JPS6111714A - Automatic focus adjuster of microscope - Google Patents

Automatic focus adjuster of microscope

Info

Publication number
JPS6111714A
JPS6111714A JP13135984A JP13135984A JPS6111714A JP S6111714 A JPS6111714 A JP S6111714A JP 13135984 A JP13135984 A JP 13135984A JP 13135984 A JP13135984 A JP 13135984A JP S6111714 A JPS6111714 A JP S6111714A
Authority
JP
Japan
Prior art keywords
video signal
optical system
slice level
section
bits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13135984A
Other languages
Japanese (ja)
Other versions
JPH0462046B2 (en
Inventor
Keinosuke Kanejima
敬之介 金島
Hiroshi Yasumoto
博 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13135984A priority Critical patent/JPS6111714A/en
Publication of JPS6111714A publication Critical patent/JPS6111714A/en
Publication of JPH0462046B2 publication Critical patent/JPH0462046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To adjust the focus of a microscope having an image pickup device on a real image plane over a wide range in a short period with good accuracy and simple constitution by maximizing the inclination of the edge signal of the video signal having a line width obtd. from the image pickup device in the focusing position. CONSTITUTION:The movement of an optical system is fed in the 1st section 30 at the pitch shorter than the pitch of the 2nd section 31 and the first judgement of whether the video signal attains a lower slice level 28 or not is made. The movement of the optical system enters the 2nd section 31 where the optical system moves at the pitch shorter than the length 33 from the point Z2 up to the focusing position Z4 upon ending of the 2nd judgement after the video signal attains an upper slice level 29. The optical system enters the 3rd section 32 of the movement and is fed at the pitch smaller than the focal depth of the lens system up to the travel limit Z3 of the optical end at the end of the 3rd section which is so set as to pass by the focusing position Z4. The address therebetween and the quantity W3 of W1-W2 are stored together with the address and the min. value of the quantity W1-W2 and the focusing position Z4 are selected among the quantity W3 of the address W1-W2 at the travel limit of the optical path. The position of the optical system is thus determined at the position Z4. The automatic focusing is thus executed with good accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気ヘッドのトラック幅や、蒸着パターン等
のような微小線幅を撮像装置を有する顕微鏡において自
動測定や表面状態を観察する場合の自動焦点調整装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is useful for automatic measurement of the track width of a magnetic head or minute line width such as a vapor deposition pattern using a microscope equipped with an imaging device, and for automatic observation of surface conditions. This invention relates to a focus adjustment device.

従来例の構成とその問題点 ご般に磁気ヘッドのトラック幅や蒸着パターン等のよう
々微小線幅は光学系装置により100倍乃至1000倍
に拡大され、線幅の映像信号は第1図(1aはボケ信号
)のようになりエツジ部は光学系の解像度により傾斜が
見られ、合焦位で前記傾斜が最大とカる特性がある。こ
の映像信号1を利用して線幅測定を行なう場合は、毎回
、正確な映像信号を得る必要があし、焦点位置精度につ
いてはレンズ系の焦点深度が浅いことからサブミクロン
の精度が要求されるのである。従来、映像信号1の1箇
所のスライスレベ/v1bの長さ情報2のみを利用して
焦点検出を行なっている自動焦点調整装置は、第2図(
光学系の焦点方向移動による長さ情報2の変化グラフ)
に示すように、Wに長さ情報2をとυ、2を光学系の焦
点方向の移動とすると、変化曲線3となることから、焦
点調整範囲は4〜5の範囲であり、狭い。また焦点範囲
全ストロークを微小ピッチで送り、現状のポイントでの
映像信号1の長さ情報2をAとし、次に送ったポイント
での映像信号1の長さ情報2をBとし、人〈Bになった
ところで停止させていたため、=振動等の影響で起こる
異常ポイント6のところで合焦位置となり正確な合焦位
置が得られず測定における精度が悪いばかりか、全スト
ロークを微小ピッチで動作しているため焦点調整時間が
長く、生産性も向上しないという欠点を有していた。
Conventional configurations and their problems In general, minute line widths such as magnetic head track widths and vapor deposition patterns are magnified 100 to 1000 times by optical equipment, and line width video signals are shown in Figure 1 ( 1a is a blur signal), and the edge portion has a characteristic that a slope is observed depending on the resolution of the optical system, and the slope is maximum at the in-focus position. When performing line width measurement using this video signal 1, it is necessary to obtain an accurate video signal every time, and submicron precision is required for focal position accuracy because the depth of focus of the lens system is shallow. It is. Conventionally, an automatic focus adjustment device that performs focus detection using only the slice level/v1b length information 2 at one location of the video signal 1 is shown in FIG.
Graph of changes in length information 2 due to movement of the optical system in the focal direction)
As shown in , if W is the length information 2, υ is the movement of the optical system in the focal direction, then the change curve 3 is obtained, so the focus adjustment range is narrow between 4 and 5. In addition, the entire stroke of the focal range is sent at a minute pitch, the length information 2 of the video signal 1 at the current point is set to A, the length information 2 of the video signal 1 at the next sent point is set to B, and the person <B Because the robot was stopped at point 6, which occurs due to the influence of vibrations, the focus position was reached at abnormal point 6, which is caused by the influence of vibration, etc., and not only was the accuracy of measurement poor because an accurate focus position could not be obtained, but the entire stroke was moved at a minute pitch. This has disadvantages in that focus adjustment time is long and productivity is not improved.

発明の目的 本発明は、上記従来の欠点を解消するものであり、実像
面に撮像装置を有する顕微鏡で、微小線幅を有する被検
体を測定する場合に簡単な構成でしかも、短時間で精度
良く広範囲に渡っての焦点調整ができうる自動焦点調整
装置を提供することにある。
Purpose of the Invention The present invention solves the above-mentioned drawbacks of the conventional technology, and is capable of achieving high accuracy in a short time with a simple configuration when measuring an object with a minute line width using a microscope having an imaging device on the real image surface. An object of the present invention is to provide an automatic focus adjustment device that can perform focus adjustment over a wide range.

発明の構成 本発明の装置は、微小線幅を有する被検体を測定する場
合、実像面に撮像装置を有する顕微鏡において、前記撮
像装置より得られる線幅の映像信号のエツジ信号が合焦
位置で傾斜が最大となる特性に基づき、前記映像信号を
長さ方向に複数のビットに分割し、明るさ方向に濃淡像
としてビット分割して記憶するフレームメモリーと、前
記顕微鏡の光学系位置を焦点方向に制御駆動する端面カ
ムとパルスモータ−からなる駆動機構と、前記フレーム
メモリーの明るさ方向の上部で合焦時の映像信号ピーク
値が10%以上、上になる位置に上スライスレベルを設
定し、上スライスレベルより下方に、下スライスレベル
を設定し、前記下スライスレベルにおける映像信号の長
さ方向のビット数が0より多くなる第1の区間まで光学
系を合焦位置方向に後述する第2の区間より短いピッチ
で動作させ、前記上スライスレベルにおける映像信号の
ビット数が0より多く、前記上スライスレベルにおける
映像信号のビット数と、前記下スライスレベルにおける
映像信号のビット数の差が、あらかじめ光学系位置が合
焦位置より数μm手前になるよう設定された値になる第
2の区間まで、前記駆動機構を光学系位置が第2区間終
了位置と合焦位置までの距離より短いピッチで駆動させ
、その位置より合焦位置を通り過ぎるようあらかじめ設
定された第3の区間をレンズ系焦点深度以下の微小ピッ
チで前記駆動機構を駆動させ、前記区間をアドレス記憶
と、そのアドレスに対応する、前記上、下スライスレベ
ルにおける映像信号のビット数の差とを記憶し、前記区
間の駆動終了後、前記ビット数の差が一番小さいアドレ
スに駆動機構を制御駆動させる、マイクロプロセッサ−
等で構成される制御部とからなり、上下のスライスレベ
ルにより有効に映像信号の状態を判断していることから
、広範囲の自動焦点調整が行なえる。また、焦点情報は
合焦付近の少しのデータのみ必要とし、微小法シも前記
合焦付近のみでよいことから、単時間で精度良く自動焦
点が行なえ、映像信号の簡単な処理と端面カムとパルス
モータ−からなる簡単な駆動機構で、自動焦点調整装置
が効果的に提供できるものである。
Composition of the Invention The apparatus of the present invention is such that when measuring a subject having a minute line width, in a microscope having an imaging device on the real image plane, an edge signal of a line width video signal obtained from the imaging device is at a focused position. Based on the characteristic that the slope is maximum, the video signal is divided into a plurality of bits in the length direction, and a frame memory that divides the bits into bits and stores them as a grayscale image in the brightness direction, and a frame memory that stores the optical system position of the microscope in the focal direction. The upper slice level is set at a position where the peak value of the video signal at the time of focusing is 10% or more above the upper part of the frame memory in the brightness direction. , a lower slice level is set below the upper slice level, and the optical system is moved in the direction of the focus position until a first section where the number of bits in the length direction of the video signal at the lower slice level is greater than 0. 2, the number of bits of the video signal at the upper slice level is greater than 0, and the difference between the number of bits of the video signal at the upper slice level and the number of bits of the video signal at the lower slice level is , until the second section where the optical system position reaches a value set in advance so that it is several micrometers before the in-focus position, the optical system position is shorter than the distance between the end position of the second section and the in-focus position. The drive mechanism is driven at a pitch, and the drive mechanism is driven at a minute pitch that is less than the depth of focus of the lens system to drive a third section preset to pass the in-focus position from that position, and the section is stored as an address and corresponds to the address. a difference in the number of bits of the video signal between the upper and lower slice levels, and after driving the section, controls and drives the drive mechanism to an address where the difference in the number of bits is the smallest.
Since the state of the video signal is effectively determined based on the upper and lower slice levels, automatic focus adjustment can be performed over a wide range. In addition, focus information requires only a small amount of data around the focus area, and micro-focusing only needs to be done around the focus area, so automatic focusing can be performed with high accuracy in a short time, and simple processing of video signals and edge cams can be performed. A simple drive mechanism consisting of a pulse motor can effectively provide an automatic focus adjustment device.

実施例の説明 以下に、本発明の一実施例を第3図〜第6図にもとづい
て説明する。第3図は本発明の一実施例を示すブロック
構成図である。了は試料台、8は試料台7上に置かれた
線幅を有する被検体、9は被検体8を拡大する対物レン
ズ、10は対物レンズ9等を有する光学系の鏡筒、11
は対物レンズ9により拡大された被検体8の像を、拡大
する中間レンズ、12はリニヤ−イメージセンサ−11
3は被検体8の拡大された像を、映像信号として出力す
るリニヤ−イメージセンサ−12を有する撮像装置、1
4は鏡筒1oを支持し、上下(光学系の焦点方向)方向
に摺動可能なガイド部、15は端面カム、16は端面カ
ムを回転させるパルスモータ−116!Lはパルスモー
タ16の回転軸に取り付いた外周の一部にスリットの入
った原点板17は鏡筒1oを上下させる、端面カム15
ト、パルスモータ−16と、原点板161Lからなる駆
動部、18はパルスモータ−の原点を検出する、原点板
161Lのスリットを光ビームが通過するよう配置され
たホトセンサー、19は被検体8を置埴た試料台7と、
対物レンズ9.中間11等を有する鏡筒10と、鏡筒1
0に接続されたリニヤ−イメージセンサ−12を有する
撮像装置13とガイド部14と、端面カム15.原点板
16!Lの取シ付いたパルスモータ−16とからなる駆
動部17と、ホトセンサー18を配置する載物台、20
は撮像装置13より得られる映像信号を記憶するフレー
ムメモリー、21はパルスモータ−16の駆動回路、2
2は映像信号を処理し、光学系の焦点が被検体8との位
置関係において合焦位置となるようパルスモータ−16
を、駆動回路に指令を与えコントロールする制御部であ
る。第4図は被検体8と、対物レンズ9の自動焦点調整
スタート時における位置関係図で、23は光学系の焦点
位置、24はワークディスタンス、第4図では、被検体
8が焦点位置23の外に設定されるようになっているが
、ワークディスタンス24内に設定する場合は、光学系
の送シ方向を、第4図では上から下へ移動させるが、下
から上へ移動するよう、駆動部17の端面カムの原点を
、原点板16aをずらして設定する必要がある。第6図
は撮像装置13より得られる映像信号の図で、縦に明る
さ、横に線幅の長さを示す。26は合焦位置での映像信
号で、26はボケ映像信号C127はボケ映像信号D(
自動焦点調整方法説明にて後述)、この映像信号が明る
さ方向、長さ方向共デジタル的にビット分割されフレー
ムメモリー20に記憶される。28は下スライスレベル
、29は合焦時の映像信号が明るさ方向に10%以上は
上になるよう設定された上スライスレベル、Wlは下ス
ライスレベ1v28での線幅長さの量、Wlは上スライ
スレペ)V29での線幅長さの量である。第6図は、縦
にw、 −w2の量W3、横に光学系の移動Zを示した
。w、−w2の量WSの変化グラフであし、自動焦点調
整方法を説明できることから以下、第6図により自動焦
点調整方法を説明する。Zo は原点、zlは第1の判
断終了ポイント、z2は第2の判断終了ポイント、z3
は光学系行限、Z4は合焦位置、30は光学系移動の第
1の区間、31は光学系移動の第2の区間、32は光学
系移動の第3の区間であし、光学系移動の第1の区間は
、光学系移動の第2の区間より短いピッチで送り、第5
図で示す下スライスレベ)v28に映像信号が達したか
の第1の判断をする。第5図のボケ映像信号026の状
態は、第1の判断終了ポイントZ1の状態である。次に
光学系移動は第2の区間に入り、第6図で示す、上スラ
イスレベ1V29に映像信号が達し、Wl−w2が第6
図のW4の値になるまで、第2の判断終了ポイン) Z
2から合焦位置Za 1での長さ33より短いピッチで
移動する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 3 to 6. FIG. 3 is a block diagram showing one embodiment of the present invention. 8 is a sample stage, 8 is an object having a line width placed on the specimen stage 7, 9 is an objective lens for enlarging the object 8, 10 is an optical system lens barrel having the objective lens 9, etc., 11
12 is an intermediate lens that magnifies the image of the subject 8 magnified by the objective lens 9; 12 is a linear image sensor 11;
3 is an imaging device having a linear image sensor 12 that outputs an enlarged image of the subject 8 as a video signal;
4 is a guide portion that supports the lens barrel 1o and is slidable in the vertical direction (focal direction of the optical system), 15 is an end cam, and 16 is a pulse motor 116 that rotates the end cam! L is an end cam 15 attached to the rotating shaft of the pulse motor 16, and an origin plate 17 with a slit in a part of its outer circumference moves the lens barrel 1o up and down.
18 is a photo sensor that detects the origin of the pulse motor and is arranged so that the light beam passes through the slit of the origin plate 161L; 19 is the subject 8; A sample stand 7 on which a clay figure was placed,
Objective lens 9. A lens barrel 10 having an intermediate portion 11, etc., and a lens barrel 1
0, an imaging device 13 having a linear image sensor 12 connected to the guide portion 14, and an end cam 15. Origin board 16! A drive unit 17 consisting of a pulse motor 16 with an L handle, and a stage 20 on which a photosensor 18 is arranged.
2 is a frame memory for storing a video signal obtained from the imaging device 13; 21 is a drive circuit for the pulse motor 16;
2 is a pulse motor 16 that processes the video signal and adjusts the focus of the optical system to the in-focus position in relation to the subject 8.
This is a control unit that gives commands to and controls the drive circuit. Fig. 4 is a positional relationship diagram of the subject 8 and the objective lens 9 at the start of automatic focus adjustment, where 23 is the focal position of the optical system, 24 is the work distance, and in Fig. 4, the subject 8 is at the focal position 23. However, when setting it within the work distance 24, the optical system's feeding direction is moved from top to bottom in Fig. 4, but it should be set so that it moves from bottom to top. It is necessary to set the origin of the end cam of the drive section 17 by shifting the origin plate 16a. FIG. 6 is a diagram of a video signal obtained from the imaging device 13, in which brightness is shown vertically and line width is shown horizontally. 26 is a video signal at the in-focus position, 26 is a blurred video signal C127 is a blurred video signal D (
(described later in the automatic focus adjustment method), this video signal is digitally divided into bits in both the brightness direction and length direction and is stored in the frame memory 20. 28 is the lower slice level, 29 is the upper slice level set so that the video signal when in focus is 10% higher in the brightness direction, Wl is the amount of line width length at the lower slice level 1v28, Wl is the amount of line width length at V29 (upper slice rep). FIG. 6 shows the amount W3 of w and -w2 vertically, and the movement Z of the optical system horizontally. Since the automatic focus adjustment method can be explained using a change graph of the amount WS of w and -w2, the automatic focus adjustment method will be explained below with reference to FIG. Zo is the origin, zl is the first judgment end point, z2 is the second judgment end point, z3
is the optical system travel limit, Z4 is the focus position, 30 is the first section of optical system movement, 31 is the second section of optical system movement, 32 is the third section of optical system movement. The first section of the optical system is moved at a shorter pitch than the second section of the optical system movement, and the fifth section is
A first judgment is made as to whether the video signal has reached the lower slice level (lower slice level) v28 shown in the figure. The state of the blurred video signal 026 in FIG. 5 is the state of the first judgment end point Z1. Next, the optical system movement enters the second section, and the video signal reaches the upper slice level 1V29 as shown in FIG.
Until the value of W4 in the figure is reached, the second judgment end point) Z
2 to the focal position Za1 at a pitch shorter than the length 33 at 1.

次に、光学系移動の第3区間に入り、レンズ系焦点深度
以下でピッチ送シを、合焦位置Z4を通り過ぎるよう設
定された第3区間終了の光学系行限Z3マで行ない、そ
の間のアドレスとWl−Wlの量W3をアドレスと合わ
せ記憶し、光学系行限にて前記アドレスとwl−Wlの
量W3の中から、Wl−Wl の量の極小値、いわゆる
合焦位置Z4を選び光学系位置を合焦位置z4に位置決
めする。このように合焦位置付近の映像信号から合焦位
置を選び出しており、精度良く自動焦点調整ができる他
、光学系移動の第3区間、第3区間は定量的であるが、
第1区間は映像信号が下スライスレベルに達するまで動
作できることから広い範囲が取れおのずと自動焦点調整
全範囲は広範囲に取れ、光学系移動の第1区間、第2区
間は、比較的大きいピッチで送れることから高速の自動
焦点調整ができるのである。
Next, the optical system enters the third section of movement, and performs pitch feed below the lens system focal depth at the optical system travel limit Z3 at the end of the third section, which is set to pass the focus position Z4, and between The address and the amount Wl-Wl are stored together with the address, and the minimum value of the amount Wl-Wl, the so-called focusing position Z4, is selected from the address and the amount W3 of wl-Wl at the optical system limit. The optical system is positioned at the focus position z4. In this way, the focus position is selected from the video signal near the focus position, and in addition to being able to perform automatic focus adjustment with high precision, the third section of the optical system movement is quantitative, but
Since the first section can operate until the video signal reaches the lower slice level, a wide range can be achieved, and the automatic focus adjustment range can naturally be wide, and the first and second sections of optical system movement can be sent at a relatively large pitch. This allows for high-speed automatic focus adjustment.

発明の効果 以上、本発明では、微小線幅を有する被検体を測定する
場合、実像面に撮像装置を有する顕微鏡において、前記
撮像装置より得られる線幅の映像信号のエツジ信号が合
焦位置で傾斜が最大となる特性に基づき、前記映像信号
を長さ方向に複数のビットに分割し、明るさ方向に濃淡
像としてビット分割して、記憶するフレームメモリーと
、前記顕微鏡の光学系位置を焦点方向に制御駆動する端
面カムとパルスモータ−からなる駆動機構と、前記フレ
ームメモリーの明るさ方向の上部で合焦時の映像信号ピ
ーク値が10%以上、上になる位置に上スライスレベル
を設定し、上スライスレベルより下方に、下ズライ、ス
レベルを設定し、前記下スライスレベルにおける□映像
信号の長さ方向のビット数が0より多くなる第1の区間
まで光学系を合焦位置方向に後述する第2の区間より短
いピッチで動作させ、前記上スライスレベルにおける映
像、信号のビット数が0より多く、前記上スライスレベ
ルにおける映像信号のビット数と、前記下スライスレベ
ルにおける映像信号のビット数の差があらかじめ光学系
位置が合焦位置より数μm手前になるよう設定された値
になる第2の区間まで、前記駆動機構を光学系位置が第
2区間終了位置と合焦位置までの距離より短いピッチで
駆動させ、その位置より合焦位置を通り過ぎるようあら
かじめ設定された第3の区間をレンズ系焦点深度以下の
微小ピッチで前記駆動機構を駆動させ、前記区間をアド
レス記憶と、そのアドレスに対応する、前記上、下スラ
イスレベルにおける映像信号のビット数の差とを記憶し
、前記区間の駆動終了後、前記ビット数の差が一番小さ
いアドレスに駆動機構を制御部によ多制御駆動させるも
のである。
As described above, in the present invention, when measuring an object having a minute line width, in a microscope having an imaging device on the real image plane, the edge signal of the line width video signal obtained from the imaging device is at the in-focus position. Based on the characteristic that the slope is maximum, the video signal is divided into a plurality of bits in the length direction, and the bits are divided into bits in the brightness direction as a grayscale image, and a frame memory is stored and the optical system position of the microscope is focused. The upper slice level is set at a position where the peak value of the video signal at the time of focusing is 10% or more above the brightness direction of the frame memory. Then, set a downward shift and slice level below the upper slice level, and move the optical system in the direction of the focus position until the first section where the number of bits in the length direction of the □ video signal at the lower slice level is greater than 0. The operation is performed at a pitch shorter than a second section described later, and the number of bits of the video signal at the upper slice level is greater than 0, and the number of bits of the video signal at the upper slice level and the bit number of the video signal at the lower slice level. The driving mechanism is moved between the end position of the optical system and the in-focus position until the second section where the difference in number becomes a value set in advance so that the optical system position is several μm before the in-focus position. The driving mechanism is driven at a pitch shorter than the distance, and the driving mechanism is driven at a minute pitch that is less than the depth of focus of the lens system in a third section that is set in advance so as to pass through the in-focus position from that position, and the section is stored as an address and then The difference in the number of bits of the video signal between the upper and lower slice levels corresponding to the address is memorized, and after the driving of the section is completed, the control unit controls the drive mechanism to the address where the difference in the number of bits is the smallest. It is controlled and driven.

したがって、本発明によれば、簡単な構成でしかも短時
間に精度良く調整を行ない得る自動焦点調整装置を提供
することができる。
Therefore, according to the present invention, it is possible to provide an automatic focus adjustment device that has a simple configuration and can perform accurate adjustment in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の映像信号処理方法の概念図、第2図は
顕微鏡の焦点方向移動に供々う線幅映像信号の幅変化グ
ラフ、第3図は本発明による一実施例のブロック構成図
、第4図は同実施例による被検体と、対物レンズの自動
焦点調整スタート時における位置関係図、第5図は撮像
装置より得られる映像信号の説明図、第6図はWl−W
lの量W5 の変化のグラフである。 1.25・・・・・・合焦位置での映像信号、7・・・
・・・試料台、8・・・・・・被検体、9・・・・・・
対物レンズ、1o、・。 ・・・鏡筒、11・・・・・・中間レンズ、13・・・
・・・撮像装置、14・・・・・・ガイド部、17・・
・・・・駆動部、18・・川・ホ) セフ−IJ−−1
19・・4・・・・載物台、20−、、、フレームメモ
リー、22・・・・・・制御部、23・・・・・・光学
系の焦点位置、24・・・・・・ワークディスタンス、
26・川・・ボケ映像信号C127・・・・・・ボケ映
像信号D128・・・・・・下スライスレベル、29・
・川・上スライスレベル、30・・・・・・光学系移動
の第1区間、31・・・・・・光学系移動の第2区間、
32・・・・・・光学系移動の第3区間。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図
FIG. 1 is a conceptual diagram of a conventional video signal processing method, FIG. 2 is a graph of the width change of a line width video signal as the microscope moves in the focal direction, and FIG. 3 is a block diagram of an embodiment of the present invention. Figure 4 is a positional relationship between the subject and the objective lens according to the same embodiment at the start of automatic focus adjustment, Figure 5 is an explanatory diagram of the video signal obtained from the imaging device, and Figure 6 is Wl-W.
It is a graph of changes in the amount W5 of l. 1.25...Video signal at focus position, 7...
... Sample stage, 8... Subject, 9...
Objective lens, 1o,. ... Lens barrel, 11... Intermediate lens, 13...
...Imaging device, 14...Guide section, 17...
・・・・Drive part, 18・・kawa・ho) SEFU-IJ--1
19...4... Stage, 20-... Frame memory, 22... Control unit, 23... Focus position of optical system, 24... work distance,
26. River...Blurred video signal C127...Blurred video signal D128...Lower slice level, 29.
・River/upper slice level, 30...First section of optical system movement, 31...Second section of optical system movement,
32...Third section of optical system movement. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 微小線幅を有する被検体を測定する場合、実像面に撮像
装置を有する顕微鏡において、前記撮像装置より得られ
る線幅の映像信号のエッジ信号が合焦位置で傾斜が最大
となる特性に基づき、前記映像信号を長さ方向に複数の
ビットに分割し、明るさ方向に濃淡像としてビット分割
して記憶するフレームメモリーと、前記顕微鏡の光学系
位置を焦点方向に制御駆動する端面カムとパルスモータ
ーからなる駆動機構と、前記フレームメモリーの明るさ
方向の上部で合焦時の映像信号ピーク値が10%以上、
上になる位置に上スライスレベルを設定し、上スライス
レベルより下方に、下スライスレベルを設定し、前記下
スライスレベルにおける映像信号の長さ方向のビット数
が0より多くなる第1の区間まで光学系を合焦位置方向
に後述する第2の区間より短いピッチで動作させ、前記
上スライスレベルにおける映像信号のビット数が0より
多く、前記上スライスレベルにおける映像信号のビット
数と、前記下スライスレベルにおける映像信号のビット
数の差が、あらかじめ光学系位置が合焦位置より数μm
手前になるよう設定された値になる第2の区間まで、前
記駆動機構を光学系位置が第2区間終了位置と合焦位置
までの距離より短いピッチで駆動させ、その位置より合
焦位置を通り過ぎるようあらかじめ設定された第3の区
間をレンズ系焦点深度以下の微小ピッチで前記駆動機構
を駆動させ、前記区間をアドレス記憶と、そのアドレス
に対応する、前記上、下スライスレベルにおける映像信
号のビット数の差とを記憶し、前記区間の駆動終了後、
前記ビット数の差が一番小さいアドレスに駆動機構を制
御駆動させる、マイクロプロセッサー等で構成される制
御部とからなる顕微鏡の自動焦点調整装置。
When measuring an object having a minute line width, in a microscope having an imaging device on the real image plane, based on the characteristic that the edge signal of the line width video signal obtained from the imaging device has a maximum slope at the focused position, A frame memory that divides the video signal into a plurality of bits in the length direction and stores the divided bits as a density image in the brightness direction, and an end cam and a pulse motor that control and drive the position of the optical system of the microscope in the focal direction. a drive mechanism comprising: a video signal peak value of 10% or more at the time of focusing at the upper part of the frame memory in the brightness direction;
An upper slice level is set at a position above the upper slice level, a lower slice level is set below the upper slice level, and up to a first section where the number of bits in the length direction of the video signal at the lower slice level is greater than 0. The optical system is operated in the direction of the focus position at a pitch shorter than a second interval described later, and the number of bits of the video signal at the upper slice level is greater than 0, and the number of bits of the video signal at the upper slice level is equal to the number of bits of the video signal at the lower slice level. The difference in the number of bits of the video signal at the slice level is such that the optical system position is several μm from the focus position in advance.
The driving mechanism is driven at a pitch shorter than the distance between the end position of the second interval and the in-focus position until the second interval reaches the set value so that the optical system position is closer to the front, and the in-focus position is moved from that position. The drive mechanism is driven at a minute pitch below the depth of focus of the lens system through a third section that has been set in advance to pass through, and the section is used to store addresses and to record video signals at the upper and lower slice levels corresponding to the addresses. The difference in the number of bits is memorized, and after the driving of the section is completed,
An automatic focus adjustment device for a microscope, comprising a control section including a microprocessor or the like, which controls and drives a drive mechanism to an address having the smallest difference in the number of bits.
JP13135984A 1984-06-26 1984-06-26 Automatic focus adjuster of microscope Granted JPS6111714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13135984A JPS6111714A (en) 1984-06-26 1984-06-26 Automatic focus adjuster of microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13135984A JPS6111714A (en) 1984-06-26 1984-06-26 Automatic focus adjuster of microscope

Publications (2)

Publication Number Publication Date
JPS6111714A true JPS6111714A (en) 1986-01-20
JPH0462046B2 JPH0462046B2 (en) 1992-10-05

Family

ID=15056079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13135984A Granted JPS6111714A (en) 1984-06-26 1984-06-26 Automatic focus adjuster of microscope

Country Status (1)

Country Link
JP (1) JPS6111714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969273A (en) * 1998-02-12 1999-10-19 International Business Machines Corporation Method and apparatus for critical dimension and tool resolution determination using edge width
WO2003077008A3 (en) * 2002-03-13 2003-12-18 Yeda Res & Dev Auto-focusing method and device
JP2005202087A (en) * 2004-01-15 2005-07-28 Olympus Corp Microscopic device, microscopic device control method and program
JP2007140087A (en) * 2005-11-18 2007-06-07 Hitachi Kokusai Electric Inc Method and device for focusing and measuring instrument using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137784A (en) * 1979-04-16 1980-10-27 Omron Tateisi Electronics Co Focus adjustment system in image pickup device using image sensor
JPS599613A (en) * 1982-07-08 1984-01-19 Mitsubishi Rayon Co Ltd Automatically adjusting method of focal point

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137784A (en) * 1979-04-16 1980-10-27 Omron Tateisi Electronics Co Focus adjustment system in image pickup device using image sensor
JPS599613A (en) * 1982-07-08 1984-01-19 Mitsubishi Rayon Co Ltd Automatically adjusting method of focal point

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969273A (en) * 1998-02-12 1999-10-19 International Business Machines Corporation Method and apparatus for critical dimension and tool resolution determination using edge width
WO2003077008A3 (en) * 2002-03-13 2003-12-18 Yeda Res & Dev Auto-focusing method and device
US7109459B2 (en) 2002-03-13 2006-09-19 Yeda Research And Development Company Ltd. Auto-focusing method and device for use with optical microscopy
JP2005202087A (en) * 2004-01-15 2005-07-28 Olympus Corp Microscopic device, microscopic device control method and program
JP2007140087A (en) * 2005-11-18 2007-06-07 Hitachi Kokusai Electric Inc Method and device for focusing and measuring instrument using the same

Also Published As

Publication number Publication date
JPH0462046B2 (en) 1992-10-05

Similar Documents

Publication Publication Date Title
US8180156B2 (en) Method and device for machine-cutting a plate-shaped workpiece
US7030351B2 (en) Systems and methods for rapidly automatically focusing a machine vision inspection system
US5737090A (en) System and method for focusing, imaging and measuring areas on a workpiece engraved by an engraver
EP0459280B1 (en) Lens alignment and positioning method and apparatus
JPWO2005114293A1 (en) Microscope equipment
EP0746800B1 (en) Process and device for the photomechanical production of structured surfaces, in particular for exposing offset plates
US5675141A (en) Method and apparatus for automatically detecting focusing point and image processing method and apparatus using the same
US4724319A (en) Image focusing method and apparatus for electron microscope
EP0396041A2 (en) Optical scanning equipment
JPH04242208A (en) Optical instrument provided with lens position controller
DE3546067C2 (en)
JPS6111714A (en) Automatic focus adjuster of microscope
JP2007229786A (en) Laser machining system and focussing control method
JP3267984B2 (en) Automatic focusing apparatus and focus adjusting method in automatic focusing apparatus
US4672456A (en) Automatic focusing device of video camera
JPH1123952A (en) Automatic focusing device and laser beam machining device using the same
JPH09218355A (en) Scanning laser microscope
JPH06500222A (en) Device for focusing optical imaging systems
JP2003173947A (en) Method of positioning dot mark formed on semiconductor wafer and positioning unit
JPH05177374A (en) Observing device for laser beam machine
JP2005106866A (en) Focusing device for laser marking device
JP2738322B2 (en) Autofocus control method and observation device
JP2695338B2 (en) Hardness measuring method
JPH08278450A (en) Automatic image forming device for scanning confocal microscope
JP4684646B2 (en) Autofocus method