikuni Kaino, Appl. Phys. (1986)
reference〕. Previous studies have shown that these plastics show good light-guiding properties in the near-infrared region.For example, fluorination and deuteration of PS have achieved a low loss of less than 0.04 dB / cm. Have been.

プラスチックをOEICの光導波路に適用するに当って次
に問題となるのは吸湿性である。プラスチックは無機材
料に比べて吸湿性の高いものが多く、また吸着された水
分は近赤外域に大きな吸収ピークをもつため、光導波路
に用いるプラスチックは吸湿性の低いものでなくてはな
らない。上述のように近赤外域における導光特性は重水
素置換によって大きく改善されるが、材料の化学的性質
にはほとんど影響を与えないため、例えば重水素化PMMA
の導光特性を経時的な吸湿によって大きく悪化してしま
う〔例えばT.カイノウ(T.Kaino)、アプライド オプ
ティックス(Appl.Opt.)第24巻、第4192頁(1985年)
参照〕。
The next issue in applying plastic to OEIC optical waveguides is hygroscopicity. Many plastics have higher hygroscopicity than inorganic materials, and the adsorbed moisture has a large absorption peak in the near infrared region. Therefore, the plastic used for the optical waveguide must have low hygroscopicity. As described above, the light-guiding properties in the near-infrared region are significantly improved by deuterium substitution, but since they hardly affect the chemical properties of the material, for example, deuterated PMMA
The light-guiding properties of the chromium are greatly degraded by the absorption of moisture over time [for example, T. Kaino, Applied Optics, Appl. Opt. 24, 4192 (1985)]
reference〕.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

すなわちプラスチックを近赤外域でのOEIC用光導波路
に適用すに当っては、C−H結合の存在に基づく大きな
光損失と吸湿による光損失の時間的増大という問題があ
った。本発明はこのような現状にかんがみてなされたも
のであり、その目的は近赤外域において光損失が非常に
少なく、吸湿性の低いプラスチック光導波路を提供する
ことにある。
That is, when plastic is applied to an optical waveguide for OEIC in the near-infrared region, there is a problem that a large light loss based on the existence of C—H bond and a temporal increase of the light loss due to moisture absorption. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a plastic optical waveguide having very low light loss in the near infrared region and low hygroscopicity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明を概説すれば、本発明はペルフルオロ有機高分
子材料を用いた光導波路に関する発明であって、コア及
びクラッドを主構成要素とする光導波路において、分子
構造中に炭素−炭素一重結合と炭素−酸素一重結合から
なる環状構造を有し、かつ炭素と一価元素の化学結合と
して炭素−フッ素係合のみを含む非晶質有機高分子材料
をコアとすることを特徴とする。
In general, the present invention relates to an optical waveguide using a perfluoroorganic polymer material.In an optical waveguide having a core and a clad as main components, a carbon-carbon single bond and a carbon Characterized in that the core is an amorphous organic polymer material having a cyclic structure composed of an oxygen single bond and containing only carbon-fluorine engagement as a chemical bond between carbon and a monovalent element.

本発明はペルフルオロ有機高分子材料を用いた光導波
路に関する発明であって、分子構造中に炭素と一価元素
の化学結合として炭素−フッ素結合のみを含む非晶質プ
ラスチックを光導波路のコア層を用いることを特徴とす
る。
The present invention relates to an optical waveguide using a perfluoro organic polymer material, and uses an amorphous plastic containing only a carbon-fluorine bond as a chemical bond between carbon and a monovalent element in a molecular structure to form a core layer of the optical waveguide. It is characterized by using.

本発明者らは、種々の既存のプラスチック光学材料に
ついて、その赤外域、近赤外域の吸収スペクトルを測定
し、近赤外域での光損失値を算出すると共に、その原因
について鋭意検討した。その結果、近赤外域で大きな光
損失を引起こす原因の第一は、アルキル基やフェニル環
等におけるC−H結合の伸縮振動の高調波吸収、及びC
−H結合の伸縮振動の高調波と変角振動の結合音による
吸収であることが明らかとなった。
The present inventors measured the absorption spectra of various existing plastic optical materials in the infrared and near-infrared regions, calculated the light loss value in the near-infrared region, and studied the causes thereof. As a result, the first factors that cause a large light loss in the near infrared region are harmonic absorption of stretching vibration of C—H bond in an alkyl group or a phenyl ring, and C absorption.
It became clear that the harmonics of the stretching vibration of the -H bond and the bending vibration were absorbed by the combined sound.

またフッ素原子は高いはっ水性をもっているため、一
定以上のフッ素を含有するプラスチックは非常に低い吸
湿率を示すことが知られている。そこで分子構造中の水
素をフッ素に置換することにより吸湿率を下げ、近赤外
域における導光特性の経時的な変化を非常に低く抑える
ことができると考えられる。
Further, since fluorine atoms have high water repellency, it is known that plastics containing a certain amount of fluorine or more show a very low moisture absorption rate. Therefore, it is considered that the moisture absorption rate can be reduced by replacing hydrogen in the molecular structure with fluorine, and the temporal change in the light guide characteristic in the near-infrared region can be suppressed to a very low level.

すなわち、アルキル基等の炭素に結合するすべての1
価元素をフッ素とすることによって、最大の光損失原因
であるC−H結合に基づく振動吸収と吸湿による導光特
性の経時変化の双方を解決することができる。
That is, all 1's bonded to carbon such as alkyl groups
By using fluorine as the valence element, it is possible to solve both the vibration absorption based on the C—H bond, which is the largest light loss cause, and the temporal change of the light guide characteristic due to moisture absorption.

更に、プラスチックの分子構造における対称性を無く
し、非晶性の高いものとすることによって配向複屈折に
伴う光の散乱を抑えることができる。本発明者らは、種
々のペルフルオロプラスチックについてその結晶性の程
度を検討した結果、高分子の主鎖構造中に環状エーテル
構造、つまり炭素−炭素一重結合と炭素−酸素一重結合
からなる環状構造を有するプラスチックが特に高い非晶
性を示し、複屈折性が非常に低いことを見出した。
Further, by eliminating the symmetry in the molecular structure of the plastic and by making it highly amorphous, light scattering due to orientation birefringence can be suppressed. The present inventors examined the degree of crystallinity of various perfluoroplastics, and found that a cyclic ether structure, that is, a cyclic structure composed of a carbon-carbon single bond and a carbon-oxygen single bond, was included in the main chain structure of the polymer. It has been found that the plastic has a particularly high amorphous property and a very low birefringence.

ただし、本発明の光導波路に用いる含フッ素プラスチ
ックとしては、分子内にC−H結合を持たず炭素と一価
元素の化学結合として炭素−フッ素結合のみを含む非晶
質プラスチックであればどのようなものでも使用するこ
とができる。
However, as the fluorine-containing plastic used for the optical waveguide of the present invention, any amorphous plastic having no C—H bond in the molecule and containing only a carbon-fluorine bond as a chemical bond between carbon and a monovalent element can be used. Can be used.

以下、本発明のプラスチック光導波路についてより詳
細に説明する。
Hereinafter, the plastic optical waveguide of the present invention will be described in more detail.

本発明の光導波路の構造は、一般に製造されているす
べての光導波路と同じでよく、例えばファイバー型、平
面型、リッジ型、レンズ型、埋め込み型等が可能であ
る。実施例で示したリッジ型の製造方法については、特
願平2−110500号明細書に記載されている。また比較例
で示したポリイミドの製造法は特願平1−201170号明細
書に記載されている。
The structure of the optical waveguide of the present invention may be the same as that of all optical waveguides generally manufactured, and for example, a fiber type, a planar type, a ridge type, a lens type, a buried type, and the like are possible. The manufacturing method of the ridge type shown in the embodiment is described in Japanese Patent Application No. 2-110500. The method for producing polyimide shown in Comparative Examples is described in Japanese Patent Application No. 1-1201170.

本発明で使用する非晶質有機高分子材料の例として
は、下記構造式I又はII: で表される繰返し単位を有する有機高分子材料が挙げら
れる。
Examples of the amorphous organic polymer material used in the present invention include the following structural formula I or II: And an organic polymer material having a repeating unit represented by the following formula:

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明する
が、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

なお下記例中、光導波路の光透過損失の波長依存性
(スペクトル)は白色光源を用いたスペクトルアナライ
ザーにより測定し、またλ=1.3μmにおける光透過損
失値はプリズムを介してフィルムに入射した光を再度プ
リズムで取出す方法により算出した。
In the following examples, the wavelength dependence (spectrum) of the light transmission loss of the optical waveguide is measured by a spectrum analyzer using a white light source, and the light transmission loss value at λ = 1.3 μm is the light incident on the film via the prism. Was calculated again by a method of taking out with a prism.

実施例1 式Iの繰返し構造をもつポリペルフルオロアリルビニ
ルエーテルをペルフルオロ有機溶剤(CT−solv 180、
旭硝子社製)に濃度が10%となるように溶解し、シリコ
ン板上にスピンコートして、窒素雰囲気下40℃で1時
間、100℃で1時間、180℃で1時間加熱し、溶媒を完全
に除去した。
Example 1 A polyperfluoroallyl vinyl ether having a repeating structure of the formula I was converted to a perfluoro organic solvent (CT-solv 180,
(Asahi Glass Co., Ltd.) so as to have a concentration of 10%, spin-coated on a silicon plate, and heated at 40 ° C. for 1 hour, 100 ° C. for 1 hour, and 180 ° C. for 1 hour under a nitrogen atmosphere to remove the solvent Removed completely.

この試料全面にエッチング用マスクとしてアルミニウ
ムを蒸着した。次いでポジ型レジストの塗布、プリベー
ク、露光、現像、ポストベークを行い、アルミニウムを
ウェットエッチングによりパターンニングした。更にこ
のアルミニウムをマスクとして、ポリペルフルオロアリ
ルビニルエーテルのフィルムをドライエッチングにより
パターンニングした。最後に残ったアルミニウムマスク
をウェットエッチングにより除去し、幅50μm、高さ10
μm、長さ5cmのリッジ型光導波路を得た。この光導波
路の光透過損失の波長依存性を0.8μm〜1.7μmの範囲
で測定したところ、第1図に示すとおりすべての波長域
において光を吸収するピークは現れなかった。なお、第
1図において、横軸は波長(μm)、縦軸は吸光度を示
す。
Aluminum was deposited on the entire surface of the sample as an etching mask. Next, coating, pre-baking, exposure, development, and post-baking of a positive resist were performed, and aluminum was patterned by wet etching. Further, using this aluminum as a mask, a polyperfluoroallyl vinyl ether film was patterned by dry etching. Finally, the remaining aluminum mask was removed by wet etching, and the width was 50 μm and the height was 10 μm.
A ridge type optical waveguide having a length of 5 μm and a length of 5 cm was obtained. When the wavelength dependence of the light transmission loss of this optical waveguide was measured in the range of 0.8 μm to 1.7 μm, no light absorbing peak appeared in all wavelength ranges as shown in FIG. In FIG. 1, the horizontal axis represents wavelength (μm), and the vertical axis represents absorbance.

また1.3μmにおける光透過損失率は0.1dB/cm以下で
あり、光通信に使われる予定の1.3、1.55、1.65の3波
長帯すべてにおいて十分に低い光損失値を示している。
またこのポリペルフルオロアリルビニルエーテルのフィ
ルムを60℃の水中に1週間浸漬した後の重量変化は観測
されず、このフィルムから作製した光導波路の光透過損
失の波長依存性にも全く変化が見られなかった。
The light transmission loss rate at 1.3 μm is 0.1 dB / cm or less, and shows sufficiently low light loss values in all three wavelength bands of 1.3, 1.55, and 1.65 to be used for optical communication.
No change in weight was observed after immersing this polyperfluoroallyl vinyl ether film in water at 60 ° C. for one week, and no change was observed in the wavelength dependence of light transmission loss of an optical waveguide made from this film. Was.

実施例2 実施例1におけるポリペルフルオロアリルビニルエー
テルの代りに、式IIの繰返し構造をもつペルフルオロ高
分子(ビス−2,2−トリフルオロメチル−4,5−ジフルオ
ロ−1,3−ジオキソールとテトラフルオロエチレンとの
共重合体)を用いて、実施例1と同様に幅50μm、高さ
10μm、長さ5cmのリッヂ型光導波路を得た。
Example 2 Instead of the polyperfluoroallyl vinyl ether in Example 1, a perfluoropolymer having a repeating structure of the formula II (bis-2,2-trifluoromethyl-4,5-difluoro-1,3-dioxole and tetrafluoro 50 μm in width and height in the same manner as in Example 1 using a copolymer with ethylene).
A 10 μm-length, 5 cm long optical waveguide was obtained.

この光導波路の光透過損失の波長依存性を0.8μm〜
1.7μmの範囲で測定したところ、実施例1と同様すべ
ての波長域において光を吸収するピークは現われなかっ
た。またこのフィルムを60℃の水中に1週間浸漬した後
の重量変化は観測されず、このフィルムから作製した光
導波路の光透過損失の波長依存性にも全く変化が見られ
なかった。
The wavelength dependence of the light transmission loss of this optical waveguide is 0.8 μm
When measured in the range of 1.7 μm, no light-absorbing peak appeared in all wavelength ranges as in Example 1. No change in weight was observed after immersing the film in water at 60 ° C. for one week, and no change was observed in the wavelength dependence of the light transmission loss of the optical waveguide made from the film.

比較例1 以下の構造をもつポリカーボネート をジメチルアセトアミドに濃度が10%となるように溶解
し、シリコン板上にスピンコートした。次いで窒素雰囲
気下70℃で3時間加熱し、溶媒を完全に除去しフィルム
を得た。このフィルムに対し実施例1と同様の方法で幅
50μm、高さ10μm、長さ3cmのリッジ型光導波路を作
製し、光透過損失の波長依存性を0.8μm〜1.7μmの範
囲で測定した。その結果を、第2図に波長(μm、横
軸)と吸光度(縦軸)との関係のグラフとして示す。
Comparative Example 1 Polycarbonate having the following structure Was dissolved in dimethylacetamide to a concentration of 10%, and spin-coated on a silicon plate. Then, the mixture was heated at 70 ° C. for 3 hours in a nitrogen atmosphere to completely remove the solvent, thereby obtaining a film. The width of this film is determined in the same manner as in Example 1.
A ridge-type optical waveguide having a size of 50 μm, a height of 10 μm, and a length of 3 cm was prepared, and the wavelength dependence of light transmission loss was measured in the range of 0.8 μm to 1.7 μm. The results are shown in FIG. 2 as a graph of the relationship between wavelength (μm, horizontal axis) and absorbance (vertical axis).

また、1.3μmにおける光透過損失率は0.4dB/cmであ
った。この材料は既に可視光域での光学材料として使用
されているものであるが、第2図に示すように1.1〜1.
2、1.4〜1.65μmの各波長においてそれぞれC−H結合
の伸縮振動の高調波、C−H結合の伸縮振動高調波とC
−H結合変角振動の結合音が現れている。将来、光通信
に使用される予定の1.65μm帯はC−H結合の2次高調
波吸収に完全に重なっており、また1.3μm、1.55μm
帯は光損失が比較的少ない「窓」に位置しているもの
の、上記の大きな振動吸収のすそがかかっているため、
光損失値が十分小さいとは言えない。
The light transmission loss rate at 1.3 μm was 0.4 dB / cm. This material is already used as an optical material in the visible light range, but as shown in FIG.
2. At each wavelength of 1.4 to 1.65 μm, harmonic of stretching vibration of C—H bond, stretching vibration harmonic of C—H bond and C
A coupled sound of the -H coupled bending vibration appears. The 1.65 μm band to be used for optical communication in the future completely overlaps the second harmonic absorption of C—H coupling, and is 1.3 μm, 1.55 μm
Although the band is located in the "window" where light loss is relatively small, since the above-mentioned large vibration absorption hem is applied,
The light loss value cannot be said to be sufficiently small.

比較例2 2,2−(34−ジカルボキシフェニル)−ヘキサフルオ
ロプロパン二無水物と2,2′−ビス(トリフルオロメチ
ル)−4,4′−ジアミノビフェニルから合成されるポリ
アミド酸のN−メチル−2−ピロリドン溶液をシリコン
板上にスピンコートし、窒素雰囲気下70℃で2時間、16
0℃で1時間、250℃で30分間、更に350℃で1時間加熱
して完全にイミド化を行い、以下の構造で示されるポリ
イミドのフィルムを得た。
Comparative Example 2 N-polyamide acid synthesized from 2,2- (34-dicarboxyphenyl) -hexafluoropropane dianhydride and 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl A methyl-2-pyrrolidone solution was spin-coated on a silicon plate, and the solution was stirred at 70 ° C. for 2 hours under a nitrogen atmosphere.
Heating was carried out at 0 ° C. for 1 hour, at 250 ° C. for 30 minutes, and at 350 ° C. for 1 hour to completely imidize, thereby obtaining a polyimide film having the following structure.

このポリイミドフィルムに対し、実施例1と同様の方
法で軸50μm、高さ10μm、長さ5cmのリッジ型光導波
路を作製し、0.8μm〜1.7μmにおいて測定した吸収ス
ペクトルを、第3図に波長(μm、横軸)と吸光度(縦
軸)との関係のグラフとして示す。
A ridge-type optical waveguide having an axis of 50 μm, a height of 10 μm, and a length of 5 cm was prepared from the polyimide film in the same manner as in Example 1, and the absorption spectrum measured at 0.8 μm to 1.7 μm was shown in FIG. (Μm, horizontal axis) and absorbance (vertical axis) as a graph.

また1.3μmにおける光透過損失率は0.3dB/cmであっ
た。この材料は従来のポリイミドに比べて近赤外域では
光透過率が高いポリイミドであり、光学材料として有望
であるが、第3図に示すように1.1、1.4、1.65μmの各
波長においてそれぞれC−H結合の伸縮振動の高調波、
C−H結合の伸縮振動高調波とC−H結合変角振動の結
合音、そしてフィルム中にわずかに含まれた水分に起因
する酸素−水素結合(O−H結合)の高調波が現れてい
る。特に1.65μm帯はC−H結合の2次高調波吸収に重
なっており、この波長域における光損失値は5dB/cm程度
とかなり大きい。
The light transmission loss rate at 1.3 μm was 0.3 dB / cm. This material is a polyimide having a higher light transmittance in the near-infrared region than the conventional polyimide, and is promising as an optical material. However, as shown in FIG. Harmonics of stretching vibration of H bond,
The combined sound of the stretching vibration harmonic of the C—H bond and the bending vibration of the C—H bond, and the harmonic of the oxygen-hydrogen bond (O—H bond) caused by the moisture contained in the film slightly appear. I have. In particular, the 1.65 μm band overlaps the second harmonic absorption of the C—H bond, and the light loss value in this wavelength region is as large as about 5 dB / cm.

〔発明の効果〕〔The invention's effect〕

以上、詳細に説明したように、分子構造中の炭素と一
価元素の化学結合として炭素−フッ素結合のみを含む非
晶質プラスチックをコアとして用いて作製した光導波路
は、近赤外域に光の吸収ピークが存在せず、また非常に
低い吸湿率を有している。本発明によれば、近赤外域の
光透過性と耐吸湿性に共に優れた新規の光導波路が提供
される。
As described above in detail, an optical waveguide manufactured using an amorphous plastic containing only a carbon-fluorine bond as a chemical bond between carbon and a monovalent element in a molecular structure as a core has a near-infrared light range. Absorption peak is absent and has very low moisture absorption. ADVANTAGE OF THE INVENTION According to this invention, the novel optical waveguide excellent in both the light transmittance of near infrared region and moisture absorption resistance is provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の光導波路の1例、第2図及び第3図は
従来例の光導波路における、それぞれ光透過損失の波長
依存性を示すグラフである。
FIG. 1 is a graph showing an example of an optical waveguide according to the present invention, and FIGS. 2 and 3 are graphs showing wavelength dependence of light transmission loss in an optical waveguide of a conventional example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 徹 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 昭63−261204(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 6/12────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toru Matsuura 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (56) References JP-A-63-261204 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) G02B 6/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コア及びクラッドを主構成要素とする光導
波路において、分子構造中に炭素−炭素一重結合と炭素
−酸素一重結合からなる環状構造を有し、かつ炭素と一
価元素の化学結合として炭素−フッ素結合のみを含む非
品質有機高分子材料をコアとすることを特徴とするペル
フルオロ有機高分子材料を用いた光導波路。
An optical waveguide having a core and a clad as main constituents, wherein the molecular structure has a cyclic structure comprising a carbon-carbon single bond and a carbon-oxygen single bond, and a chemical bond between carbon and a monovalent element. An optical waveguide using a perfluoro organic polymer material characterized by having a core made of a non-quality organic polymer material containing only a carbon-fluorine bond.
【請求項2】下記構造式I: で表される繰返し単位を有する有機高分子材料をコアと
することを特徴とする請求項1に記載のペルフルオロ有
機高分子材料を用いた光導波路。
2. The following structural formula I: The optical waveguide using a perfluoro organic polymer material according to claim 1, wherein the core is an organic polymer material having a repeating unit represented by the following formula.
【請求項3】下記構造式II: で表される繰返し単位を有する有機高分子材料をコアと
することを特徴とする請求項1に記載のペルフルオロ有
機高分子材料を用いた光導波路。
3. The following structural formula II: The optical waveguide using a perfluoro organic polymer material according to claim 1, wherein the core is an organic polymer material having a repeating unit represented by the following formula.
JP31791390A 1990-11-26 1990-11-26 Optical waveguide using perfluoro organic polymer material Expired - Lifetime JP2847171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31791390A JP2847171B2 (en) 1990-11-26 1990-11-26 Optical waveguide using perfluoro organic polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31791390A JP2847171B2 (en) 1990-11-26 1990-11-26 Optical waveguide using perfluoro organic polymer material

Publications (2)

Publication Number Publication Date
JPH04190202A JPH04190202A (en) 1992-07-08
JP2847171B2 true JP2847171B2 (en) 1999-01-13

Family

ID=18093450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31791390A Expired - Lifetime JP2847171B2 (en) 1990-11-26 1990-11-26 Optical waveguide using perfluoro organic polymer material

Country Status (1)

Country Link
JP (1) JP2847171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060189788A1 (en) * 2003-04-11 2006-08-24 Takayuki Araki Cyclic ether copolymer, coating resin composition, optical devices, and process for production of the devices
JP4774991B2 (en) * 2003-09-03 2011-09-21 旭硝子株式会社 Spatial light modulation element and spatial light modulation method
EP1691233B1 (en) * 2003-12-03 2012-02-15 Asahi Glass Company, Limited Spatial light modulator and spatial light modulation method

Also Published As

Publication number Publication date
JPH04190202A (en) 1992-07-08

Similar Documents

Publication Publication Date Title
Zhou Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication
Ando Optical properties of fluorinated polyimides and their applications to optical components and waveguide circuits
US6194120B1 (en) Organic photochromic compositions and method for fabrication of polymer waveguides
JP2005503583A (en) Athermal polymer optical waveguide on polymer substrate
US6490400B2 (en) Optical waveguide
JPH049807A (en) Polyimide optical waveguide
Ding et al. Directly written photo-crosslinked fluorinated polycarbonate photoresist materials for second-order nonlinear optical (NLO) applications
JP2847171B2 (en) Optical waveguide using perfluoro organic polymer material
KR19990024596A (en) Polyarylene ether for optical communication
Tamaki et al. Recent progress on polymer waveguide materials
JPH04328504A (en) Optical waveguide made of polyimide
Kaino Linear Optical Properties of Organic Solids
JP3057161B2 (en) Organic optical waveguide
JP3110814B2 (en) Siloxane polymer and optical material
Takenobu et al. Single-mode polymer optical interconnects for si photonics with heat resistant and low loss at 1310/1550nm
CN106406029A (en) Negative fluorine-containing polycarbonate photoresist composition and application for preparing optical switch
JP2000081519A (en) Optical waveguide
US20030228123A1 (en) Low loss polymeric optical waveguide materials
Rousseau et al. Synthesis and characterization of organic materials for integrated optical devices
Yurt et al. Fabrication and characterization of low-loss optical waveguides using a novel photosensitive polyimide
JPH09235322A (en) Optical material and optical waveguide
KR100509197B1 (en) Fluorinated polyarylene ether Compound, Preparing Method of the Same and Optical Waveguide Material Using the Same
Maruno Properties of fluorinated polyimide optical waveguides
Kuwana et al. Low loss and highly reliable polymer optical waveguides with perfluorinated dopant-free core
KR20000033986A (en) Fluorine substituted polyarylene ether copolymer and polymer light element using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13