JPS61115668A - Method of joining aluminum base composite material and titanium alloy - Google Patents

Method of joining aluminum base composite material and titanium alloy

Info

Publication number
JPS61115668A
JPS61115668A JP23487984A JP23487984A JPS61115668A JP S61115668 A JPS61115668 A JP S61115668A JP 23487984 A JP23487984 A JP 23487984A JP 23487984 A JP23487984 A JP 23487984A JP S61115668 A JPS61115668 A JP S61115668A
Authority
JP
Japan
Prior art keywords
aluminum
composite material
alloy
joining
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23487984A
Other languages
Japanese (ja)
Inventor
Akira Sakamoto
昭 坂本
Takashi Onda
恩田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23487984A priority Critical patent/JPS61115668A/en
Publication of JPS61115668A publication Critical patent/JPS61115668A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2333Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered

Abstract

PURPOSE:To solder a Ti alloy and fiber-reinforced type Al base composite material nicely by providing a diffusion bonded part made of a thin film of Al material formed by diffusion bonding on the surface of Ti alloy. CONSTITUTION:When diffusion bonding a thin Al plate 3 to a Ti member, pressing force is made as small as possible, for instance, small pressing force of about 100g/mm<2> is used. Joining is made by heating to just below the melting point of Al by a heating furnace. Joining of a thin Al alloy plate is made similarly. Soldering of a Ti member on which a thin Al layer 3 and a fiber- reinforced type Al base composite material 1 is made by ordinary soldering by using Zn-Al group, Zn-Sn group, Zn-Cd group etc., and a faying part 4 is formed. To make joining of especially wide area, brazing by rapid and uniform heating by infrared heating is effective. By this way, brazing of Ti alloy and Al base composite material is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素繊維/アルミニウム系、ボロン繊維/ア
ルミニウム系炭化珪素繊維/アルミニウム系、炭化珪素
ウィスカ/アルミニウム系などのアルミニウム基複合材
料と、CPTl(市販の工業用チタン地金) 、T1−
bht−4v  などのチタン合金との接合法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an aluminum-based composite material such as carbon fiber/aluminum-based, boron fiber/aluminum-based silicon carbide fiber/aluminum-based, silicon carbide whisker/aluminum-based, etc. CPTl (commercially available industrial titanium metal), T1-
This invention relates to a method for joining titanium alloys such as bht-4v.

〔従来の技術〕[Conventional technology]

一12%81  などのアルミろうを用いたろう付は可
能である。しかし、ろう付温度は580〜600℃であ
シ、アルミニウム基複合材料に対しては高すぎ、ろう付
熱サイクル付与によ多繊維とアルミニウムマトリックス
との界面反応が生じ、材料特性が劣化する。
It is possible to braze using aluminum solder such as -12%81. However, the brazing temperature is 580 to 600° C., which is too high for aluminum matrix composite materials, and the thermal cycling of brazing causes an interfacial reaction between the multi-fibers and the aluminum matrix, deteriorating the material properties.

また、両材料間の熱膨張係数の差により、接合温度が高
いほど接合部の変形や残留応力が大きくなると云う欠点
を有している。
Furthermore, due to the difference in thermal expansion coefficients between the two materials, there is a drawback that the higher the bonding temperature, the greater the deformation and residual stress in the bonded portion.

アルミニウム基複合材料とチタン合金との接合、例えば
、複合材料の面板とチタン合金コアからなる軽量−強度
パネルの接合、又は、複合材料の端末へのチタン金具の
接合(チタン金具は他の部品と機械的に結合する)等で
は、実用上不可欠である。
Bonding of aluminum-based composite materials and titanium alloys, for example, bonding of light-strength panels made of composite material face plates and titanium alloy cores, or bonding of titanium metal fittings to the ends of composite materials (titanium metal fittings cannot be used with other parts). (mechanical coupling) etc., it is practically indispensable.

前述のろう付より接合温度を低くする手段としては、z
n−ムを系、Zn−8n系−々どのアルミニウム用のは
んだを用いたはんだ付は有効と考えられるが、これらの
はんだは、チタン合金に対しては殆どぬれず、接合でき
ない。
As a means to lower the joining temperature than the aforementioned brazing, z
Soldering using aluminum solders such as nm-based and Zn-8n-based solders is considered effective, but these solders hardly wet titanium alloys and cannot be bonded.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、上記の情況に鑑み、チタン合金の表面に
アルミニウムの薄層を接合形成し、このアルミニウム層
表面と複合材料とをはんだ付する方法を開発した。
In view of the above circumstances, the present inventors have developed a method of bonding a thin layer of aluminum to the surface of a titanium alloy and soldering the surface of the aluminum layer to a composite material.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、繊維強化製アルミニウム基複合材料とチタン
合金との接合において、チタン合金表面にアルミニウム
基の薄層を拡散接合により形成し、人込で、複合材料と
はんだ付することを特徴とするアルミニウム基複合材料
とチタン合金の接合方法に関する。
The present invention is characterized in that, in joining a fiber-reinforced aluminum-based composite material and a titanium alloy, a thin layer of aluminum is formed on the surface of the titanium alloy by diffusion bonding, and the composite material is soldered to the composite material in a crowd. This invention relates to a method for joining an aluminum matrix composite material and a titanium alloy.

チタン合金の表面にアルミニウム基薄層を形成する方法
としては、アルミニウム又はアルミニウム合金の薄板や
箔をAt−8l系のアルミろうでチタン部材表面くろう
付することも可能であるが、ろう付加熱時にτ1 やろ
う材中の81  がアルミニウム基薄板の表面(拡散し
てきて、その後のはんだ付性を劣化させたシ、チタンと
アルミニウムの界面に脆い金属間化合物相が生成すると
いう問題を生ずる。そこで、本発明では、チタン部材に
アルミニウム基薄板を直接的にアルミニウム又はアルミ
ニウム合金の融点直下の温度で拡散接合する方法を採用
し、はんだ付性の良好なアルミニウム基薄層を形成して
いる。
As a method of forming an aluminum-based thin layer on the surface of a titanium alloy, it is also possible to braze the surface of a titanium member with a thin plate or foil of aluminum or aluminum alloy using At-8L aluminum solder. τ1 and 81 in the brazing filler metal diffuse into the surface of the aluminum substrate thin plate, deteriorating the subsequent solderability, and causing the problem of a brittle intermetallic compound phase forming at the interface between titanium and aluminum. In the present invention, a method is adopted in which a thin aluminum base plate is directly diffusion bonded to a titanium member at a temperature just below the melting point of aluminum or an aluminum alloy, thereby forming a thin aluminum base layer with good solderability.

なお、6061.5Q52  fkどのアルミニウム合
金の薄板を用いる場合は、固相線直上の温度に加熱して
少量の液相を生成せしめることによっても、良好なアル
ミニウム基薄層の形成が可能である。
Note that when using a thin plate of aluminum alloy such as 6061.5Q52fk, it is also possible to form a good aluminum base thin layer by heating it to a temperature just above the solidus line to generate a small amount of liquid phase.

本発明の接合方法は、航空機や宇宙機品用パネル類の接
合に有効である。
The joining method of the present invention is effective for joining panels for aircraft and space equipment.

〔作用〕[Effect]

以下に、本発明方法を図面に基づき説明する。 The method of the present invention will be explained below based on the drawings.

第1図は、本発明による接合方法の一実施態様例の説明
図である。
FIG. 1 is an explanatory diagram of an embodiment of the joining method according to the present invention.

すなわち、本発明では、アルミニウム基複合材料1とチ
タン部材2をはんだ付するに際し、先ず、第1図(4に
示すように、チタン部材2の接合すべき面にアルミニウ
ムの薄層3を拡散接合する。次いで、第1図<B)に示
すように、このアルミニウム層表面3とチタン部材2を
、zn−At 系、Zn−8n系、ZrL−06系など
のアとミニラム用のはんだで接合して接合部4を形成す
る。
That is, in the present invention, when soldering the aluminum matrix composite material 1 and the titanium member 2, first, as shown in FIG. Next, as shown in Fig. 1<B), the aluminum layer surface 3 and the titanium member 2 are bonded to each other with A and miniram solder such as Zn-At series, Zn-8n series, ZrL-06 series, etc. Then, a joint portion 4 is formed.

これらの異種材料の接合においては、第1図に示したよ
うに、薄板の板金構造で広面積接合を必要とする場合が
多い。チタン部材2ヘアルミニウム薄板3を拡散接合す
る場合、チタン部材2の形状上、数f Okgf / 
cw’  の圧力を要する通常の拡散接合は好ましくな
く、圧力は小さければ小さい程良い。また、でき得れば
、圧力負荷は重り(aeaa welght )をのせ
る程度で、特別な圧力装置を必要とせず、加熱炉のみで
接合できることが設備面からも望ましい。
In joining these dissimilar materials, as shown in FIG. 1, it is often necessary to join a wide area in a thin sheet metal structure. When diffusion bonding the aluminum thin plate 3 to the titanium member 2, due to the shape of the titanium member 2, several fOkgf/
Ordinary diffusion bonding, which requires a pressure of cw', is not preferred; the lower the pressure, the better. Further, if possible, it is desirable from the equipment point of view that the pressure load is only as high as a weight (aeaa weight), and that a special pressure device is not required, and that bonding can be performed using only a heating furnace.

本発明では、アルミニウム薄板5を用いた場合は、接合
温度をアルミニウムの融点直下(650〜660℃)に
することにより100P152程度の小圧力で接合を可
能とし、また、その後のはんだ付に対しても良好なアル
ミニウム薄層5を形成し得る。5052.6061  
などのアルミニウム合金を用いても、同様な効果を有す
るアルミニウム薄層5の形成が可能であシ、この場合は
、チタン合金の固相線直上で僅かに液相を生成させるこ
とにより、同様な小圧力接合ができる。
In the present invention, when the aluminum thin plate 5 is used, by setting the joining temperature to just below the melting point of aluminum (650 to 660°C), it is possible to join with a small pressure of about 100P152, and also for subsequent soldering. Also, a good aluminum thin layer 5 can be formed. 5052.6061
It is also possible to form the aluminum thin layer 5 with the same effect by using an aluminum alloy such as Can perform low pressure bonding.

チタン部材2へのアルミニウム薄層3の形成後のはんだ
付は、Zn−At系、Zn−8n系、Zn−Ctl系な
どによる慣用のはんだ付が可能となる。ただし、ここで
、主対象としている例のような広面積接合では、加熱時
のフシックスの劣化による接合不良を防ぐために、急速
かつ均一に加熱することが肝要であり、この点で赤外線
による加熱は有効である。
After the aluminum thin layer 3 is formed on the titanium member 2, conventional soldering using Zn-At, Zn-8n, Zn-Ctl, or the like can be used. However, in wide-area bonding like the example we are mainly concerned with, it is important to heat quickly and uniformly in order to prevent bonding failures due to deterioration of the fusix during heating, and in this respect infrared heating is It is valid.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、以前はアルミニウム基複合材料と
チタン合金とのはんだ付が不可能であったものを、アル
ミニウム基薄層をチタン合金上に拡散接合部を設けるこ
とにより、前記異種材料間のはんだ付を可能にした。
According to the method of the present invention, it was previously impossible to solder an aluminum-based composite material and a titanium alloy. soldering is possible.

次に、本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 炭化珪素繊維/アルミニウム複合材料とTt
−6At−4V f)接合 (材料) 複合材料:ポリカルボシラン系炭化珪素繊維/ 108
0アルミニウム 一方向強化複合材料、繊維体 種含有$40tI6、板状(板厚 1、5 tea ) チタン合金: Tl−6AA−4’7板(板厚0.5 
wm、 )(接合手順) (1)  チタン合金板に、1080アルミニウム(ム
t: 99.80 ’S以上:工業用純アルミ)の箔(
α1t)を接合温度650℃、接合圧90f/ex”、
接合時間30mInの条件で、真空中(10torr台
)で拡散接合した。
Example 1 Silicon carbide fiber/aluminum composite material and Tt
-6At-4V f) Bonding (material) Composite material: Polycarbosilane silicon carbide fiber/108
0 Aluminum unidirectionally reinforced composite material, fibrous type included $40tI6, plate shape (plate thickness 1.5 tea) Titanium alloy: Tl-6AA-4'7 plate (plate thickness 0.5
wm, ) (Joining procedure) (1) 1080 aluminum (mut: 99.80'S or more: industrial pure aluminum) foil (
α1t) at a bonding temperature of 650°C, a bonding pressure of 90f/ex”,
Diffusion bonding was performed in vacuum (10 torr level) under conditions of a bonding time of 30 mIn.

(2)次いで、チタン合金板のアルミニウム薄層上に市
販のZn−ムを系のはんだを厚さ約12Ifl+溶融被
覆した(温度370℃)。
(2) Next, a commercially available Zn-based solder was molten coated on the aluminum thin layer of the titanium alloy plate to a thickness of about 12 Ifl (temperature: 370°C).

(3)上記はんだ被覆面と複合材料の板を合せて、赤外
線にて400℃に急速加熱(1aa℃/ztn ) L
、接合した。
(3) Combine the above solder coated surface and the composite material plate and rapidly heat to 400°C with infrared rays (1aa°C/ztn) L
, joined.

実施例2 炭素繊維/アルミニウム複合材料とTl−6
ムt−aVの接合 (材料) 複合材料: PAH(ポリアクリルニトリル)系炭素繊
維15052アルミ ニウム合金直交配向(0/90’) 複合材料、繊維体積率35チ、 板状(板厚n、 5 M ) +lン合金: ’l’l−/iムZ−aV (板厚0.
5 +wa )(接合手順) (1)  チタン合金板に、5052アルミニウム合金
薄板(Q、at)を接合温度595℃、接合圧150 
f/ax” 、接合時間30 winの条件で、真空中
(10″torr 台)で拡散接合した。
Example 2 Carbon fiber/aluminum composite material and Tl-6
Mu-taV joining (material) Composite material: PAH (polyacrylonitrile) based carbon fiber 15052 aluminum alloy orthogonal orientation (0/90') Composite material, fiber volume ratio 35 cm, plate shape (plate thickness n, 5 M ) +l alloy: 'l'l-/imu Z-aV (plate thickness 0.
5 +wa) (Joining procedure) (1) 5052 aluminum alloy thin plate (Q, at) is bonded to a titanium alloy plate at a temperature of 595°C and a bonding pressure of 150°C.
Diffusion bonding was performed in vacuum (10''torr level) under the conditions of f/ax'' and bonding time of 30win.

(2)  次いで、チタン合金板のアルミニウム合金薄
層上に市販のZn−8n系のはんだを厚さ約(L2罐溶
融被覆した(温度300℃)。
(2) Next, commercially available Zn-8n solder was molten coated on the aluminum alloy thin layer of the titanium alloy plate to a thickness of approximately (L2 can) (temperature: 300°C).

(3)上記はんだ被覆面と複合材料の板を合せて、面圧
3QQr/lx”加えた状態で赤外線にて300℃に急
速加熱(150℃/ mln ) L、接合した。
(3) The above solder-coated surface and the composite material plate were combined and bonded by rapid heating to 300° C. (150° C./mln) with infrared rays while applying a surface pressure of 3QQr/lx”.

以上、本発明についての実施例を2例あげたが、チタン
合金表面に拡散接合によって形成するアルミニウム基薄
層材料としては1080アルミニウムの外、1070,
1050,1100,1200などの純アルミニウム、
また5020  アルミニウム合金の外、2014,2
024,3003.508!、6061.7075など
のアルミニウム合金が使用することができ、繊維強化材
としては、炭素繊維、炭化珪素繊維の外、アルミナ繊維
、ボロン繊維、炭化珪素ウィスカ、窒化珪素ウィスカな
どが使用でき、チタン合金としては、T’−6At−A
V以外に工業用純チタン、Tl−5At−2,5Eln
、 Ti−3ムL−IMo−17,Tl−6At−6V
−2Sn。
As mentioned above, two examples of the present invention have been given, but in addition to 1080 aluminum, 1070,
Pure aluminum such as 1050, 1100, 1200,
Besides 5020 aluminum alloy, 2014, 2
024,3003.508! , 6061.7075, etc. can be used, and as the fiber reinforcing material, carbon fiber, silicon carbide fiber, alumina fiber, boron fiber, silicon carbide whisker, silicon nitride whisker, etc. can be used, and titanium alloy As, T'-6At-A
In addition to V, industrially pure titanium, Tl-5At-2,5Eln
, Ti-3Mo-17, Tl-6At-6V
-2Sn.

TITl−6At−28n−4Zr−6,Tl−3ムt
−137−110rなどが使用できる。
TITl-6At-28n-4Zr-6, Tl-3mut
-137-110r etc. can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による異種金属の接合、方法の説明図
である。 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIG. 1 is an explanatory diagram of a method for joining dissimilar metals according to the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 繊維強化型アルミニウム基複合材料とチタン合金との接
合において、チタン合金表面にアルミニウム基の薄層を
拡散接合により形成し、次いで、複合材料とはんだ付す
ることを特徴とするアルミニウム基複合材料とチタン合
金の接合方法。
An aluminum-based composite material and titanium alloy are bonded to a fiber-reinforced aluminum-based composite material, in which a thin layer of aluminum is formed on the surface of the titanium alloy by diffusion bonding, and then soldered to the composite material. Alloy joining method.
JP23487984A 1984-11-09 1984-11-09 Method of joining aluminum base composite material and titanium alloy Pending JPS61115668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23487984A JPS61115668A (en) 1984-11-09 1984-11-09 Method of joining aluminum base composite material and titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23487984A JPS61115668A (en) 1984-11-09 1984-11-09 Method of joining aluminum base composite material and titanium alloy

Publications (1)

Publication Number Publication Date
JPS61115668A true JPS61115668A (en) 1986-06-03

Family

ID=16977751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23487984A Pending JPS61115668A (en) 1984-11-09 1984-11-09 Method of joining aluminum base composite material and titanium alloy

Country Status (1)

Country Link
JP (1) JPS61115668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200971A (en) * 1990-11-30 1992-07-21 Sumitomo Light Metal Ind Ltd Method for reinforcing plane plate of al alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200971A (en) * 1990-11-30 1992-07-21 Sumitomo Light Metal Ind Ltd Method for reinforcing plane plate of al alloy

Similar Documents

Publication Publication Date Title
EP0135937B1 (en) Method of bonding alumina to metal
US4869421A (en) Method of jointing titanium aluminide structures
JPS61154764A (en) Method of combining metal with structural member and combining material
JPS60127271A (en) Method of bonding non-oxide ceramics and metal
JPS60131874A (en) Method of bonding ceramic and metal
EP0932472B1 (en) Method for joining rhenium to columbium
JPS61227971A (en) Method of joining silicon nitride or sialon and metal
JPS61115668A (en) Method of joining aluminum base composite material and titanium alloy
JPS62289396A (en) Joining method for ceramics
US4705207A (en) Method of brazing columbium to itself using low bonding pressures and temperatures
JPS6090879A (en) Ceramic and metal bonding method
JP2890102B2 (en) Manufacturing method of metal honeycomb sandwich plate
JPH0222024B2 (en)
JPS59174581A (en) Method of bonding aluminum to alumina
JPH0672779A (en) Method for joining carbon member
JPH0380162A (en) Method for joining ceramic parts with metallic parts
JPH03243288A (en) Method for joining al-base composite material to al material
JPS5931433B2 (en) Method of joining Ti and Al or Al alloy
JPS61169190A (en) Composite brazing filler metal
JPH0525620A (en) Sputtering target
JPS59141393A (en) Brazing filler material
JPS6090878A (en) Ceramic and matal bonding method
JPH0328391B2 (en)
JPS6213258A (en) Joining structure of cooling panel
JP3232896B2 (en) Brazing method between members