JPS61116952A - Synchronous motor - Google Patents

Synchronous motor

Info

Publication number
JPS61116952A
JPS61116952A JP23755184A JP23755184A JPS61116952A JP S61116952 A JPS61116952 A JP S61116952A JP 23755184 A JP23755184 A JP 23755184A JP 23755184 A JP23755184 A JP 23755184A JP S61116952 A JPS61116952 A JP S61116952A
Authority
JP
Japan
Prior art keywords
rotor
stator
torque
teeth
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23755184A
Other languages
Japanese (ja)
Inventor
Teruo Kanekawa
晃夫 金川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23755184A priority Critical patent/JPS61116952A/en
Publication of JPS61116952A publication Critical patent/JPS61116952A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To obtain a stable starting characteristic reducing pulsating torque due to magnetic flux passing stator teeth and rotor teeth, by slanting a rotor pole in the rotational direction. CONSTITUTION:A synchronous motor with squirrel-cage starting windings is provided with a stator core 1 and a rotor pole 4 having the squirrel-cage start ing windings 5. Then, the rotor pole 4 is arranged to be slanted at the angle thetaof inclination in the rotational direction R. And the stator core 1 and the rotor pole 4 are provided with stator teeth 7 and rotor teeth 8. Then, the ampli tude value of pulsating torque due to the relative position between a stator and a rotor in case of the slanted pole 4 is smaller than the value in case of the pole 4 arranged perpendicularly to the diameter, and accordingly, so far as complex torque due to the starting windings 5 is concerned, positive torque is generated at all positions, and a stable starting characteristic can be realized avoiding constrained phenomenon on starting.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、かご形始動巻線付の同期電動機に係り、特に
その回転子磁極の配置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a synchronous motor with a squirrel-cage starting winding, and more particularly to the arrangement of rotor poles thereof.

°  〔発明の技術的背景とその問題点〕かご形始動巻
線付の同期電動機は自己始動を行なう同期′電動機とし
て従来から広く用いられている。
[Technical background of the invention and its problems] A synchronous motor with a squirrel-cage starting winding has been widely used as a self-starting synchronous motor.

かご形始動巻線付同期電動機を第4図ないし第9図に基
づいて説明する。薄い鋼板を積層した固定子鉄心1とそ
の内径側に等間隔に配置された多数の固定子溝に納めら
れたコイル3により固定子は構成される。回転子磁極4
は全磁極同一形状の積層鋼板により構成され磁極頭部に
はかご形始動巻線5が同一の間隔で設けられた回転子1
1!6に納められている。
A synchronous motor with a squirrel cage starting winding will be explained based on FIGS. 4 to 9. The stator is composed of a stator core 1 made of laminated thin steel plates and coils 3 housed in a large number of stator grooves arranged at equal intervals on the inner diameter side of the stator core 1. Rotor magnetic pole 4
The rotor 1 is constructed of laminated steel plates with all magnetic poles having the same shape, and has squirrel-cage starting windings 5 provided at the same spacing on the magnetic pole heads.
It is placed on 1!6.

この様に構成されたかご形始動巻線付同期′亀動機はか
ご形始動巻線5に流れる電流によるトルク、すなわち誘
導電動機と同様なトルクにより始動し、矢印&の方向に
回転する。しかしここで固定子側の溝間隔と回転子側の
溝間隔かほぼ等しい場合には回転子と固定子の位置関係
により、固定子側に電気入力を那えた場合でも回転子は
拘束され始動不能となる場合がある。上記回転子の始動
時拘束現象は固定子溝間隔と回転子溝間隔の比が1に近
づくに従い発生する場合が多い。
The synchronous motor with a squirrel-cage starting winding constructed in this manner is started by the torque generated by the current flowing through the squirrel-cage starting winding 5, that is, the same torque as that of an induction motor, and rotates in the direction of the arrow &. However, if the groove spacing on the stator side is almost equal to the groove spacing on the rotor side, the rotor will be restricted and cannot be started due to the positional relationship between the rotor and stator even if electrical input is applied to the stator side. In some cases, The above-described rotor binding phenomenon at startup often occurs as the ratio of the stator groove spacing to the rotor groove spacing approaches 1.

第7図は固定子と回転子の相対的位置関係によるトルク
の変化を示したもので実験により得られたものである。
FIG. 7 shows the change in torque due to the relative positional relationship between the stator and rotor, which was obtained through experiments.

また第8図(a) −fd)は固定子歯7と回転子歯8
の相対的位置関係の変化に対する磁束の流れを示してい
る。第8図(blの様に固定子歯7と回転子歯8が対向
する位置(第8図(a))より若干回転方向にずれた場
合には、回転子歯83に対しては固定子歯7aによる磁
束が固定子歯7bによる磁束より犬なため固定子歯7a
に吸引され回転子方向と逆のトルクすなわち負のトルク
を発生する。また第8図(d)の様に固定子歯7と回転
子溝6が対向する位置(第8図(C))より若干回転方
向にずれた場合には回転子歯8aに対しては固定子歯7
dによる磁束が固定子歯7Cによる磁束より犬なため固
定子歯7dに吸引され回転方向のトルクすなわち正のト
ルクを発生する。第8図゛(a)の場合には固定子歯7
と回転子歯8の磁束により拘束されることになり第8図
(bl (diの様な磁束の流れによる正方向のトルク
も負方向のトルクも発生しない。また第8図(clの様
に固定子歯7の磁束がつりあうことになり第8図(bl
 (diの様な磁束の流れによる正方向のトルクも負方
向のトルクも発生しない。
Also, Fig. 8(a)-fd) shows the stator tooth 7 and the rotor tooth 8.
It shows the flow of magnetic flux with respect to changes in the relative positional relationship of. If the stator teeth 7 and rotor teeth 8 are slightly shifted in the rotational direction from the opposing position (FIG. 8(a)) as shown in FIG. Since the magnetic flux due to the tooth 7a is stronger than the magnetic flux due to the stator tooth 7b, the stator tooth 7a
This generates a torque in the opposite direction to the rotor direction, that is, a negative torque. In addition, if the stator teeth 7 and rotor grooves 6 are slightly shifted in the rotational direction from the opposing position (FIG. 8(C)) as shown in FIG. 8(d), the rotor teeth 8a will not be fixed. Child tooth 7
Since the magnetic flux caused by the stator teeth 7C is stronger than the magnetic flux caused by the stator teeth 7C, it is attracted to the stator teeth 7d and generates torque in the rotational direction, that is, positive torque. In the case of Fig. 8(a), stator tooth 7
and is restrained by the magnetic flux of the rotor teeth 8, so neither positive nor negative torque is generated due to the flow of magnetic flux as shown in Figure 8 (bl (di). Also, as shown in Figure 8 (cl) The magnetic fluxes of the stator teeth 7 are balanced as shown in Fig. 8 (bl
(No torque in the positive direction or torque in the negative direction is generated due to the flow of magnetic flux such as di.

磁極が径方向に対し垂直で、固定子側の溝の配置が等配
で、固定子溝間隔と回転子溝間隔の比が1)  に近い
場合には、全磁極で固定子歯7と回転子歯8の相対的位
置が同一となり第8図(al〜(diで各磁極の正負の
トルク変化が加えられ全体として第9図(1)の様な固
定子と回転子の相対的位置により脈動するトルクが発生
する。
If the magnetic poles are perpendicular to the radial direction, the grooves on the stator side are equally spaced, and the ratio of the stator groove spacing to the rotor groove spacing is close to 1), all magnetic poles will rotate with the stator teeth 7. The relative positions of the child teeth 8 are the same, and the positive and negative torque changes of each magnetic pole are added in Figure 8 (al to (di), and the overall relative position of the stator and rotor is as shown in Figure 9 (1). Pulsating torque is generated.

以上の様に、始動時には第9図(11)の様なかご形始
動巻線による誘導電動機と同様なトルクに、第9図(1
)の様な固定子と回転子の相対的位置により発生する脈
動トルクが重畳され第7図の様なトルクとなり回転子の
位置によって、例えばイ)−(ロ)間で始動時拘束現象
を生ずることになる。
As described above, at the time of starting, the torque similar to that of an induction motor with a squirrel cage starting winding as shown in Fig. 9 (11) can be obtained.
) The pulsating torque generated due to the relative position of the stator and rotor is superimposed, resulting in a torque as shown in Figure 7.Depending on the position of the rotor, a locking phenomenon occurs at the time of starting, for example, between A) and B). It turns out.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点に鑑みなされたものでちゃ回転子
の始動時拘束状態を回避し、始動特性を改善することを
目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to avoid the locked state of the rotor at the time of starting, and to improve the starting characteristics.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明の同期電動機におい
ては回転子磁極を回転方向に傾けて取付け、固定子溝と
回転子磁極溝の位置関係のいかんにかかわらず回転方向
のトルクが働くようにする。
In order to achieve the above object, in the synchronous motor of the present invention, the rotor magnetic poles are installed with an inclination in the rotational direction, so that torque in the rotational direction is applied regardless of the positional relationship between the stator groove and the rotor magnetic pole groove. do.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図を用いて説明する。 An embodiment of the present invention will be described with reference to FIG.

回転子の磁極を回転方向にある傾斜角θだけ傾斜させて
配置することにより本発明は成る。
The present invention is achieved by arranging the magnetic poles of the rotor so as to be inclined by a certain angle of inclination θ in the direction of rotation.

始動時は、かご形始動巻線5により誘導電動機と同様な
回転子の位置によらない一定のトルクを発生するが、か
ご形始動巻線5によるトルク以外に固定子歯7と回転子
歯8の間の磁束の流れの変化による脈動トルクが生ずる
。始動時、固定子側の電圧入力により磁束が発生するが
、磁束は固定子歯7と回転子歯8との間を流れることに
なる。
At startup, the squirrel-cage starting winding 5 generates a constant torque that does not depend on the position of the rotor, similar to an induction motor, but in addition to the torque generated by the squirrel-cage starting winding 5, stator teeth 7 and rotor teeth 8 A pulsating torque is generated due to changes in the flow of magnetic flux between. At startup, magnetic flux is generated by voltage input on the stator side, and the magnetic flux flows between stator teeth 7 and rotor teeth 8.

第2図(at −(diは固定子歯7と回転子歯8の相
対的位置関係の変化に対する磁束の流れを示している。
FIG. 2 (at-(di) shows the flow of magnetic flux with respect to changes in the relative positional relationship between the stator teeth 7 and the rotor teeth 8.

第8図(alの様に左端の固定子溝と回転子溝が対向す
る位置にある場合は、磁極の右側では負の方向への吸引
力を生じ負トルクを生じるが、圧側では磁束がつりあっ
ているためトルクを生じない。
When the leftmost stator groove and rotor groove are in opposing positions as shown in Figure 8 (al), an attractive force is generated in the negative direction on the right side of the magnetic pole, producing negative torque, but the magnetic flux is balanced on the pressure side. Because it is connected, no torque is generated.

その大きさは磁極全体で負トルクを生じた場合(第8図
(b))に比べ小さくなる。第2図(b)の様に左端の
固定子溝と回転子溝が対向する位置より若干回転方向に
ずれた場合には磁極の左側では正方向の吸引力を生じ正
トルクを生じるが、右側では磁束がつりあっているため
トルクを生じない。その大きさは磁極全体で正トルクを
生じた場合(第8図(d))に比べ小さくなる。第2図
(C1の様に左端の固定子歯と回転子溝が対向する位置
にある場合は、磁極の右側では正方向への吸引力を生じ
正トルクを生じるが左側では磁束がつりあっているため
トルクを生じない。その大きさは、磁極全体で正トルク
を生じた場合(第8図(d))に比べ小さくなる。第2
図fdlの様に左端の固定子歯と回転子溝が対向する位
置より若干回転方向にずれた場合には磁極の左側では負
方向への吸引力を生じ負トルクを生じるが、右側では磁
束がつりあっているためトルクを生じない。その大きさ
は、磁極全体で負トルクを生じた場合(第8図(b))
に比べ小さくなる。第2図fal−(d)のいずれの位
置においても正・負のトルクを生じるが磁極全体では第
8図(at −(d)に比べ振幅は小さい。
The magnitude thereof is smaller than that in the case where negative torque is generated in the entire magnetic pole (FIG. 8(b)). As shown in Figure 2 (b), if the leftmost stator groove and rotor groove are slightly deviated in the rotational direction from the position where they face each other, an attractive force will be generated in the positive direction on the left side of the magnetic pole and a positive torque will be generated, but on the right side Since the magnetic fluxes are balanced, no torque is generated. The magnitude thereof is smaller than that in the case where positive torque is generated in the entire magnetic pole (FIG. 8(d)). Figure 2 (When the leftmost stator teeth and rotor grooves are in opposing positions as shown in C1, an attractive force is generated in the positive direction on the right side of the magnetic poles and a positive torque is generated, but the magnetic flux is balanced on the left side. Therefore, no torque is generated.The magnitude is smaller than when positive torque is generated across the entire magnetic pole (Fig. 8(d)).Second
As shown in figure fdl, if the leftmost stator tooth and rotor groove are slightly shifted in the rotational direction from the opposing position, an attractive force is generated in the negative direction on the left side of the magnetic pole and a negative torque is generated, but on the right side, the magnetic flux is Because they are balanced, no torque is generated. The magnitude is when negative torque is generated in the entire magnetic pole (Fig. 8 (b))
becomes smaller than . Although positive and negative torques are generated at any position in FIG. 2 fal-(d), the amplitude of the entire magnetic pole is smaller than that in FIG. 8(at-(d)).

したがって第3図に示すように、磁極を角度θだけ傾斜
した場合には固定子と回転子の相対的位置による脈動ト
ルクの振幅値が磁極を径方向に対し垂直に配置した場合
に比べて小さいため、かご形始動巻線によるトルクが重
畳されたトルクばすべ−t”o位置f正トルクが発生し
、始動時の拘束現象を回避し安定した始動特性を実現す
ることかできる。
Therefore, as shown in Figure 3, when the magnetic poles are tilted by the angle θ, the amplitude of the pulsating torque due to the relative position of the stator and rotor is smaller than when the magnetic poles are arranged perpendicular to the radial direction. Therefore, the torque generated by the squirrel-cage starting winding is superimposed to generate a positive torque at position f, thereby making it possible to avoid the binding phenomenon at the time of starting and realize stable starting characteristics.

尚、磁極の傾斜角度は固定子溝間隔と回転子溝間隔の比
【より、トルクの脈動を最小にするように選定する。
The angle of inclination of the magnetic poles is selected to minimize torque pulsation based on the ratio of the stator groove spacing to the rotor groove spacing.

〔発明の効果〕〔Effect of the invention〕

本発明においては回転子磁極を回転方向に傾斜したので
固定子歯と回転子歯を通る磁束による脈動トルクを低減
し、始動時拘束状態を回避した安定した始動特性を持つ
かご形始動巻線付同期電動機を実現することができる。
In the present invention, since the rotor magnetic poles are tilted in the rotation direction, the pulsating torque due to the magnetic flux passing through the stator teeth and rotor teeth is reduced, and the squirrel cage starting winding has stable starting characteristics that avoids a locked state during starting. A synchronous motor can be realized.

また、回転子磁極を回転方向に傾斜したので回転方向側
の固定子と回転子間の空隙長が反対側よりも広くなり、
磁極自身のもつファン効果により、冷却空気が固定子側
へまわりやすくなるため、固〉  電子コイルと固定子
鉄心の冷却効果を上げることもできる。
Also, since the rotor magnetic poles are tilted in the direction of rotation, the gap length between the stator and rotor on the side in the direction of rotation is wider than on the opposite side.
The fan effect of the magnetic poles itself makes it easier for cooling air to circulate toward the stator, thereby increasing the cooling effect of the solid electronic coil and stator core.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の同期′電動機の要部断面図
、第2図は第1図の同期電動機における回転子位置によ
る磁束の状況を示す図、第3図は本発明の同期・電動機
におけるトルクを示す図、第4図ないし第9図は従来の
同期電動機を示し、第4図はその断面図、第5図は回転
子磁場の鋼機の平面図、第6図は要部断面図、第7図お
よび第9図は回転子位置とトルクの関係を示す図、第8
図は回転子位置による磁巣の発生状況を示す図である。 1・・固定子鉄心    2・・固定子溝4 ・回転子
磁極    5・・・かご形始動巻線6−・・回転子溝
     7・・固定子歯8 回転子歯     9・
・磁束 R・・回転方向 代理人 弁理士 則 近 憲 佑 (ほか1名)   
 り第1図 第3図 一口転二【の4立i 第2図 (α)                      
      (C)(6)             
                  ut)第4図 第6wi □回転Jの勧J 第8図
Fig. 1 is a sectional view of essential parts of a synchronous motor according to an embodiment of the present invention, Fig. 2 is a diagram showing the state of magnetic flux depending on the rotor position in the synchronous motor of Fig. 1, and Fig. 3 is a sectional view of the main parts of a synchronous motor according to an embodiment of the present invention.・Diagrams showing the torque in the electric motor. Figures 4 to 9 show conventional synchronous motors. Figure 4 is a cross-sectional view of the motor. Figure 5 is a plan view of a steel machine with a rotor magnetic field. Figure 6 is a diagram showing the main points. Partial sectional views, Figures 7 and 9 are diagrams showing the relationship between rotor position and torque, and Figure 8 is a diagram showing the relationship between rotor position and torque.
The figure shows how magnetic nests are generated depending on the rotor position. 1... Stator core 2... Stator groove 4 - Rotor magnetic pole 5... Squirrel cage starting winding 6... Rotor groove 7... Stator tooth 8 Rotor tooth 9...
・Magnetic flux R...Rotation direction Agent Patent attorney Kensuke Chika (and 1 other person)
Figure 1 Figure 3 One turn 2 [No 4 standing i Figure 2 (α)
(C) (6)
ut) Fig. 4 Fig. 6wi □ Recommendation of rotation J Fig. 8

Claims (1)

【特許請求の範囲】[Claims] かご形始動巻線を有する回転子磁極を回転方向に傾斜し
て取付けたことを特徴とする同期電動機。
A synchronous motor characterized in that rotor magnetic poles having squirrel-cage starting windings are mounted at an angle in the direction of rotation.
JP23755184A 1984-11-13 1984-11-13 Synchronous motor Pending JPS61116952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23755184A JPS61116952A (en) 1984-11-13 1984-11-13 Synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23755184A JPS61116952A (en) 1984-11-13 1984-11-13 Synchronous motor

Publications (1)

Publication Number Publication Date
JPS61116952A true JPS61116952A (en) 1986-06-04

Family

ID=17017005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23755184A Pending JPS61116952A (en) 1984-11-13 1984-11-13 Synchronous motor

Country Status (1)

Country Link
JP (1) JPS61116952A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549241A2 (en) * 1991-12-24 1993-06-30 General Electric Company Electrical machines
JP2005245052A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Corp Rotor of synchronous induction motor and compressor
EP3713050A1 (en) * 2019-03-22 2020-09-23 ABB Schweiz AG Induction motor
WO2021090387A1 (en) * 2019-11-06 2021-05-14 三菱電機株式会社 Rotor and rotating electric machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549241A2 (en) * 1991-12-24 1993-06-30 General Electric Company Electrical machines
EP0549241A3 (en) * 1991-12-24 1995-05-31 Gen Electric Electrical machines
JP2005245052A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Corp Rotor of synchronous induction motor and compressor
EP3713050A1 (en) * 2019-03-22 2020-09-23 ABB Schweiz AG Induction motor
WO2020193353A1 (en) * 2019-03-22 2020-10-01 Abb Schweiz Ag Induction motor
CN113574772A (en) * 2019-03-22 2021-10-29 Abb瑞士股份有限公司 Induction motor
CN113574772B (en) * 2019-03-22 2023-09-15 Abb瑞士股份有限公司 induction motor
WO2021090387A1 (en) * 2019-11-06 2021-05-14 三菱電機株式会社 Rotor and rotating electric machine

Similar Documents

Publication Publication Date Title
JP3131403B2 (en) Stepping motor
JP3071064B2 (en) Permanent magnet type stepping motor
JPH08182281A (en) Spindle motor
JPS62110468A (en) Permanent magnet field type brushless motor
JP2005012920A (en) Three-phase synchronous reluctance motor
US5187401A (en) Combination hysteresis-reluctance-permanent-magnet motor
JPH07336917A (en) Permanent magnet motor, and compressor for cooler
JP2003070222A (en) Three-phase hybrid type stepping motor
JPS61116952A (en) Synchronous motor
JP3350971B2 (en) PM type vernier motor
JP2005198381A (en) Vernier motor
JPS62230346A (en) Winding method of brushless motor
JP2598770Y2 (en) Rotating electric machine
JPH09149568A (en) Stator and rotating electric machine using that stator
JPH048154A (en) Single-phase cored brushless motor
JPH06339240A (en) Permanent magnet type motor
JP2611291B2 (en) Permanent magnet field two-phase multi-pole synchronous machine
JPS634415B2 (en)
JP2000125533A (en) Motor
JPS62114455A (en) Magnet rotary machine
JPH027270B2 (en)
JPH05344696A (en) Ac generator for vehicle
JPS63190541A (en) Brushless motor
JPH01308159A (en) Opposed type motor
JPH07336989A (en) Three-phase claw pole type permanent magnet rotary electric machine