JP2022063819A - Local cooling device - Google Patents

Local cooling device Download PDF

Info

Publication number
JP2022063819A
JP2022063819A JP2020180926A JP2020180926A JP2022063819A JP 2022063819 A JP2022063819 A JP 2022063819A JP 2020180926 A JP2020180926 A JP 2020180926A JP 2020180926 A JP2020180926 A JP 2020180926A JP 2022063819 A JP2022063819 A JP 2022063819A
Authority
JP
Japan
Prior art keywords
cooling device
cooling
water
heat
pelche
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020180926A
Other languages
Japanese (ja)
Inventor
一哲 高橋
Kazuaki Takahashi
知也 橋本
Tomoya Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020180926A priority Critical patent/JP2022063819A/en
Publication of JP2022063819A publication Critical patent/JP2022063819A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a local cooling device capable of providing high-efficiency cooling for a local high load heating element.SOLUTION: The local cooling device keeps a temperature difference between the heat input and heat release surfaces to be dT≤10°C so that an electron cooling element can be driven with high efficiency by hybrid cooling between the electron cooling element and a radiator and by controlling a cooling flow path to minimize the relative front and back surface temperature difference within the electron cooling element.SELECTED DRAWING: None

Description

本発明は局所高負荷発熱体、特に半導体レーザ対し、高効率に冷却することができる冷却装置に関する。The present invention relates to a cooling device capable of highly efficiently cooling a locally high-load heating element, particularly a semiconductor laser.

解決手段Solution

電子冷却素子とラジエターとのハイブリッド冷却と、電子冷却素子内の相対する表裏温度差を最小になるように冷却流路を制御することにより、電子冷却素子が高効率に駆動できる入熱面と放熱面の温度差dT≦10℃に抑える。By controlling the cooling flow path so as to minimize the temperature difference between the front and back sides of the electronic cooling element and the hybrid cooling of the electronic cooling element and the radiator, the heat input surface and heat dissipation that can drive the electronic cooling element with high efficiency. The surface temperature difference dT ≦ 10 ° C is suppressed.

特開2019-37757号公報Japanese Unexamined Patent Publication No. 2019-37757

図3に従来の実施例を示す。
サーバラックシステム(伝導システムと対流システムを組み込んだハイブリッドシステム10)は、内部にサーバー12を収納するサーバーラック11と熱伝達装置との組み合わせ体であって、サーバーラックと、ハウジングの形態のヒートシンクと、サーバーラックとヒートシンクとを熱接触させる熱接触構造体13、14と、サーバーラックを冷却する冷却液の供給源を提供する冷却器19と、を備え伝導熱伝達と対流熱伝達の両熱伝達によって、サーバーラックから熱を除去し、サーバーラックを所定の温度範囲内に維持している。
FIG. 3 shows a conventional embodiment.
The server rack system (hybrid system 10 incorporating a conduction system and a convection system) is a combination of a server rack 11 for accommodating a server 12 and a heat transfer device, and includes a server rack and a heat sink in the form of a housing. , A thermal contact structure 13, 14 for thermal contact between the server rack and the heat sink, and a cooler 19 for providing a source of coolant for cooling the server rack, both conductive heat transfer and convection heat transfer. Removes heat from the server rack and keeps the server rack within a predetermined temperature range.

しかしながら、半導体レーザ(以下LDと略す)等の局所的に高発熱体を室温以下に冷却しようとするとペルチェ等の冷却手段が必要になる。しかしペルチェ冷却は熱を高効率で放熱しないと、ペルチェ自体が高熱伝導体なので表裏で高温熱が冷却部に伝導するので冷却能力が低下する。よって、できるだけペルチェ両面の温度差dT≦10℃しなくてはならないが、ペルチェ単体で高能力かつ高効率に温度差dT≦10℃を得るのは困難であった。However, in order to locally cool a high heating element such as a semiconductor laser (hereinafter abbreviated as LD) to room temperature or lower, a cooling means such as Pelche is required. However, if Pelche cooling does not dissipate heat with high efficiency, since Pelche itself is a high thermal conductor, high temperature heat is conducted to the cooling part on the front and back, so the cooling capacity decreases. Therefore, the temperature difference dT ≦ 10 ° C. on both sides of Pelche must be as high as possible, but it is difficult to obtain the temperature difference dT ≦ 10 ° C. with high capacity and high efficiency by Pelche alone.

解決手段Solution

本発明はこの課題を解決すべく、電子冷却素子とラジエターとのハイブリッド冷却と、電子冷却素子内の相対する表裏温度差を最小になるように冷却流路を制御し、更にペルチェ等の電子冷却素子が高効率に駆動できる入熱面と放熱面の温度差dT≦10℃に抑えることにより、高出力LD等の高熱密度かつ高負荷発熱体に対しても、高効率に冷却することができる。In order to solve this problem, the present invention controls the hybrid cooling of the electronic cooling element and the radiator, the cooling flow path so as to minimize the relative front and back temperature difference in the electronic cooling element, and further electronic cooling of Pelche and the like. By suppressing the temperature difference dT ≤ 10 ° C between the heat input surface and the heat radiation surface where the element can be driven with high efficiency, it is possible to highly efficiently cool even a high heat density and high load heating element such as a high output LD. ..

発明の効果The invention's effect

以上のように、本発明の請求項1~請求項4に記載された発明は、高出力LDや電流制御デバイスの様に局所的に大きな発熱が発生する高負荷デバイスに対し、高効率で冷却できる。As described above, the invention according to claim 1 to 4 of the present invention cools with high efficiency for a high load device such as a high output LD or a current control device that locally generates a large amount of heat. can.

そして、従来の強制空冷放熱板とペルチェによる放熱と比較して、高出力LD等の冷却能力を倍以上に増加させるので、同じ高出力LDを搭載したレーザ出力に於いて、倍以上にレーザ出力をあげることができる。And, compared with the conventional forced air-cooled heat sink and heat dissipation by Pelche, the cooling capacity of high output LD etc. is more than doubled, so the laser output with the same high output LD is more than doubled. Can be given.

図1は本発明の実施の形態1に係るレーザ装置の全体構成図であり、(a)上面図、(b)は側面図、(c)はA-A断面、(d)は側面外観図である。1A and 1B are overall configuration views of the laser apparatus according to the first embodiment of the present invention, where FIG. 1A is a top view, FIG. 1B is a side view, FIG. 1C is a cross-sectional view taken along the line AA, and FIG. Is.

図2は本発明の実施の形態2に係るレーザ装置の全体構成図であり、(a)は上面図、(b)X-X断面図、(c)はY-Y断面図、(d)は上面図、(e)はA-A断面図である。2A and 2B are overall configuration views of the laser apparatus according to the second embodiment of the present invention, where FIG. 2A is a top view, FIG. 2B is a sectional view taken along the line XX, and FIG. 2C is a sectional view taken along the line YY. Is a top view and (e) is a sectional view taken along the line AA. 図3は従来の実施例である。FIG. 3 is a conventional embodiment. 図4はペルチェの冷却能力特性である。FIG. 4 shows the cooling capacity characteristics of Pelche.

以下本発明の実施の形態について、図面を参照しながら説明する。
図1と図2の番号を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
This will be described with reference to the numbers of FIGS. 1 and 2.

実施の形態1Embodiment 1

図1は本発明の実施の形態1に係るレーザ装置の全体構成図であり、(a)は上面図、(b)は側面図、(c)はA-A断面、(d)は側面外観図である。1A and 1B are overall configuration views of a laser apparatus according to a first embodiment of the present invention, where FIG. 1A is a top view, FIG. 1B is a side view, FIG. 1C is a cross section taken along the line AA, and FIG. 1D is a side view. It is a figure.

電子冷却素子であるペルチェ101(太線)が内蔵された熱交換部102からの排水口103、104から排水された排水105はポンプ106を介してファン107により空冷されたラジエター108で冷却後、熱交換部102への入水配管109を介して熱交換部102の入水口110に入水されていることにより、熱交換部102での冷却とラジエター108での冷却とのハイブリッド冷却構成となっている。The drainage ports 103 from the heat exchange section 102 in which the electronic cooling element Pelche 101 (thick wire) is built, and the drainage 105 drained from 104 are cooled by the radiator 108 air-cooled by the fan 107 via the pump 106 and then heated. By receiving water into the water inlet 110 of the heat exchange unit 102 via the water inlet pipe 109 to the exchange unit 102, the heat exchange unit 102 has a hybrid cooling configuration of cooling at the heat exchange unit 102 and cooling at the radiator 108.

係る構成に於いて熱交換部102の冷却機能について説明する。
ペルチェ101の吸熱側111にはペルチェ101の全面に対して、高熱伝導体である銅板112が、高熱伝導ペースト113により接着されている。
この銅板112には、更にペルチェ101より小さな面積の有するペルチェ114(太線)の放熱側115が高熱伝導ペースト113により接着されている。
ペルチェ114の吸熱側116には、再び銅板117に高熱伝導ペースト113にて接着されていて、更に、LD等の局所高発熱体118を冷却している。
The cooling function of the heat exchange unit 102 will be described in such a configuration.
A copper plate 112, which is a high thermal conductor, is adhered to the entire surface of the Pelche 101 on the endothermic side 111 of the Pelche 101 with a high thermal conductive paste 113.
The heat dissipation side 115 of the Pelche 114 (thick wire) having a smaller area than the Pelche 101 is further adhered to the copper plate 112 by the high thermal conductive paste 113.
The endothermic side 116 of the Pelche 114 is again adhered to the copper plate 117 with the high thermal conductive paste 113, and further cools the local high heating element 118 such as the LD.

次に熱交換部102の排熱機能について説明する。ラジエター108にて冷却され、入水口110から侵入した循環水119はペルチェ101の放熱側120の中央部に流れ込んでいる。その後、千鳥状に配置された仕切り板121を通過中にペルチェ101からの熱を吸収し高温水となって排水口103、104から排出されている。Next, the heat exhaust function of the heat exchange unit 102 will be described. The circulating water 119 cooled by the radiator 108 and invading from the water inlet 110 flows into the central portion of the heat radiation side 120 of the Pelche 101. After that, while passing through the partition plates 121 arranged in a staggered pattern, the heat from the Pelche 101 is absorbed and becomes high temperature water, which is discharged from the drainage ports 103 and 104.

なお、水は最も熱容量が大きく、温めにくいので、単にペルチェ101の放熱側120全体を水没させても、熱伝導は僅かであった。この理由としては、層流を形成している為、ペルチェ101表面での流速が0に近くなり、この層流の低流速部が熱伝導壁となり温度上昇は少なく、ペルチェ101表面近傍に熱がこもり、冷却効率は低かったと推測した。そこで、千鳥状に配置された仕切り板121を多くして水路長を5倍UPさせると、温度上昇は6~10倍と遥かに増加し、ペルチェ101に20Wの電力を投入すると10℃以上温度上昇させることができた。これは千鳥状に配置された仕切り板121を多く追加することにより、流速が増加して乱流となりペルチェ101表面の流速増加による放熱が増加したからだと考える。Since water has the largest heat capacity and is difficult to heat, even if the entire heat dissipation side 120 of Pelche 101 is simply submerged, heat conduction is slight. The reason for this is that because a laminar flow is formed, the flow velocity on the surface of Pelche 101 becomes close to 0, the low flow velocity part of this laminar flow becomes a heat conduction wall, the temperature rise is small, and heat is generated near the surface of Pelche 101. It was presumed that the cooling efficiency was low due to muffled air. Therefore, if the number of partition plates 121 arranged in a staggered pattern is increased to increase the channel length by 5 times, the temperature rise will increase by 6 to 10 times, and when 20 W of electric power is applied to Pelche 101, the temperature will be 10 ° C or higher. I was able to raise it. It is considered that this is because the flow velocity increases and becomes turbulent due to the addition of many partition plates 121 arranged in a staggered pattern, and the heat dissipation due to the increase in the flow velocity on the surface of Pelche 101 increases.

一方ラジエター108は内部の水温と室温との温度差が増えると、急激に冷却効率が増加する。本実施例では、ペルチェ101に20W、ペルチェ101に10W供給し、10Wの熱負荷を局所高発熱体118に与え20℃に調整した場合、ラジエター108での温度差は10℃以上となり、効率よく冷却することができた。なお、ラジエター108での温度差は、時間経過や各構成要素の姿勢やサイズや形状、各界面状態や室温分布等、多くのパラメータがあり、それらで大きく変化するので、詳細な測定条件は割愛する。On the other hand, the cooling efficiency of the radiator 108 sharply increases as the temperature difference between the internal water temperature and the room temperature increases. In this embodiment, when 20 W is supplied to Pelche 101 and 10 W is supplied to Pelche 101 and a heat load of 10 W is applied to the local high heating element 118 and adjusted to 20 ° C., the temperature difference in the radiator 108 becomes 10 ° C. or more, which is efficient. I was able to cool it. The temperature difference in the radiator 108 has many parameters such as the passage of time, the posture, size and shape of each component, each interface state and room temperature distribution, and changes greatly depending on them, so detailed measurement conditions are omitted. do.

また、ペルチェ101はペルチェ電源122により駆動されているが、ペルチェ電源122からの熱がラジエター108に入らない様に、ラジエター108は吸気するようにファン107を回転させているが、ラジエター108とファン107の順番を逆にしてもラジエター108での温度差10℃は殆ど差がなかった。これはラジエター108にファン107から吹き付ける場合は、流速が上がるが、ファン107の発熱が加算される、逆の場合は、ラジエター108に吸引される流速は吹き付ける時より低速であるが、ファン107の発熱の影響を受けないから、結局はラジエター108での温度差10℃には、差が殆ど観察されなかったからだと考える。Further, although the Perche 101 is driven by the Perche power supply 122, the radiator 108 rotates the fan 107 so as to take in the radiator 108 so that the heat from the Perche power supply 122 does not enter the radiator 108, but the radiator 108 and the fan Even if the order of 107 was reversed, there was almost no difference in the temperature difference of 10 ° C. in the radiator 108. This is because when the radiator 108 is blown from the fan 107, the flow velocity increases, but the heat generated by the fan 107 is added. Since it is not affected by heat generation, it is considered that the difference was hardly observed in the temperature difference of 10 ° C. in the radiator 108 after all.

更に、ペルチェ101を長くしたり、千鳥状に配置された仕切り板121を多く追加すると、ペルチェ101からの排熱が大きくなり、ラジエター108での温度差が更に大きくできるので、冷却能力が更に増加する。Further, if the Pelche 101 is lengthened or a large number of partition plates 121 arranged in a staggered pattern are added, the exhaust heat from the Pelche 101 becomes large, and the temperature difference in the radiator 108 can be further increased, so that the cooling capacity is further increased. do.

また、本実施例1では中央部に配置された局所高発熱体118の冷却能力をあげる為に、ラジエター108からの循環水119は中央部から取り込んでいるが、局所高発熱体118であるLDの設置位置に最も近づく様に入水口110を移動しても良い。Further, in the first embodiment, in order to increase the cooling capacity of the locally high heating element 118 arranged in the central portion, the circulating water 119 from the radiator 108 is taken in from the central portion, but the LD which is the local high heating element 118 is taken in. The water inlet 110 may be moved so as to be closest to the installation position of.

更に、LDドライバ等の発熱体を水冷発熱体123としてラジエター108への水路124に挿入することにより、LD駆動能力を更に大きくできるのは自明である。更に、銅板112に第2のペルチェ114を接着せずに、代わりに局所高発熱体118を接着しても良い。Further, it is obvious that the LD drive capacity can be further increased by inserting a heating element such as an LD driver into the water channel 124 to the radiator 108 as a water-cooled heating element 123. Further, instead of adhering the second Pelche 114 to the copper plate 112, a local high heating element 118 may be adhered instead.

また、銅板117から局所高発熱体118を外し無負荷状態に最適化すると、ペルチェ101とペルチェ114共に温度差は30℃以上得られた。よって循環水温度を10℃にすると、10℃-30℃×2=-50℃といった極低温が期待できる。Further, when the local high heating element 118 was removed from the copper plate 117 and optimized for a no-load state, a temperature difference of 30 ° C. or more was obtained for both Pelche 101 and Pelche 114. Therefore, when the circulating water temperature is set to 10 ° C., an extremely low temperature of 10 ° C.-30 ° C. × 2 = −50 ° C. can be expected.

図2は本発明の実施の形態2に係るレーザ装置の全体構成図であり、(a)は高温側の上面図、(b)X-X断面図、(c)はY-Y断面図、(d)は低温側の上面図、(e)はA-A断面図である。
第1の実施例との相違点は、局所高発熱体であるLDが水冷型LD50であり水冷が必要な場合に対し、高効率に冷却させる構成を提供する点である。
2A and 2B are overall configuration views of the laser apparatus according to the second embodiment of the present invention, where FIG. 2A is a top view on the high temperature side, FIG. 2B is a sectional view taken along the line XX, and FIG. 2C is a sectional view taken along the line YY. (D) is a top view on the low temperature side, and (e) is a sectional view taken along the line AA.
The difference from the first embodiment is that the LD, which is a local high heating element, is a water-cooled LD50 and provides a configuration for cooling with high efficiency when water cooling is required.

ペルチェ101が内蔵された熱交換部51からの排水口52で排水された排水105はポンプ106を介してファン107により空冷されたラジエター108で冷却後、熱交換部51への入水配管109を介して熱交換部51の入水口53に入水されていることにより、熱交換部51での冷却とラジエター108での冷却とのハイブリッド冷却構成となっている。The drainage 105 drained from the drain port 52 from the heat exchange section 51 in which the Pelche 101 is built is cooled by the radiator 108 air-cooled by the fan 107 via the pump 106, and then via the water inlet pipe 109 to the heat exchange section 51. Since water is introduced into the water inlet 53 of the heat exchange unit 51, the heat exchange unit 51 has a hybrid cooling configuration of cooling by the heat exchange unit 51 and cooling by the radiator 108.

係る構成に於いて熱交換部51の冷却機能について説明する。
図2の低温側の上面図(d)に示すように、入水配管109から戻り、入水口53から侵入した循環水54は、ペルチェ101の吸熱側111に接着された、多孔水路55を有する方形銅材56により冷却される。
The cooling function of the heat exchange unit 51 will be described in such a configuration.
As shown in the upper surface view (d) on the low temperature side of FIG. 2, the circulating water 54 that has returned from the water inlet pipe 109 and has entered from the water inlet 53 is a square having a porous water channel 55 adhered to the endothermic side 111 of the Pelche 101. It is cooled by the copper material 56.

多孔水路55通過後の循環水57は、斜線部の水路58を通り、再度方形銅材56の第2の多孔水路59を通過し、点状部の水路60を通過後、局所高発熱体である水冷LD50に密着固定された水冷ベース61内の入水水路62を通過して水冷LD50に入水する。なお、入水口53と点状部の水路60は隔離板63により隔離されている。The circulating water 57 after passing through the porous water channel 55 passes through the water channel 58 in the shaded portion, again through the second porous water channel 59 of the square copper material 56, passes through the water channel 60 in the dotted portion, and then is a local high heating element. Water enters the water-cooled LD50 through the water inlet 62 in the water-cooled base 61 which is closely fixed to the water-cooled LD50. The water inlet 53 and the dotted water channel 60 are separated by a separating plate 63.

水冷LD50から排出された循環水64は、水冷ベース61内の排出水路65を通過後、ペルチェ101の低温の吸熱側111から高温の放熱側120に通じている2重斜線水路66通じて、ペルチェ101の高温の放熱側120に入水している。その後、千鳥状に配置された仕切り板67を通過中にペルチェ101の放熱側120からの熱を多く吸収し、高温水となって排水口52から排出されている。The circulating water 64 discharged from the water-cooled LD50 passes through the drainage channel 65 in the water-cooled base 61, and then passes through the double diagonal channel 66 leading from the low-temperature endothermic side 111 of the Pelche 101 to the high-temperature radiating side 120. Water has entered the high temperature heat dissipation side 120 of 101. After that, while passing through the partition plate 67 arranged in a staggered pattern, a large amount of heat from the heat radiation side 120 of the Pelche 101 is absorbed, becomes high temperature water, and is discharged from the drain port 52.

次に本実施例における水冷能力の高効率化について、図4のグラフ1を用いて説明する。一般的にペルチェの冷却効率を高くする為には、ペルチェ101の放熱側と吸熱側の温度差dTを限りなく0に近づけることが必要なことが知られている。図4のグラフ1は本実施例に持ちいたペルチェ101の冷却能力特性である。縦軸のCOPは冷却量/投入電力の比であり、横軸は電流である。Next, the improvement of the efficiency of the water cooling capacity in this embodiment will be described with reference to Graph 1 of FIG. Generally, it is known that in order to increase the cooling efficiency of Pelche, it is necessary to make the temperature difference dT between the heat dissipation side and the endothermic side of Pelche 101 as close to 0 as possible. Graph 1 of FIG. 4 shows the cooling capacity characteristics of the Pelche 101 held in this embodiment. The COP on the vertical axis is the cooling amount / input power ratio, and the horizontal axis is the current.

例えば電流5A、dT=10℃(赤線)とするとCOP=3.3となり、投入した電力の3.3倍の冷却能力となる。5A時dT=0℃ではCOP>4となり更に効率が良くなる。
即ち、dT≦10℃にすることで高い効率が得られるが、本発明の実施例1、2はいずれも、ラジエター冷却とペルチェ冷却のハイブリッド構成により、高負荷時にペルチェ単独では実現不可能なdT≦10℃を本発明で実現することができた。
For example, if the current is 5A and dT = 10 ° C. (red line), COP = 3.3, which is 3.3 times the cooling capacity of the input power. At 5A, at dT = 0 ° C., COP> 4, and the efficiency is further improved.
That is, although high efficiency can be obtained by setting dT ≦ 10 ° C., in both Examples 1 and 2 of the present invention, dT that cannot be realized by Pelche alone under a high load due to the hybrid configuration of radiator cooling and Pelche cooling. ≦ 10 ℃ could be realized by the present invention.

次に本発明にて高負荷時でもペルチェ101全面でdT≦10℃実現した原理について、図2を持ちいて説明する。
入水口53から侵入した循環水54の温度T1=30℃になる様に設定する。循環水54は、多孔水路55、59を有する方形銅材56により冷却され、水冷ベース61内の入水水路62を通過時点の水温を温度T2=20℃になる様に、ペルチェ101の電流をペルチェ電源122で調整する。
次に、水冷LD50から排出された循環水64の水温T3=30℃になる様に水冷LD50の電流を調整する。
Next, the principle in which dT ≦ 10 ° C. is realized on the entire surface of Pelche 101 even under a high load in the present invention will be described with reference to FIG.
The temperature of the circulating water 54 that has entered from the water inlet 53 is set to T1 = 30 ° C. The circulating water 54 is cooled by the square copper material 56 having the perforated water channels 55 and 59, and the current of the Pelche 101 is applied so that the water temperature at the time of passing through the water inlet 62 in the water cooling base 61 becomes the temperature T2 = 20 ° C. Adjust with the power supply 122.
Next, the current of the water-cooled LD50 is adjusted so that the water temperature T3 of the circulating water 64 discharged from the water-cooled LD50 becomes T3 = 30 ° C.

水温T3=30℃に調整された循環水64は2重斜線水路66通じて、ペルチェ101の放熱側120に入水している。よってペルチェ101の領域1におけるdTはほぼ0となる。The circulating water 64 adjusted to the water temperature T3 = 30 ° C. enters the heat dissipation side 120 of the Pelche 101 through the double diagonal channel 66. Therefore, the dT in the region 1 of the Pelche 101 is almost 0.

その後、千鳥状に配置された仕切り板67を通過中にペルチェ101からの熱を多く吸収し、領域4ではT4=40℃となる。領域4におけるペルチェ101の反対面の温度T3は30℃なので、dT=40-30=10℃となる。すなわちペルチェ全面に対しdT≦10℃に制御できるので、高負荷・高効率放熱を実現することができる。After that, a large amount of heat from the Pelche 101 is absorbed while passing through the partition plate 67 arranged in a staggered pattern, and T4 = 40 ° C. in the region 4. Since the temperature T3 on the opposite surface of the Pelche 101 in the region 4 is 30 ° C., dT = 40-30 = 10 ° C. That is, since dT ≦ 10 ° C. can be controlled over the entire surface of Pelche, high load and high efficiency heat dissipation can be realized.

(参考)実施例1に用いた主な試験環境を示す。
ペルチェ101 ・・・フェローテック製9506 □55x55x4.8mm
最大定格40A 4.3V Qc92W
局所高発熱体118・・・ピーク2.4kW at270A Duty2%
0.3ms時66Hz
最大発熱 ・・・(270A×15.2V-2.4kW)×0.02=
(4.1kW-2.4kW)×0.02=34W
ファンサイズ ・・・□120x120x40mm 15W
ラジエターサイズ ・・・□120x120x20mm
ポンプ ・・・最大吐出圧10Kpa、最大流量400ml毎分
(Reference) The main test environment used in Example 1 is shown.
Pelche 101 ・ ・ ・ Fellow Tech 9506 □ 55x55x4.8mm
Maximum rating 40A 4.3V Qc92W
Local high heating element 118 ... Peak 2.4kW at270A Duty 2%
66Hz at 0.3ms
Maximum heat generation ... (270A x 15.2V-2.4kW) x 0.02 =
(4.1kW-2.4kW) x 0.02 = 34W
Fan size ・ ・ ・ □ 120x120x40mm 15W
Radiator size ・ ・ ・ □ 120x120x20mm
Pump ・ ・ ・ Maximum discharge pressure 10Kpa, maximum flow rate 400ml / min

以上説明したように、本発明の請求項1~請求項4に記載された発明は、高出力半導体レーザや電流制御デバイスの様に局所的に大きな発熱が発生する高負荷デバイスに対し、高効率で冷却できる。
従来の強制空冷放熱板とペルチェによる放熱と比較では、同レーザ出力に於いて、倍以上にレーザ出力をあげることができた。例えば、従来50mJ20Hzであったレーザを50Hz以上で駆動させることが確認できた。
更に、ペルチェの高速応答性により、負荷変動に対し高速に冷却制御できるのでレーザ出力等の安定性も大幅向上する
また、ペルチェをカスケード構成にすることもできるので<-50℃といった極低温が期待できる。こうした極低温は電子部品のヒートサイクル温度試験条件―40℃を超えた能力を有しているので、レーザ加熱等と併用することで、高速・コンパクトな小型温度試験機も実現できる。
As described above, the inventions according to claims 1 to 4 of the present invention have high efficiency for high-load devices such as high-power semiconductor lasers and current control devices, which generate a large amount of heat locally. Can be cooled with.
Compared with the conventional forced air-cooled heat sink and heat dissipation by Pelche, the laser output could be more than doubled in the same laser output. For example, it was confirmed that a laser that was conventionally 50 mJ 20 Hz can be driven at 50 Hz or higher.
Furthermore, due to the high-speed response of Pelche, cooling control can be performed at high speed against load fluctuations, which greatly improves the stability of laser output, etc. Also, since Pelche can be configured in a cascade configuration, an extremely low temperature of <-50 ° C is expected. can. Since such an extremely low temperature has a capacity exceeding the heat cycle temperature test condition of -40 ° C for electronic components, a high-speed and compact compact temperature tester can be realized by using it in combination with laser heating or the like.

50・・・水冷型LD
51・・・ペルチェ1が内蔵された熱交換部
52・・・排水口
53・・・入水口
54・・・循環水
55・・・多孔水路
56・・・方形銅材
57・・・循環水
58・・・水路
59・・・第2の多孔水路
60・・・点状部の水路
61・・・水冷ベース
62・・・入水水路
63・・・隔離板
64・・・循環水
65・・・水冷ベース61内の排出水路
66・・・2重斜線水路
67・・・千鳥状に配置された仕切り板
101・・・ペルチェ
102・・・熱交換部
103、104・・・排水口
105・・・排水
106・・・ポンプ
107・・・ファン
108・・・ラジエター
109・・・入水配管
110・・・入水口
111・・・ペルチェ1の吸熱側
112・・・銅板
113・・・高熱伝導ペースト
114・・・ペルチェ1より小さな面積の有するペルチェ
115・・・ペルチェ14の放熱側
116・・・ペルチェ14の吸熱側
117・・・銅板
118・・・局所高発熱体
119・・・入水口10から侵入した循環水
120・・・ペルチェ1の放熱側
121・・・千鳥状に配置された仕切り板
122・・・ペルチェ電源
123・・・水冷発熱体
124・・・水路
50 ... Water-cooled LD
51 ... Heat exchange unit 52 with a built-in Pelche 1 ... Drain port 53 ... Water inlet 54 ... Circulating water 55 ... Porous water channel 56 ... Square copper material 57 ... Circulating water 58 ... Water channel 59 ... Second porous water channel 60 ... Point-shaped water channel 61 ... Water cooling base 62 ... Water inlet water channel 63 ... Separation plate 64 ... Circulating water 65 ... -Drainage channel 66 in the water cooling base 61 ... Double diagonal channel 67 ... Partition plate 101 arranged in a staggered pattern ... Pelche 102 ... Heat exchange section 103, 104 ... Drain port 105.・ ・ Drainage 106 ・ ・ ・ Pump 107 ・ ・ ・ Fan 108 ・ ・ ・ Radiator 109 ・ ・ ・ Water inlet pipe 110 ・ ・ ・ Water inlet 111 ・ ・ ・ Heat absorption side 112 of Pelche 1 ・ ・ ・ Copper plate 113 ・ ・ ・ High heat conduction Paste 114 ... Pelche 115 having a smaller area than Pelche 1 ... Heat dissipation side 116 of Pelche 14 ... Heat absorption side 117 of Pelche 14 ... Copper plate 118 ... Local high heating element 119 ... Water inlet Circulating water 120 that has invaded from 10 ... Heat dissipation side of Pelche 1 ... Partition plate 122 arranged in a staggered pattern ... Pelche power supply 123 ... Water-cooled heating element 124 ... Water channel

Claims (4)

板状の電子冷却デバイスの放熱側に設けられた空間に、複数の整流板を配置して、長距離の放熱側冷却水路を設ける。一方、前記電子冷却デバイスの吸熱側には高熱伝導性材を貼り付ける。前記放熱側冷却水路と前記の高熱伝導性材の各位置に於いて、前記電子冷却デバイスに対し表裏対称位置における温度差dTのバラツキが最小になる様に配置されたことを特徴とした局所冷却装置A plurality of straightening vanes are arranged in the space provided on the heat radiation side of the plate-shaped electronic cooling device to provide a long-distance heat radiation side cooling water channel. On the other hand, a high thermal conductive material is attached to the endothermic side of the electronic cooling device. Local cooling is characterized in that the temperature difference dT at each position of the heat radiation side cooling water channel and the high thermal conductive material is arranged so as to minimize the variation in the temperature difference dT at the front and back symmetrical positions with respect to the electronic cooling device. Device 板状の電子冷却デバイスの放熱側に設けられた空間に、複数の整流板を配置して、長距離の放熱側冷却水路を設ける。一方、前記電子冷却デバイスの吸熱側には多孔水路を有する高熱伝導性材と、水冷式の局所高発熱体を固定して水の注入と排出を行う水路を有する高熱伝導性材が貼り付けられている。
前記多孔水路を有する高熱伝導性多孔体を通過して冷却された水は、前記高熱伝導性固定台を通過後、前記放熱側に設けられた空間の端に送られている。
前記放熱側冷却水路は、前記電子冷却デバイスの吸熱側に貼付けられた前記高熱伝導性多孔体と前記高熱伝導性固定台の前記貼付け面に対し、表裏対称位置おける温度差dTのバラツキが最小になる様に配置されたことを特徴とした局所冷却装置
A plurality of straightening vanes are arranged in the space provided on the heat radiation side of the plate-shaped electronic cooling device to provide a long-distance heat radiation side cooling water channel. On the other hand, a high thermal conductive material having a porous water channel and a high thermal conductive material having a water channel for injecting and discharging water by fixing a water-cooled local high heat generating body are attached to the heat absorbing side of the electronic cooling device. ing.
The water cooled by passing through the high thermal conductive porous body having the porous water channel is sent to the end of the space provided on the heat dissipation side after passing through the high thermal conductive fixing table.
In the heat radiation side cooling water channel, the variation in the temperature difference dT at the symmetrical positions on the front and back sides is minimized with respect to the affixed surface of the high thermal conductive porous body attached to the endothermic side of the electronic cooling device. Local cooling device characterized by being arranged so as to be
前記電子冷却デバイスに対し、表裏対称位置における温度差のバラツキはdT≦20℃、好適にはdT≦10℃なる様に、前記整流板の配列と電子冷却デバイス制御と流量と熱負荷を制御したことを特徴とした請求項1、2記載の局所冷却装置The arrangement of the straightening vanes, the control of the electronic cooling device, the flow rate, and the heat load were controlled so that the variation in the temperature difference at the front and back symmetrical positions was dT ≦ 20 ° C, preferably dT ≦ 10 ° C with respect to the electronic cooling device. The local cooling device according to claim 1 and 2, wherein the local cooling device is characterized by the above. 前記電子冷却デバイスの包括体からの高温排水をラジエターで冷却後、前記包括体の入水孔に戻したことにより、電子冷却デバイス式冷却とラジエター式冷却を複合したハイブリッド冷却を行うことを特徴とした請求項1~3記載の局所冷却装置The high-temperature drainage from the inclusion body of the electronic cooling device is cooled by a radiator and then returned to the water inlet hole of the inclusion body, whereby hybrid cooling that combines electronic cooling device type cooling and radiator type cooling is performed. The local cooling device according to claims 1 to 3.
JP2020180926A 2020-10-12 2020-10-12 Local cooling device Pending JP2022063819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020180926A JP2022063819A (en) 2020-10-12 2020-10-12 Local cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180926A JP2022063819A (en) 2020-10-12 2020-10-12 Local cooling device

Publications (1)

Publication Number Publication Date
JP2022063819A true JP2022063819A (en) 2022-04-22

Family

ID=81213337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180926A Pending JP2022063819A (en) 2020-10-12 2020-10-12 Local cooling device

Country Status (1)

Country Link
JP (1) JP2022063819A (en)

Similar Documents

Publication Publication Date Title
US5020586A (en) Air-cooled heat exchanger for electronic circuit modules
US8472193B2 (en) Semiconductor device
US8081465B2 (en) Cooling apparatus for semiconductor chips
CN112885798B (en) Integrated phase change heat transfer element liquid cooling heat radiation module for server
CN108766946B (en) Liquid cooling heat abstractor and motor controller
JP2015079819A (en) Semiconductor device
RU2748855C1 (en) Cooling structure for an electrical power conversion apparatus
CN110557927A (en) Heat sink and method of manufacturing a heat sink
KR20090080184A (en) A Heat Exchanger using Thermoelectric Modules and A Method for Controlling the Thermoelectric Modules
CN219716056U (en) Temperature control and heat dissipation system for chip test
JP2004080856A (en) Power converter
JP2022063819A (en) Local cooling device
KR101260776B1 (en) Thermoelectric Power Generating Heat Exchanger
CN116301258A (en) Temperature control and heat dissipation system for chip test
KR101373126B1 (en) A Heat Exchanger using Thermoelectric Modules
JP2002353668A (en) Electronic component cooling unit and cooling system
CN114449841A (en) Radiator cabinet
JP2004335516A (en) Power converter
KR20080019390A (en) A heat exchanger using thermoelectric modules
US20050047085A1 (en) High performance cooling systems
CN219876264U (en) Board card structure and chassis
KR200235565Y1 (en) Aluminium Heat-Sink Structure for Linear Power Amplifier Unit of Liquid Cooling System with Heat Conductibility of High Efficiency
KR101344527B1 (en) A Heat Exchanger using Thermoelectric Modules
KR102308872B1 (en) System for cooling semiconductor component, method for manufacturing the same, and semiconductor package having the same
KR101373122B1 (en) A Heat Exchanger using Thermoelectric Modules