JPH01308159A - Opposed type motor - Google Patents

Opposed type motor

Info

Publication number
JPH01308159A
JPH01308159A JP13915288A JP13915288A JPH01308159A JP H01308159 A JPH01308159 A JP H01308159A JP 13915288 A JP13915288 A JP 13915288A JP 13915288 A JP13915288 A JP 13915288A JP H01308159 A JPH01308159 A JP H01308159A
Authority
JP
Japan
Prior art keywords
yoke
permanent magnet
fixed yoke
motor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13915288A
Other languages
Japanese (ja)
Inventor
Hideaki Miyagawa
宮川 秀明
Yutaka Anahara
穴原 豊
Masaru Ando
安堵 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13915288A priority Critical patent/JPH01308159A/en
Publication of JPH01308159A publication Critical patent/JPH01308159A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the torque loss of apparatus by using a fixed yoke obtained through holding an insulating material between soft magnetic material foils, winding them spirally and insulating them radially. CONSTITUTION:A motor is composed of a rotor yoke fixing a permanent magnet, said permanent magnet, a coil, a fixed yoke 4, etc. To constitute said fixed yoke 4, soft magnetic material 4-1 such as Fe-Si-B amorphous material is insulated by an insulating material 4-2 such as Al2O3 and formed into a spiral shape. Thus, an eddy current loss generated in the fixed yoke 4 by rotation of the permanent magnet can be reduced to almost zero and the torque loss of apparatus also to zero.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は面対向型モータの固定子ヨークに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stator yoke for a surface facing type motor.

〔従来の技術〕[Conventional technology]

従来、面対向型ブラシレスDCモータにはうず電流損を
考慮しない固定ヨーク型(第4図)とうず電流損を考慮
した回転ヨーク型(第5図)とがあるが、いずれの場合
もヨークはケイ素鋼板等の軟磁性材板で構成されていた
Conventionally, there are two types of surface-facing brushless DC motors: a fixed yoke type (Fig. 4) that does not take eddy current loss into account, and a rotating yoke type (Fig. 5) that takes eddy current loss into account. It was constructed from soft magnetic material plates such as silicon steel plates.

モータの構成要素を説明すると、1は永久磁石固定用モ
ータ、2は永久磁石、3はコイル、4はヨークで固定ヨ
ーク型(第4図)も回転ヨーク型(第5図)もケイ素鋼
板等の軟磁性材箔間で構成されている。5は軸受ユニッ
ト、6はスピンドル、7はFG磁石、8は速度検出素子
、9はホール素子、10はボスで、11,12.13は
回転ヨーク型(第5図)のみで、11はプリント基板、
12はスラスト軸受、13は外套である。
To explain the components of the motor, 1 is a fixed permanent magnet motor, 2 is a permanent magnet, 3 is a coil, and 4 is a yoke. Both the fixed yoke type (Figure 4) and the rotating yoke type (Figure 5) are made of silicon steel plates, etc. It is made up of soft magnetic material foils. 5 is a bearing unit, 6 is a spindle, 7 is an FG magnet, 8 is a speed detection element, 9 is a Hall element, 10 is a boss, 11, 12, and 13 are only rotating yoke types (Figure 5), and 11 is a print substrate,
12 is a thrust bearing, and 13 is a mantle.

〔発明が解決しようとしている問題点〕前記従来例固定
ヨーク型(第4図)の場合、うず電流によるトルクロス の式から解るように回転数が高い場合、−船釣には11
000rp以上とか空隙磁束密度を高く設定した場合と
か永久磁石径が大きくヨーク径が大きい時などは、うず
電流によるトルクロスが大きくなる為回転ヨーク型(第
5図)にせざるをえなかった、が回転ヨーク型にすると
第2図と第3図を比較してみれば解るように、回転ヨー
ク型の場合、ヨークも回転させる為コイルの両側にエア
ーギャップが必要となる。その結果磁気抵抗が太き(な
り磁気効率が下がると同時にモータ厚も厚くなる。又コ
イルの両側に位置する永久磁石と回転ヨークが前記エア
ーギャップをはさんで回転する為、コイルには調性が必
要となり当然の事ながら厚くなる為、これ又磁気抵抗が
大きくなり、磁気効率が下がると同時にモータ厚も厚く
なる。又構成部品点数が増える事と前記したようにヨー
クも回転するようになる為、部品の精度も上げなくては
ならなくなると同時に組立調整が難しくなりCo5t 
 Upにつながる。又前記磁気効率の低下を補う為には
永久磁石厚を厚くする必要も生ずる。その結果Co5t
Upし、モータ厚の増加にもなる。
[Problems to be solved by the invention] In the case of the conventional fixed yoke type (Fig. 4), when the rotation speed is high as can be seen from the equation of torque loss due to eddy current, -11 for boat fishing.
000 rpm or more, when the air gap magnetic flux density is set high, or when the permanent magnet diameter is large and the yoke diameter is large, the torque loss due to eddy current increases, so a rotating yoke type (Figure 5) has to be used. If a yoke type is used, as can be seen by comparing FIG. 2 and FIG. 3, in the case of a rotating yoke type, an air gap is required on both sides of the coil because the yoke is also rotated. As a result, the magnetic resistance increases (and the magnetic efficiency decreases, at the same time the motor thickness also increases.Also, since the permanent magnets and rotating yoke located on both sides of the coil rotate across the air gap, the coil has tonality. is required and of course becomes thicker, so the magnetic resistance also increases, the magnetic efficiency decreases, and at the same time the motor thickness also increases.Also, the number of component parts increases, and as mentioned above, the yoke also rotates. Therefore, it is necessary to improve the accuracy of parts, and at the same time it becomes difficult to assemble and adjust.
Connects to Up. Furthermore, in order to compensate for the decrease in magnetic efficiency, it is also necessary to increase the thickness of the permanent magnet. As a result, Co5t
This also increases the thickness of the motor.

即ち、固定ヨーク型(第4図)の大問題であるうすに電
流損を無くする方法である回転ヨーク型(第5図)の場
合の大きな問題点として、1、磁気効率Down (補
う方法として永久磁石を厚(する。→■Co5t  U
p、■モータ厚、厚くなる) 2、モータ厚、厚くなる 3、組立調整のCo5t  Up 4、部品点数増に供なうCo5t  Upがある。
In other words, the major problems with the rotating yoke type (Figure 5), which is a method to eliminate current loss, which is a major problem with the fixed yoke type (Figure 4), are as follows: 1. Magnetic efficiency Down (as a compensation method) Make the permanent magnet thicker → ■Co5t U
2. Motor thickness increases. 3. Co5t Up for assembly adjustment. 4. Co5t Up for increasing the number of parts.

t ・固定ヨーク厚 P :永久磁石のポール数 N 、モータ回転数 Bg :永久磁石とヨーク間Gapの磁束密度ρ :固
定ヨークの電気抵抗 γ。、ヨーク外径の半径 γ1.ヨーク内径の半径 〔問題点を解決するだめの手段(及び作用)〕本発明の
場合、回転ヨーク型(第5図)の問題点(1,磁気効率
Down (補う方法として永久磁石厚を厚くする→C
o5t  Up、モータ厚厚くなる)2モータ厚が厚く
なる。30組立調整のCo5t  Up4、部品点数増
に供なうCo5t  Uplのない固定ヨーり型(第4
図)を選び、その固定ヨーク型(第4図)の大問題であ
る。永久磁石の回転による固定ヨークに発生するうず電
流損によるトルクロスを無くする為に固定ヨークとして
軟磁性材抗開に絶縁材をはさんてうず巻き状に巻き、径
方向が電気的に絶縁された固定ヨークを用いることによ
り、永久磁石の回転により固定ヨークに発生するうず電
流は固定ヨークが径方向に絶縁されている為、径方向に
流れる事が出来ない為、即ちフレミングの左手の法則で
解るようにトルクロスが発生しない。
t - Fixed yoke thickness P: Number of poles of permanent magnet N, motor rotation speed Bg: Magnetic flux density of gap between permanent magnet and yoke ρ: Electrical resistance γ of fixed yoke. , the radius of the yoke outer diameter γ1. Radius of the inner diameter of the yoke [Means (and effects) to solve the problem] In the case of the present invention, the problems of the rotating yoke type (Fig. 5) (1. Magnetic efficiency Down (as a way to compensate, the thickness of the permanent magnet is increased) →C
o5t Up, motor thickness becomes thicker) 2 Motor thickness becomes thicker. 30 assembly adjustment Co5t Up4, fixed yaw type without Co5t Upl to increase the number of parts (4th
This is a major problem with the fixed yoke type (Figure 4). In order to eliminate torque loss due to eddy current loss that occurs in the fixed yoke due to the rotation of the permanent magnet, the fixed yoke is made of a soft magnetic material and is wrapped in a spiral shape with an insulating material sandwiched between the ends, so that the fixed yoke is electrically insulated in the radial direction. By using a yoke, the eddy current generated in the fixed yoke due to the rotation of the permanent magnet cannot flow in the radial direction because the fixed yoke is insulated in the radial direction. Torque loss does not occur.

〔実施例〕〔Example〕

第1図、第2図、第3図は本発明の実施例で、第1図は
本発明の主要部材である固定ヨークで、第2図はその固
定ヨークのA部拡大図を示す。第3図は本発明になる固
定ヨークを用いたモータである。
1, 2, and 3 show embodiments of the present invention. FIG. 1 shows a fixed yoke, which is a main component of the present invention, and FIG. 2 shows an enlarged view of section A of the fixed yoke. FIG. 3 shows a motor using a fixed yoke according to the present invention.

まずモータ構成を第3図を用いて説明する。First, the motor configuration will be explained using FIG. 3.

1は永久磁石を固定するローターヨーク、2は永久磁石
、3はコイル、4は本発明の主要構成部材である固定ヨ
ーク、5は軸受はユニット、6はスピンドル、7はFG
磁石、8は速度検出素子、9は位置検出素子、10はボ
スである。
1 is a rotor yoke that fixes a permanent magnet, 2 is a permanent magnet, 3 is a coil, 4 is a fixed yoke which is a main component of the present invention, 5 is a bearing unit, 6 is a spindle, 7 is an FG
8 is a speed detection element, 9 is a position detection element, and 10 is a boss.

次に固定ヨーク4の構成を第1図、第2図を用いて説明
する。固定ヨーク4はFe−8i−E系アモルファス材
等軟磁性材4−1をAI!203等絶縁材4−2で絶縁
し、それをうす巻き状に形成して固定ヨークとしている
Next, the structure of the fixed yoke 4 will be explained using FIG. 1 and FIG. 2. The fixed yoke 4 is made of soft magnetic material 4-1 such as Fe-8i-E amorphous material. It is insulated with an insulating material 4-2 such as 203, and formed into a thinly wound shape to form a fixed yoke.

上記のような固定ヨークを用いる事で、永久磁石2の回
転により固定ヨークに発生するうず電流損をほぼ零にす
る事が出来る。その結果トルクロスを零に出来る。
By using the fixed yoke as described above, the eddy current loss generated in the fixed yoke due to the rotation of the permanent magnet 2 can be reduced to almost zero. As a result, torque loss can be reduced to zero.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、固定ヨークとして軟磁性材抗開に
絶縁材をはさんでうずまき状に巻き径方向を絶縁した固
定ヨークを用いる事で、うず電流によるトルクロスを無
くすることができ、そのトルクロスは外径φ30 m 
m 、回転数2000rpm、磁束密度4.000 G
 a u s s程度のモータの場合でさえ、出力トル
クの20%程度をしめる。
As explained above, by using a fixed yoke in which an insulating material is sandwiched between a soft magnetic material and an insulating material is wound in a spiral shape and insulated in the radial direction, torque loss due to eddy current can be eliminated. has an outer diameter of φ30 m
m, rotation speed 2000 rpm, magnetic flux density 4.000 G
Even in the case of a motor of the order of AUSS, it accounts for about 20% of the output torque.

トルクロスが発生しないので、モータ本来の出力トルク
が20%程度小さくても良いので永久磁石厚を薄く出来
るとか駆動電流を小さくしても同一トルクのモータが得
られる。又、永久磁石を薄く出来るということは、モー
タ厚を薄く出来る事であると同時に希土類磁石等はモー
タ構成要素の中で非常に高い物であるのてCo5t  
Downにもなる。
Since torque loss does not occur, the original output torque of the motor may be reduced by about 20%, so a motor with the same torque can be obtained even if the permanent magnet thickness is made thinner or the drive current is reduced. Also, being able to make the permanent magnet thinner means that the motor thickness can be made thinner, and at the same time, rare earth magnets are very expensive among the motor components, so Co5t can be made thinner.
It also becomes Down.

また駆動電流が小さく出来る事により、電池で駆動する
場合、電池寿命が伸び商品価値が」二るし電気No1s
eも減る。
In addition, since the drive current can be reduced, when driven by batteries, the battery life is extended and the product value is increased.
e also decreases.

一方、永久磁石厚、駆動電流を減らさないで本発明固定
ヨークを用いるとトルクロスが発生しないので出力l・
ルクを大巾にUpする事が出来る。
On the other hand, if the fixed yoke of the present invention is used without reducing the permanent magnet thickness or drive current, torque loss will not occur, so the output l.
You can upload Ruku to a large size.

又、うず電流損を防ぐ方法として回転ヨーク型モータが
あるが、この回転ヨーク型の場合に比べると磁気抵抗が
小さくなるのて磁気効率がUpするので同一トルクを得
る為には当然永久磁石厚を薄く出来、Co5t  Do
wnモータ厚を薄く出来る。あるいは駆動電流を減らず
事も出来る。又、回転ヨーク型の場合第4図、第5図を
比較して見れば解るように本質的にモータ厚は厚くなる
Also, as a method to prevent eddy current loss, there is a rotating yoke type motor, but compared to this rotating yoke type, the magnetic resistance is smaller and the magnetic efficiency is increased, so in order to obtain the same torque, it is natural to increase the permanent magnet thickness. Co5t Do
wn Motor thickness can be made thinner. Or it can be done without reducing the drive current. In addition, in the case of the rotary yoke type, as can be seen by comparing FIGS. 4 and 5, the motor thickness is essentially thicker.

即ち、本発明固定ヨークを用いると、従来固定ヨーク型
モータの長所と回転ヨーク型モータの長所をあわせ持つ
ことが出来る。
That is, by using the fixed yoke of the present invention, it is possible to have both the advantages of a conventional fixed yoke type motor and the advantages of a rotating yoke type motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による固定ヨーク、第2図は第1図の部
分拡大図、第3図は本発明による固定ヨークを用いたモ
ータ、第4図は従来例の固定ヨーク型モータ、第5図も
従来例で回転ヨーク型モータ。 ■はローターヨーク、2は永久磁石、3はコイル、4は
本発明の主要構成部材で固定ヨーク、4−]は軟磁性材
、4−2は絶縁材、5は軸受はユニット、6はスピンド
ル、7はFG磁石、8は速度検出素子、9は位置検出素
子、10はボスである。 第4回 固定ヨーク型誌 第5図 回転ヨー2型
FIG. 1 shows a fixed yoke according to the present invention, FIG. 2 is a partially enlarged view of FIG. 1, FIG. 3 shows a motor using the fixed yoke according to the invention, FIG. 4 shows a conventional fixed yoke type motor, The figure also shows a conventional rotating yoke type motor. ■ is a rotor yoke, 2 is a permanent magnet, 3 is a coil, 4 is a fixed yoke which is the main component of the present invention, 4-] is a soft magnetic material, 4-2 is an insulating material, 5 is a bearing unit, 6 is a spindle , 7 is an FG magnet, 8 is a speed detection element, 9 is a position detection element, and 10 is a boss. 4th fixed yoke type magazine Figure 5 Rotating yoke type 2

Claims (2)

【特許請求の範囲】[Claims] (1)永久磁石と対向してなる固定ヨークとして軟磁性
材箔間に絶縁材をはさんでうず巻き状に巻いた固定ヨー
クを用いた面対向型モータ
(1) A surface-facing motor that uses a fixed yoke that faces a permanent magnet and is wound in a spiral shape with an insulating material sandwiched between soft magnetic foils.
(2)前記軟磁性材箔は20μ〜200μ厚であること
を特徴とする特許請求の範囲第1項記載の面対向型モー
(2) The surface facing type motor according to claim 1, wherein the soft magnetic material foil has a thickness of 20μ to 200μ.
JP13915288A 1988-06-06 1988-06-06 Opposed type motor Pending JPH01308159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13915288A JPH01308159A (en) 1988-06-06 1988-06-06 Opposed type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13915288A JPH01308159A (en) 1988-06-06 1988-06-06 Opposed type motor

Publications (1)

Publication Number Publication Date
JPH01308159A true JPH01308159A (en) 1989-12-12

Family

ID=15238777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13915288A Pending JPH01308159A (en) 1988-06-06 1988-06-06 Opposed type motor

Country Status (1)

Country Link
JP (1) JPH01308159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619087A (en) * 1992-03-18 1997-04-08 Kabushiki Kaisha Toshiba Axial-gap rotary-electric machine
US20130009508A1 (en) * 2010-01-06 2013-01-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Axial gap type brushless motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188369A (en) * 1983-04-06 1984-10-25 Pioneer Electronic Corp Flat brushless motor
JPS6130927A (en) * 1984-07-20 1986-02-13 Matsushita Electric Ind Co Ltd Small-sized dc motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188369A (en) * 1983-04-06 1984-10-25 Pioneer Electronic Corp Flat brushless motor
JPS6130927A (en) * 1984-07-20 1986-02-13 Matsushita Electric Ind Co Ltd Small-sized dc motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619087A (en) * 1992-03-18 1997-04-08 Kabushiki Kaisha Toshiba Axial-gap rotary-electric machine
WO2004075379A1 (en) * 1992-03-18 2004-09-02 Kazuto Sakai Axial gap rotaitng electric machine
US20130009508A1 (en) * 2010-01-06 2013-01-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Axial gap type brushless motor
US9160219B2 (en) * 2010-01-06 2015-10-13 Kobe Steel, Ltd. Axial gap type brushless motor

Similar Documents

Publication Publication Date Title
JP3071064B2 (en) Permanent magnet type stepping motor
JPH08182281A (en) Spindle motor
JPS62123951A (en) Dc brushless motor of slotless type
JPH084378B2 (en) Synchronous motor with magnetic flux concentration magnet
JP3084220B2 (en) Hybrid type step motor
JP4320409B2 (en) Magnetic shaft support electric drive
JPH01308159A (en) Opposed type motor
JPS59165950A (en) Small-sized stepping motor
JPS5855747B2 (en) Brushless rotary motor
JPH02254954A (en) Slot motor
JPS61244250A (en) Ac motor
JPH03128653A (en) Brushless motor
JP2659368B2 (en) Brushless motor
JPS61116952A (en) Synchronous motor
JP4396960B2 (en) Permanent magnet abduction type rotating electrical machine
JPH027270B2 (en)
JPS59139848A (en) Dc motor with double armature coils formed with armature of reduced thickness
JPH07118895B2 (en) Rotating electric machine
JPS5953071A (en) Frequency generator for brushless dc motor
JPS63190541A (en) Brushless motor
JP2853049B2 (en) Electromagnetic rotating machine
JPS6130927A (en) Small-sized dc motor
JPS63161854A (en) Magnet type rotor structure
JPH07336989A (en) Three-phase claw pole type permanent magnet rotary electric machine
SU421093A1 (en) SYNCHRONOUS MOTOR