JPS61116889A - Discharge excitation short pulse laser device - Google Patents

Discharge excitation short pulse laser device

Info

Publication number
JPS61116889A
JPS61116889A JP23926884A JP23926884A JPS61116889A JP S61116889 A JPS61116889 A JP S61116889A JP 23926884 A JP23926884 A JP 23926884A JP 23926884 A JP23926884 A JP 23926884A JP S61116889 A JPS61116889 A JP S61116889A
Authority
JP
Japan
Prior art keywords
electrode
laser
main
dielectric
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23926884A
Other languages
Japanese (ja)
Inventor
Takeo Haruta
春田 健雄
Hitoshi Wakata
若田 仁志
Yukio Sato
行雄 佐藤
Haruhiko Nagai
治彦 永井
Hajime Nakatani
元 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23926884A priority Critical patent/JPS61116889A/en
Priority to US06/782,568 priority patent/US4686682A/en
Priority to EP94114362A priority patent/EP0637106B1/en
Priority to DE3587852T priority patent/DE3587852T2/en
Priority to EP93100550A priority patent/EP0543795B1/en
Priority to DE19853588118 priority patent/DE3588118T2/en
Priority to EP85112484A priority patent/EP0177888B1/en
Priority to DE19853588137 priority patent/DE3588137T2/en
Priority to DE19853588088 priority patent/DE3588088T2/en
Priority to EP93100578A priority patent/EP0542718B1/en
Priority to CA000492327A priority patent/CA1259122A/en
Publication of JPS61116889A publication Critical patent/JPS61116889A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0385Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0384Auxiliary electrodes, e.g. for pre-ionisation or triggering, or particular adaptations therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To stably operate a laser device even if an oscillating velocity is increased by forming a heat sink fin on the back surface of the second electrode and circulating laser gas in the device by a an when opposing the first main electrode and the second main electrode having a plurality of holes with a laser light axial direction as a longitudinal direction to operate the laser device. CONSTITUTION:The first main electrode 9 mounted on a heat exchanger 12 and the second main electrode 8 having many holes are opposed in a laser housing 15, a laser gas flow 18 is circulated in the housing 15 to cool a laser device. In this structure, the electrode 8 is composed of nickel, an auxiliary electrode 10 interposed through a dielectric 11 of the back surface is formed of alumina, and a heat sink fin 20 is secured thereon. A fluid guide 13 which extends is provided in the housing 15 and at one end of the dielectric 11, and gas flow 18 agitated by a fan 14 is strongly blown to between the electrodes and the fin 20. Thus, the electrode 8 and the dielectric 11 are effectively cooled, and even if the repeating vibration velocity is accelerated, the operation can be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、気体レーザのうち放電励起型短パルスレー
ザ全対象とするものであって、特にその電極部の冷却に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to all discharge excited short pulse lasers among gas lasers, and particularly relates to cooling of the electrode portion thereof.

〔従来の技術〕[Conventional technology]

第4図は従来の放電励起型短パルスレーザ装置の一例と
してエキシマレーザ装置を示す断面図であり、図におい
て、illは高電圧電源、+21 、 +51 、 (
71はキャパシタ、(3)は高抵抗、(4)はスイッチ
、(6)はコイル、(9)はレーザガス流中に配置され
、レーザ光軸方向(紙面に垂直な方向)を長手方向とす
る第1の主電極、(8)は第1の主電極(91と対向し
て配設され、複数個の開孔部を有する第2の主電極すな
わち開孔電極、0は開孔電極(8)の背面に密着して配
設された誘電体、(lO)はこの誘電体αυに密着して
配設され、開孔電極(8)と対向する補助電極、@は熱
交過器、−は流体ガイド、σ4はファン、(至)はレー
ザ筒体、四は絶縁物、μηは主放電空間、(7)はレー
ザガス流の方向を示す矢印である。
FIG. 4 is a sectional view showing an excimer laser device as an example of a conventional discharge-excited short pulse laser device. In the figure, ill is a high voltage power supply, +21, +51, (
71 is a capacitor, (3) is a high resistance, (4) is a switch, (6) is a coil, and (9) is placed in the laser gas flow, with the laser optical axis direction (perpendicular to the plane of the paper) being the longitudinal direction. The first main electrode (8) is a second main electrode, that is, the aperture electrode, which is disposed opposite to the first main electrode (91) and has a plurality of apertures; 0 is the aperture electrode (8 ) is placed in close contact with the back surface of the dielectric, (lO) is placed in close contact with this dielectric αυ, and is an auxiliary electrode facing the aperture electrode (8), @ is the heat exchanger, - is a fluid guide, σ4 is a fan, (to) is a laser cylinder, 4 is an insulator, μη is a main discharge space, and (7) is an arrow indicating the direction of the laser gas flow.

ま次、第5図は上記開孔電極f81を主放電空間叩から
見比平面図であり、図において、a9は開孔部を示す。
Next, FIG. 5 is a plan view of the apertured electrode f81 viewed from the main discharge space, and in the figure, a9 indicates the aperture.

次に動作について説明する。Next, the operation will be explained.

虜ず、回路系について述べる。高電圧電源illから供
給される電荷は、まずキャパシタ(2)に蓄積される。
Let's talk about the circuit system without getting carried away. Charge supplied from the high voltage power supply ill is first stored in the capacitor (2).

次いでスイッチ(4)が導通状態になるとキャパシタ(
2)からスイッチ(4)、さらにアースラインを介して
キャパシタ(6)、コイル(6)ヲ経てキャパシタ(2
)にもどるという電流ループによって、キャパシタ(2
)に蓄積されてい之戒荷はキャパシタ(6)に移行され
る。この迅速な電荷の移行に伴って開孔電極(8)と第
1の主電極(91の間(以下主放電々極間と呼ぶ)およ
び開孔1極(8;と補助α撞[01との間(以下補助放
電々礒間と呼ぶ)の電圧が急峻に上昇する。
Next, when the switch (4) becomes conductive, the capacitor (
2), the switch (4), the capacitor (6) via the ground line, and the capacitor (2) via the coil (6).
), the current loop returns to the capacitor (2
) is transferred to the capacitor (6). Along with this rapid charge transfer, the gap between the aperture electrode (8) and the first main electrode (91 (hereinafter referred to as the main discharge electrode gap), and the gap between the aperture electrode (8) and the auxiliary α The voltage between the auxiliary discharges (hereinafter referred to as the auxiliary discharge interval) rises sharply.

補助放電の開始域圧は主放電の開始電圧より低いへ )  ので、まず開孔電極(8)に設けられ之+tH孔
部atticおいて誘電体回表面((補助放電(沿面放
′屯)が起こる。この補助放電で生成するtL子の一部
およびこの放電場からの紫外光で光電離されて生ずる′
成子が、主放電をグロー状の均一な放電とする定めの株
となり、次いで主放電空間σηにおいてパルス的に主放
電が起ってレーザ媒質が励起され、その結果、レーザ光
が収り出される。このレーザ光のパルス幅は主7i12
′4tのパルス幅によるが、−例をあげれば、短パルス
レーザの1つであるところのエキシマレーザにおいては
数十n5ecである。スイッチ四としては通常サイラト
ロンが用いられ、上記のレーザパルス発振が数Hzない
し数kl(z 、通常は数百Hzのくり返し速度でくり
返し行なわれる。
The starting voltage of the auxiliary discharge is lower than the starting voltage of the main discharge. Therefore, first, the dielectric surface ((auxiliary discharge (surface radiation)) is A part of the tL molecules generated in this auxiliary discharge and photoionization by ultraviolet light from this discharge field are generated.
The main discharge becomes a glow-like uniform discharge, and then the main discharge occurs in a pulsed manner in the main discharge space ση to excite the laser medium, and as a result, laser light is collected. . The pulse width of this laser beam is mainly 7i12
It depends on the pulse width of '4t, but for example, in an excimer laser, which is one of the short pulse lasers, it is several tens of n5ec. A thyratron is normally used as the switch 4, and the above-mentioned laser pulse oscillation is repeated at a repetition rate of several Hz to several kl (z, usually several hundred Hz).

次に流体系について述べる。一般にパルス的に主放電が
起つ之後は主放電空間Uηは、熱的にも電荷分布の点か
らも不均一な状態になっており、次のパルス主放電がア
ークになり易いため、次のパルス主放電が起る前に主放
電空間σηのレーザガスを置き換えておく必要がある。
Next, we will discuss the fluid system. Generally, after the main discharge occurs in a pulsed manner, the main discharge space Uη is in a non-uniform state both thermally and in terms of charge distribution, and the next pulsed main discharge is likely to become an arc. It is necessary to replace the laser gas in the main discharge space ση before the pulsed main discharge occurs.

このため、7アンq4や流体ガイド□□□およびレーザ
ガスの放電による娼度上昇を防ぐ之めの熱交換器@が配
設されており、通常主放電空間における流速が毎秒数十
mという高速なガス流(至)が達成されている。
For this reason, a heat exchanger @ is installed to prevent the temperature from increasing due to the discharge of the 7-anq4, fluid guide □□□, and laser gas, and the flow velocity in the main discharge space is usually as high as several tens of meters per second. Gas flow is achieved.

この従来例においては、開孔′4極(8)および肪電体
圓の冷却は、上記ガス流(至)による乱流熱伝達と背面
の袖助電4i [+u+を介して、背面空間で形成され
る自然対流による熱伝達によってしか行なわれない。し
かも、開孔電極(81側は沿面補助放電および王1!i
電が起っている間は、逆に熱へ力自Jとなる。
In this conventional example, cooling of the aperture' 4 poles (8) and the fat electrolyte circle is achieved in the back space through turbulent heat transfer by the gas flow (through) and the sleeve support electrode 4i [+u+] on the back surface. This is done only by heat transfer due to the natural convection that is formed. Moreover, the aperture electrode (81 side is a creeping auxiliary discharge and a
While there is electricity, the power becomes heat.

エキシマレーザ金利として、Is大入力オーダ?試算し
てみると、レーザパルスエネルギ200mJ/パルス、
(v返し速度1kHzで平均出力200Wの機種を考え
ると、通常レーザ発振効率は1俤であるから、キャパシ
タ(2]に蓄えらねるエネルギは20kWトナル。11
111M系におけるオーミンクな損失が半分とすれば1
okWがガスに投入される。その内わずか数係が開孔’
l1tffi (31部の加、@源になるとしても故g
wのオーダに達する。
Is large input order as excimer laser interest rate? According to a trial calculation, the laser pulse energy is 200mJ/pulse,
(Considering a model with a v-return speed of 1 kHz and an average output of 200 W, the normal laser oscillation efficiency is 1 ton, so the energy that cannot be stored in the capacitor (2) is 20 kW tonal.11
If the Ohmink loss in the 111M system is halved, it is 1
OKW is put into the gas. Only a few of them are open holes.
l1tffi (Additional part 31, even if it becomes @ source, late g
reaches the order of w.

一方、乱流熱云遅率を試算してみると、例えば(甲藤好
部、云熱概揃、養賢竺版、 116p(1982))か
ら、カルツ/のアナロジ式を用いねば、クンセルト数(
N、□′と記す)、レイノルズ数(R,Xと記す)。
On the other hand, when we try to calculate the turbulent heat retardation rate, we find that, for example, if we use the analogy of Kurtz/, we can calculate the Kunsert number (
N, denoted as □'), Reynolds number (denoted as R, X).

ブラントル攻(P と記す)1局所が伝達率< hXと
記す)、流体(一般のエキシマレーザのガス組成はヘリ
ウムが90%以上であるので、試算においてはヘリウム
ガスとする)の熱伝導率(λHaと記す)。
Brantl attack (denoted as P) 1 local transmissivity < h (denoted as λHa).

開孔を極(8)のガス流上流側の喘から、今、局所旅云
達率を試算しようとしている開孔電極(8)上のある部
分筐での距離(Xと記す)の諸変牧を用いて(1” B
 (Re   ) (P r−1) )   [11と
書くことができる。
From the gas flow upstream side of the aperture electrode (8), various changes in the distance (denoted as Using Maki (1” B
It can be written as (Re) (P r-1) ) [11.

Heの圧力を通常のエキシマレーザの動作圧3気圧とし
、ガス流速を通常のエキシマレーザでの流速から20m
/secとし、開孔電極(8)形状全幅0.06to。
The pressure of He was set to the operating pressure of a normal excimer laser at 3 atm, and the gas flow velocity was 20 m from the flow velocity of a normal excimer laser.
/sec, and the full width of the aperture electrode (8) shape is 0.06to.

レーザ光軸方向の長さ0.6mとする。今、距離Xのポ
イントとして0.03m、すなわち電極幅の中央 ゛を
設定すると、レイノルズ数(R”)は1.6 X 10
’ トθ なり、また気体のブラントル牧は約0.7ヘリウムの熱
伝導兜は0.13kcaめhloCであるから、局所熱
伝達係&hxは2.6 X 1o2kcaν2 hr’
cと算出される。
The length in the laser optical axis direction is 0.6 m. Now, if we set 0.03 m as the point of distance X, that is, the center of the electrode width, the Reynolds number (R'') is 1.6
' t θ, and since the heat conduction coefficient of gaseous Bruntl is about 0.7 and the heat conduction of helium is 0.13 kca, hloC, the local heat transfer coefficient &hx is 2.6 X 1o2kcaν2 hr'
It is calculated as c.

今、ヘリウムガス温度と開孔電極(8)1品度との差金
20゛Cとすると、収り去られる熱瀘は、約200Wと
なり、先述のだ一人力と同等もしくほそれ以下にし刀1
M足ない。
Now, assuming that the difference between the helium gas temperature and the quality of the perforated electrode (8) is 20°C, the heat dissipated will be about 200W, which is equivalent to or even less than the single-person power mentioned above. 1
I don't have enough M.

ま乏、上記役定纒度120℃においてに、例えばm孔t
&+glがニッケル(エキシマレーザではもつとも望ま
しい材料とされている)製であるとすると2その線膨張
率0.15 X 10−’から開孔1極(8)は0・2
mmも伸びることになる。一般にIノ!1孔を極は誘゛
虐体u1)に密青させる構造がとられているので、誘電
体111)上を開孔電極(8)がスムーズにすべらず、
上記の伸びは開孔電極(810″そり°°となって麦わ
れることが多い。
For example, at the above-mentioned hardness of 120°C,
If &+gl is made of nickel (which is considered to be a desirable material for excimer lasers), the linear expansion coefficient of 2 is 0.15 x 10-', so the opening pole (8) is 0.2
It will also extend by mm. Generally I-no! Since the structure is such that the pole of the first hole is densely blued to the tormented body u1), the hole electrode (8) does not slide smoothly on the dielectric body 111).
The above elongation often results in an open-hole electrode (810" warpage).

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

従来の放電励起型短パルスレーザ装置は以上の夕  よ
うに構成されているので、レーザ平均出力?向上させω
ためにくり返し適度fJ田1−と、開孔電極(81や誘
電体すυが加熱され、M一応力による肪″心体cl]J
の?l徊や、絹孔電砥f81の反りによって、主波′I
ぼ々極間のギャップ長が局部的に不ぞろいになり、主放
電がアークになりやすいなどの問題点かあつ之。
Conventional discharge-pumped short-pulse laser equipment is configured as shown above, so the average laser output is Improve ω
Therefore, the aperture electrode (81 and the dielectric material S υ are heated, and the fat center body cl) due to M stress is repeatedly applied.
of? The main wave 'I
There are problems such as the gap length between the poles becoming locally uneven and the main discharge easily becoming an arc.

この発I;1IVi上記のような間1点を解消するため
になされ友もので、W1易な方法で開孔電極お1び誘電
体を冷却し、これ足よってレーザ発振のくり返し速/f
を増しても安定に功作する放可励起型短パルスレーザ装
置11を得ることを目的とする。
This oscillation I; 1IVi was made to solve the above-mentioned problem, and W1 cools the apertured electrode 1 and the dielectric in a simple manner, thereby increasing the repetition rate/f of laser oscillation.
It is an object of the present invention to obtain a radiation-excited short pulse laser device 11 that operates stably even when the power is increased.

〔問題点を解決する之めの手段〕[Means for solving problems]

この発明に係る放電励起型短パルスレーザ装置は、レー
ザガス流中に配置され、レーザ光軸方向を長手方向とす
る第1の主電極、第1の主電極と対向して配設され、複
数個の開孔部を有する稟2の主電極、第2の主電極の背
面に密着して配設され之誘電本、この誘?1体に密着し
て配設され、第2の主itt極と対向する補助電極、上
記誘電体および補助1!唖の少なくとも一方に設けられ
定放熱フィン、上記主′@極間にパルス電圧を印加する
パルス回路、並びに上記パルス回路の一部を形成するか
、ま之は上記パルス回路とは独立しtものであって、上
記補助電極と第2の主電極の間に電圧?印加する回路を
備えたものである。
The discharge-excited short-pulse laser device according to the present invention includes a first main electrode that is disposed in a laser gas flow and whose longitudinal direction is in the laser optical axis direction, and a plurality of first main electrodes that are disposed opposite to the first main electrode. The second main electrode having an opening is disposed in close contact with the back surface of the second main electrode. An auxiliary electrode disposed in close contact with one body and facing the second main itt pole, the dielectric and the auxiliary 1! A constant heat dissipation fin provided on at least one side of the opening, a pulse circuit for applying a pulse voltage between the main poles, and a part forming part of the pulse circuit or independent of the pulse circuit. Is there a voltage between the auxiliary electrode and the second main electrode? It is equipped with a circuit for applying voltage.

〔作用〕[Effect]

この発iJ4 Kおける放熱フィンは、以下で詳述する
ように、開孔電極および誘′屯木奮効率良く冷却する。
The heat dissipation fins in this iJ4K efficiently cool the apertured electrodes and the dielectric fins, as will be explained in detail below.

〔JJ!、施例〕[JJ! , example]

以下、この発明の一果踊例を図をもとに説明する。第1
図°rはこの発明の一実施例を示す〜1血図、第1図イ
は第1図アの主要部をイーイ方向から見fc断面図であ
る。図において、CAは放熱フィンであり、この例では
補助・電極(101に設けられている。
Hereinafter, an example of this invention will be explained based on the drawings. 1st
FIG. 1A is a blood diagram showing an embodiment of the present invention, and FIG. 1A is a sectional view fc of the main part of FIG. In the figure, CA is a heat dissipation fin, which in this example is provided on the auxiliary electrode (101).

次に作用について詳細に説り(する。開孔電極(8)。Next, we will explain the operation in detail (open hole electrode (8)).

誘@木Qυ、および補助電極(lO)は、熱的には三層
の積層板を形成している。例えは、開孔電極(8)と補
助電極(lO)の材質をニッケルとし、誘電体αDの材
質?アルミナとすると、総括的な熱伝達率の値は、10
’kcaA%’+n2hr’Cのオーダとなり、先述の
開孔を極(81からヘリウムガスへの熱伝達率より二指
大きい。
The dielectric material Qυ and the auxiliary electrode (lO) form a three-layer laminate thermally. For example, the material of the aperture electrode (8) and the auxiliary electrode (lO) is nickel, and the material of the dielectric αD? For alumina, the overall heat transfer coefficient value is 10
It is on the order of 'kcaA%'+n2hr'C, which is two fingers higher than the heat transfer coefficient from the aforementioned opening to the pole (81 to helium gas).

し次がって、冷BJの律速段階は、し′−ザガス(先述
Lltように例えばエキシマレーザでは90チ以上がヘ
リウム)への熱伝達過程であり、この過程を速めてやれ
ばより効率の良い冷却が可能となる。
Next, the rate-determining step in cold BJ is the process of heat transfer to the gas (for example, in the excimer laser, more than 90 cm is helium, as mentioned above), and if this process is sped up, it will become more efficient. Good cooling is possible.

しかも、エリ1商易な方法でこf″Lを実現するには、
高速で循環され、かつ熱交換器(14でfIA度割鍔さ
れているレーザガス全′は除邪の冷媒とするのが望覆し
い。まず、ガス流速をn倍にすれば、レイノルズ佐がn
倍に、なり、結果として熱伝達率も約n借になるが、そ
の一方では主7i!!電空間Oηにおける圧力個央が(
流速の2乗に比例するので)n2倍にもなり問題である
Moreover, in order to realize this f″L in a commercially easy way,
It is desirable to use all the laser gas, which is circulated at high speed and divided by fIA in the heat exchanger (14), as a refrigerant to remove evil spirits. First, if the gas flow rate is increased by n times, Reynolds
double, and as a result, the heat transfer coefficient also becomes about n, but on the other hand, the main 7i! ! The pressure center in the electric space Oη is (
This is a problem because it is proportional to the square of the flow velocity), which is n2 times greater.

そこで補助電極f101 k冷却する事を考、える。先
述しtようt・乞、開孔4槓(81と誘電体αυと補助
電極(1o)の積層板間の熱云述高は大争いので、補助
電極(101を冷却することにより側孔′4極(81お
工び誘電体0υの効果的な冷却(1千分行なえる。
Therefore, we consider cooling the auxiliary electrode f101k. As mentioned earlier, since the heat level between the hole 4 hole (81), the dielectric material αυ, and the auxiliary electrode (1o) laminate is a big issue, by cooling the auxiliary electrode (101), the side hole' Effective cooling of 4 poles (81 manufactured dielectric material 0υ) (can be used for 1000 minutes).

この之めに補助車(i t+o+に放熱フィン(イ)を
設け、この放熱フィン四にレーザガス金泥すようにし之
For this purpose, a heat radiation fin (A) is provided on the auxiliary vehicle (it+o+), and this heat radiation fin 4 is coated with laser gas gold.

今、補助1!極(10)の面積をA、このAのうちフィ
ン121Jを設は次際にフィン暖;ηがついてい;tい
残りの部分の[rrI槓をA O+フィン(7)の全r
kJ積金Af+ フイン表面の熱伝達率をhoとすると
、熱云連係数は次式で与えられる。
Subsidy 1 now! The area of the pole (10) is A, and the area of the fin 121J of this A is the fin temperature; η is attached;
When the heat transfer coefficient of the kJ stack Af+ fin surface is set to ho, the thermal coupling coefficient is given by the following equation.

ここで、ηはフィン効率と呼ばれ、フィン四麦面の熱伝
達率とフィン四材料の熱伝導率、フィン善の淳み、フィ
ン(イ)の高さによって決まる11自である。
Here, η is called the fin efficiency and is determined by the heat transfer coefficient of the fin surface, the thermal conductivity of the fin material, the thickness of the fin, and the height of the fin (A).

(3)式から明らかなようにηAfを大きくするように
フィン形状を選ぶことIcよってh’l檜めて大きくす
ることができる。−例を以下に示す。
As is clear from equation (3), by selecting the fin shape so as to increase ηAf, h'l can be made larger by Ic. - Examples are shown below.

補助11極(10)の断面損金先述の開孔電極(8)と
同様に、幅0.06m、レーザ尤軸力向の長さ0.6m
とし、これに高さ0.02mで厚み0 、5mmの放電
フィンt、a’t−2、5mm間隔でレーザ光軸と1α
交する方向に200枚設は之とすると、A、は0.03
n12. Af&40.48m”となる。1之、フィン
材料をニッケルとし、フィン(ホ)β   部を通過す
るガス流速を20m/s・ecとすると(甲藤好部、云
熱概論、養賢堂版、2)p (1982))よりフィン
効率ηは0.86.フィン(イ)表面の熱伝達率hOは
2.6 X 10Qkcat/m2 hピCと浸るから
、熱伝達率りは(3)式より3.2 X lo’kca
t/rn2hr’(:となり、従来例に比べて1桁も大
きくなる。
Cross-sectional loss of the auxiliary 11 pole (10) Same as the above-mentioned open-hole electrode (8), the width is 0.06 m, and the length in the direction of the laser likely axis force is 0.6 m.
In addition to this, a discharge fin t, a't-2, with a height of 0.02 m and a thickness of 5 mm, a't-2, and the laser optical axis and 1 α
Assuming that 200 sheets are installed in the intersecting direction, A is 0.03
n12. Af&40.48m''.1.If the fin material is nickel and the gas flow rate passing through the fin (E) β part is 20m/s・ec (Yoshibu Kato, Introduction to Yonnetsu, Yokendo edition, 2 )p (1982)), the fin efficiency η is 0.86.The heat transfer coefficient hO on the surface of the fin (A) is 2.6 3.2 X lo'kca
t/rn2hr'(:, which is one order of magnitude larger than the conventional example.

次に動作について説明する。回路系の動作は第4図にお
いて説明し比ので第1図におい2では省略し之。
Next, the operation will be explained. The operation of the circuit system will be explained in FIG. 4 and will be omitted at 2 in FIG. 1 for convenience.

1ず、レーザガスはファ704によって循環されている
。主放電空間口を出たガスは熱交換器四で所定の温度に
冷却され再び主放電空間q7)に戻されるが、その一部
は補助il!極(10)の背面に設けられ之放熱フィン
(4)部に送られ補助電極(10)を介して誘電体(ロ
)および開孔電極(8)の冷却を行う。主放1!空間μ
ηおよび放熱フィン善部を通過し之ガスは再び混合され
、熱交換器@へと導かれてゆく。
First, the laser gas is circulated by the filter 704. The gas leaving the main discharge space opening is cooled to a predetermined temperature by heat exchanger 4 and returned to the main discharge space q7), but a portion of it is auxiliary il! The heat is sent to the heat dissipation fin (4) provided on the back surface of the pole (10) and cools the dielectric (b) and the apertured electrode (8) via the auxiliary electrode (10). Main release 1! space μ
The gases passing through η and the heat dissipating fins are mixed again and guided to the heat exchanger @.

この実症例においては開孔電極(81の厚み0−5mm
誘電体(6)の厚み2mm +補助電極(lO)の厚み
1mmであり、各i!極の断面積、フィン−〇大きさ、
ガス流速は先述の熱伝達率の試算で用い九個と同じであ
る。エキシマガス3気圧(He:Xe:C2−0,15
:0.75:99.1)k用いてレーザバルスエネルキ
loom、T/パルスの発振を行った際、放熱フィン善
を設けなかつ之場合は、くり返し速度300H2I7)
段階で、開孔電極(8)の熱膨張による反りに起因する
主放電々極間のギャツプ長の不ぞろいができ、グロー状
の主放′曙に混って、フィラメント状の7j!電が起っ
てい之か、この実症例においては、 400H2までく
り返し速度をあげてもフィラメント状の放電は発生せず
、この冷却方法の有効性が証明され友。くり返し速度を
さらにkHzオーダにまで増し之際には、この差はさら
に顕著なものになるであろうことは言うまでもない。
In this actual case, a hole electrode (81, thickness 0-5 mm) was used.
The thickness of the dielectric (6) is 2 mm + the thickness of the auxiliary electrode (lO) is 1 mm, and each i! Pole cross-sectional area, fin size,
The gas flow velocity is the same as the nine used in the trial calculation of the heat transfer coefficient described above. Excimer gas 3 atm (He:Xe:C2-0,15
:0.75:99.1) When oscillating the laser pulse energy room, T/pulse using k, if no heat dissipation fins are provided, the repetition rate is 300H2I7)
At this stage, the gap length between the main discharge electrodes becomes uneven due to warpage due to thermal expansion of the apertured electrode (8), which is mixed with the glow-like main discharge, resulting in a filament-like 7j! In this actual case, even if the speed was repeatedly increased to 400H2, no filamentary discharge occurred, proving the effectiveness of this cooling method. Needless to say, this difference will become even more significant when the repetition rate is further increased to the order of kHz.

第2図はこの発明による他の実症例を示し、この実症例
においては、ガス流路において、主放電空間αηと放熱
フィン(4)部が直列に配設されている。
FIG. 2 shows another actual case according to the present invention, in which the main discharge space αη and the heat radiation fin (4) section are arranged in series in the gas flow path.

したがって、第1図のように両者が並列に配設されてい
る場合には、ファンaΦのガス流量を放熱フィン(4)
部通過ガス流に相当する量だけ増さねばならないのに対
し、この実症例ではガス流量はそのま\でよいが、ファ
ン(ロ)の吐出圧力を増してやらねばならない。何れの
形態を収るかは、むしろファンα美性能から決定される
ものである。
Therefore, when both are arranged in parallel as shown in Fig. 1, the gas flow rate of the fan aΦ is controlled by the heat radiation fin (4).
In contrast, in this actual case, the gas flow rate can be left as is, but the discharge pressure of the fan (b) must be increased. Rather, which form it fits is determined by the fan α beauty performance.

第3図はこの発明のさらに他の実症例に係る放熱フィン
部を示す断面図であり、この実崩例においては補助電極
(lO)か誘電体Uυ内部に埋め込まれ文構造となって
いる定め、放熱フィン四は誘電体すυに設けられている
。この場合の放熱フィン四の材料は、誘電体であっても
金属であってもよい。
FIG. 3 is a sectional view showing a heat dissipation fin portion according to still another example of the present invention, in which the auxiliary electrode (lO) is embedded inside the dielectric Uυ and has a linear structure. , the radiation fins 4 are provided on the dielectric material υ. The material of the radiation fins 4 in this case may be dielectric or metal.

なお、上記実症例では何れもエキシマレーザの場合につ
いて主に説明し比が、この発明は例えばTEA 00w
レーザなど他の放電励起型短パルスレーザにも適用でき
、上記実症例と同様の効果を奏する。
In addition, in all the above actual cases, the case of excimer laser is mainly explained and the ratio is, but this invention is, for example, TEA 00w.
It can also be applied to other discharge-excited short-pulse lasers, such as lasers, and produces the same effects as in the actual case described above.

ま之、開孔電極(8)としてはパンチングメタルやメツ
シュなどを用いることができ、開孔部四の形状は円形の
他、だ円形や多角形などであってもよい。
However, punching metal, mesh, or the like can be used as the aperture electrode (8), and the shape of the aperture 4 may be oval, polygon, or the like in addition to a circle.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、レーザガス流中に配
置され、レーザ光軸方向を長手方向とする第1の主電極
、第1の主電極と対向して配設され、複数個の開孔部を
有する第2の主電極、第2の主電極の背面に密着して配
設され之訪電本、この誘電体に密着して配設され、第2
の主電極と対向する補助電極、上記誘電体および補助電
極の少なくとも一方に設けられ几放熱フィン、上記主電
極間にパルス電圧を印加するパルス回路、並びに上記パ
ルス回路の一部を形成するか、ま之は上記パルス回路と
は独立したものであって、上記補助電極と第2の主電極
の間に電圧を印加する回路を備え九ので、簡単な方法で
第2の主電極および上記誘電体を効率よく冷却すること
ができ、その結果、レーザ発振のくり返し速度全項して
も安定I(動作する放電励起型短パルスレーザ装置が得
られる効果がある。
As described above, according to the present invention, the first main electrode is disposed in the laser gas flow and has a longitudinal direction in the direction of the laser optical axis, the first main electrode is disposed opposite to the first main electrode, and the plurality of open A second main electrode having a hole is disposed in close contact with the back surface of the second main electrode, and a second main electrode is disposed in close contact with the dielectric.
forming a part of the pulse circuit; Since the circuit is independent of the pulse circuit and includes a circuit for applying a voltage between the auxiliary electrode and the second main electrode, the second main electrode and the dielectric can be easily connected to the second main electrode and the dielectric. can be efficiently cooled, and as a result, a discharge-excited short pulse laser device that operates stably even at all terms of the repetition rate of laser oscillation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(7)はこの発明の一実施例を示す断面図、第1
図イ)は第1図(力の主要部をイーイ方向から見た  
乏衛面図、第2図はこの発明の他の実施例を示す”  
 、、fJ図、ヶ3.ゆ。。発明。55.他。ヶ抱ヵえ
係る放熱フィン部を示す衛面図、第4図は従来の放電励
起型短パルスレーザ装置を示す断面図、第5図は第4図
に示す第2の主電極を主放電空間から見fc平面図であ
る。 図において、(8jは第2の主電極、(91は第1の主
電極、(10)は補助電極、αVは誘電体、μsはレー
ザガス流を示す矢印、四は開孔部、l、4は放熱フィン
である。 なお、各図中、同一符号は同一′または相当部分を示す
ものとする。
FIG. 1 (7) is a sectional view showing one embodiment of the present invention.
Figure A) is Figure 1 (main part of force viewed from direction A).
Figure 2 shows another embodiment of this invention.
,, fJ diagram, 3. hot water. . invention. 55. other. Fig. 4 is a cross-sectional view showing a conventional discharge-excited short pulse laser device, and Fig. 5 shows the second main electrode shown in Fig. 4 in the main discharge space. It is a fc plan view seen from the side. In the figure, (8j is the second main electrode, (91 is the first main electrode, (10) is the auxiliary electrode, αV is the dielectric, μs is the arrow indicating the laser gas flow, 4 is the opening, l, 4 is a heat dissipation fin. In each figure, the same reference numerals indicate the same '' or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)レーザガス流中に配置され、レーザ光軸方向を長
手方向とする第1の主電極、第1の主電極と対向して配
設され、複数個の開孔部を有する第2の主電極、第2の
主電極の背面に密着して配設された誘電体、この誘電体
に密着して配設され、第2の主電極と対向する補助電極
、上記誘電体および補助電極の少なくとも一方に設けら
れた放熱フィン、上記主電極間にパルス電圧を印加する
パルス回路、並びに上記パルス回路の一部を形成するか
、または上記パルス回路とは独立したものであつて、上
記補助電極と第2の主電極の間に電圧を印加する回路を
備えた放電励起型短パルスレーザ装置。
(1) A first main electrode disposed in the laser gas flow and having its longitudinal direction in the direction of the laser optical axis; a second main electrode disposed opposite to the first main electrode and having a plurality of openings; an electrode, a dielectric material disposed in close contact with the back surface of the second main electrode, an auxiliary electrode disposed in close contact with the dielectric material and facing the second main electrode, and at least the dielectric material and the auxiliary electrode. A radiation fin provided on one side, a pulse circuit that applies a pulse voltage between the main electrodes, and a part that forms part of the pulse circuit or is independent of the pulse circuit, and is connected to the auxiliary electrode. A discharge-excited short-pulse laser device including a circuit that applies a voltage between second main electrodes.
(2)放熱フィンはレーザガス流中に配設されている特
許請求の範囲第1項記載の放電励起型短パルスレーザ装
置。
(2) The discharge-excited short-pulse laser device according to claim 1, wherein the radiation fins are disposed in the laser gas flow.
JP23926884A 1984-10-09 1984-11-13 Discharge excitation short pulse laser device Pending JPS61116889A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP23926884A JPS61116889A (en) 1984-11-13 1984-11-13 Discharge excitation short pulse laser device
US06/782,568 US4686682A (en) 1984-10-09 1985-10-01 Discharge excitation type short pulse laser device
EP94114362A EP0637106B1 (en) 1984-10-09 1985-10-02 Discharge excitation type laser device
DE3587852T DE3587852T2 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device.
EP93100550A EP0543795B1 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device
DE19853588118 DE3588118T2 (en) 1984-10-09 1985-10-02 Discharge-excited laser for generating short pulses
EP85112484A EP0177888B1 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device
DE19853588137 DE3588137T2 (en) 1984-10-09 1985-10-02 Discharge-excited laser device
DE19853588088 DE3588088T2 (en) 1984-10-09 1985-10-02 Discharge-excited laser for generating short pulses
EP93100578A EP0542718B1 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device
CA000492327A CA1259122A (en) 1984-10-09 1985-10-04 Discharge excitation type short pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23926884A JPS61116889A (en) 1984-11-13 1984-11-13 Discharge excitation short pulse laser device

Publications (1)

Publication Number Publication Date
JPS61116889A true JPS61116889A (en) 1986-06-04

Family

ID=17042235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23926884A Pending JPS61116889A (en) 1984-10-09 1984-11-13 Discharge excitation short pulse laser device

Country Status (1)

Country Link
JP (1) JPS61116889A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204681A (en) * 1987-02-20 1988-08-24 Toshiba Corp Heat exchanger fin for excimer laser
JPS63204680A (en) * 1987-02-20 1988-08-24 Toshiba Corp Blower fin for excimer laser
JPH045667U (en) * 1990-05-02 1992-01-20
JP2000058944A (en) * 1998-05-20 2000-02-25 Cymer Inc Highly reliable modular manufacture high-quality narrow band high repeat rate f2 laser
US6414978B2 (en) 1999-04-07 2002-07-02 Lambda Physik Ag Discharge unit for a high repetition rate excimer or molecular fluorine laser
US6546036B1 (en) 1999-06-08 2003-04-08 Lambda Physik Ag Roof configuration for laser discharge electrodes
US6570901B2 (en) 2000-02-24 2003-05-27 Lambda Physik Ag Excimer or molecular fluorine laser having lengthened electrodes
US6785316B1 (en) 1999-08-17 2004-08-31 Lambda Physik Ag Excimer or molecular laser with optimized spectral purity
US6847671B1 (en) 2000-03-29 2005-01-25 Lambda Physik Ag Blower for gas laser
JP2012217761A (en) * 2011-04-13 2012-11-12 Hitachi Ltd Plasma sterilization apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204681A (en) * 1987-02-20 1988-08-24 Toshiba Corp Heat exchanger fin for excimer laser
JPS63204680A (en) * 1987-02-20 1988-08-24 Toshiba Corp Blower fin for excimer laser
JPH045667U (en) * 1990-05-02 1992-01-20
JP2000058944A (en) * 1998-05-20 2000-02-25 Cymer Inc Highly reliable modular manufacture high-quality narrow band high repeat rate f2 laser
US6414978B2 (en) 1999-04-07 2002-07-02 Lambda Physik Ag Discharge unit for a high repetition rate excimer or molecular fluorine laser
US6430205B2 (en) 1999-04-07 2002-08-06 Lambda Physik Ag Discharge unit for a high repetition rate excimer or molecular fluorine laser
US6556609B2 (en) 1999-04-07 2003-04-29 Lambda Physik Ag Discharge unit for a high repetition rate excimer or molecular fluorine laser
US6546036B1 (en) 1999-06-08 2003-04-08 Lambda Physik Ag Roof configuration for laser discharge electrodes
US6785316B1 (en) 1999-08-17 2004-08-31 Lambda Physik Ag Excimer or molecular laser with optimized spectral purity
US6570901B2 (en) 2000-02-24 2003-05-27 Lambda Physik Ag Excimer or molecular fluorine laser having lengthened electrodes
US6847671B1 (en) 2000-03-29 2005-01-25 Lambda Physik Ag Blower for gas laser
JP2012217761A (en) * 2011-04-13 2012-11-12 Hitachi Ltd Plasma sterilization apparatus

Similar Documents

Publication Publication Date Title
US7145927B2 (en) Laser diode arrays with replaceable laser diode bars and methods of removing and replacing laser diode bars
US5898261A (en) Fluid-cooled particle-beam transmission window
JPS61116889A (en) Discharge excitation short pulse laser device
US5600668A (en) Slab laser
US3942880A (en) Laser mirror
US7970038B2 (en) Slab laser with stand-off for ceramic spacers
JP5263701B2 (en) Cooling device using plasma synthetic jet
JPWO2016009622A1 (en) Semiconductor laser device
JPH08204263A (en) Semiconductor laser-excited laser oscillator
US6418016B1 (en) System and method for cooling using an oscillatory impinging jet
JPS6364069B2 (en)
US3817606A (en) Mirror for high power lasers and method of fabricating same
Pais et al. Spray cooling of a high power laser diode
JPH0964568A (en) Radiator
JP2003264328A (en) Waveguide gas laser oscillator
WO2017064881A1 (en) Solid laser amplification device
JPS6312185A (en) Cooling equipment for gas laser oscillator
JPH0255205A (en) Ozonizer
JP2013187444A (en) Laser oscillator
JPS6288384A (en) Gas laser device
JP2005285811A (en) Thermal power generation equipment
Zand et al. Design and Construction of a Three-Color Gold–Copper-Vapor Laser and the Output-Power Dependence on the Frequency and Buffer-gas Pressure
JP2022063819A (en) Local cooling device
JP2001048503A (en) Air-cooled type ozonizer
JPS5818088A (en) Cooling body