JPS6111413A - Regenerating device of diesel particulate filter - Google Patents

Regenerating device of diesel particulate filter

Info

Publication number
JPS6111413A
JPS6111413A JP59131284A JP13128484A JPS6111413A JP S6111413 A JPS6111413 A JP S6111413A JP 59131284 A JP59131284 A JP 59131284A JP 13128484 A JP13128484 A JP 13128484A JP S6111413 A JPS6111413 A JP S6111413A
Authority
JP
Japan
Prior art keywords
valve
control valve
flow rate
pressure
relief valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59131284A
Other languages
Japanese (ja)
Other versions
JPH0429849B2 (en
Inventor
Satoshi Kume
粂 智
Michiyasu Yoshida
吉田 道保
Yoshihiro Konno
紺野 義博
Takeo Kume
久米 建夫
Hiroaki Takada
弘明 高田
Seiichi Kamiu
神生 清一
Akio Matsumoto
松本 昭夫
Hitoshi Ogawa
均 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Motors Corp filed Critical Mitsubishi Electric Corp
Priority to JP59131284A priority Critical patent/JPS6111413A/en
Priority to US06/630,053 priority patent/US4589254A/en
Priority to KR1019840004150A priority patent/KR890001344B1/en
Publication of JPS6111413A publication Critical patent/JPS6111413A/en
Publication of JPH0429849B2 publication Critical patent/JPH0429849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • F01N3/032Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start during filter regeneration only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/04Arrangements for controlling or regulating exhaust apparatus using electropneumatic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/04By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device during regeneration period, e.g. of particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To enable a flow of secondary air to be accurately controlled, by providing a relief valve setting to a fixed value a difference between pressure before and after a flow control valve variably forming a flow path area in a supply path of air to a burner. CONSTITUTION:A flow control valve 28, being providing in a supply path 21 feeding air to burner device 20 through an air supply device 9, is driven by a flow control device 23 in accordance with a temperature or a pressure of the air in the supply path 21. A relief valve 34 releasing the air to the atmosphere from said path 21 is mounted to the secondary flow path 21. If a difference between pressure beore and after the flow control valve 28 exceeds the valve opening force generated by a compression spring 45, a valve body 35 moves in a valve opening direction P by closing an opening 48 in a pip 44.

Description

【発明の詳細な説明】 本発明はディーゼルパティキュレートフィルタの再燃焼
に使用するバーナのノ・−ナエア制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a burner no-air control device used for re-combustion of a diesel particulate filter.

ディービルエンジンの排出するパティキュレートは公害
防止のため2通常はセラミックス製のディーゼルパティ
キュレートフィルタ(以後単にフィルタと記す)により
、排気中より取り除かれており、所定時にフィルタ自体
の再生を兼ね、再燃焼により無公害物質として除去され
ろ。このパティキュレートの再燃焼には適度の燃焼>I
nk度と適度の酸素量、即ち、所定数の空気過剰率を保
つエアが必要であり、加熱温度が低いとパテイギュレー
)は除去されず、逆に、過度に加熱するとフィルタ自体
が溶損を生じるという不都合がある。
To prevent pollution, the particulates emitted by diesel engines are removed from the exhaust by a diesel particulate filter (hereinafter simply referred to as a filter), which is usually made of ceramics. It is removed as a non-polluting substance by combustion. Moderate combustion>I for re-burning of this particulate
Air is required to maintain a certain amount of oxygen and a certain amount of excess air.If the heating temperature is too low, particulate matter (particulate matter) will not be removed, and on the other hand, if heated too much, the filter itself will melt. There is this inconvenience.

ところで、フィルタの加熱源としてバーナが使用される
ことが多く、特に、高圧受流量の1次エアにより燃料を
霧化し、低圧大流量の2次エアによりパティキュレート
の燃焼を行なう霧吹式ハーナが多用されている。このバ
ーナに供給される1次エアの最適供給計はほぼ燃料流量
と比例し、この燃料流量を一定とするため1通常は一次
エア量は一定に保たれる。これに対し、2次エアは低圧
だが大流量を必要とされると共に、パティキュレートの
燃焼に必要となる所定重量流量値だけのエフが供給され
るように制御する必要がある。この2次エアは2通常、
容積型エアポンプを用いて供給するが、このエアポンプ
は回転数のみを一定にすれば体積流m゛が一定となるが
、大気圧、大気温度及びエンノン制圧の変化に応じて重
量流量の変化を受は易い。このため、容積型エアポンプ
の利点である太111出量の確保という点を利用する一
方。
By the way, burners are often used as heating sources for filters, and in particular, atomizing type burners are often used, which atomize the fuel using primary air at a high pressure and receive a large flow rate, and burn particulates using secondary air at a low pressure and large flow rate. has been done. The optimum supply meter of primary air supplied to the burner is approximately proportional to the fuel flow rate, and in order to keep this fuel flow rate constant, the primary air amount is usually kept constant. On the other hand, secondary air is required to have a low pressure but a large flow rate, and must be controlled so that only a predetermined weight flow rate value necessary for combustion of particulates is supplied. This secondary air is usually 2,
The air pump is supplied using a positive displacement air pump, and the volumetric flow m is constant if only the rotational speed is kept constant, but the weight flow rate changes depending on changes in atmospheric pressure, atmospheric temperature, and ennon pressure. It's easy. For this reason, the advantage of a positive displacement air pump, which is ensuring a large output volume, is utilized.

重量流量の変化を修正する必要がある。たとえば一般の
容積型エアポンプは第1図〜第6図に示すごとき特性を
有している。
Changes in weight flow rate need to be corrected. For example, a general positive displacement air pump has characteristics as shown in FIGS. 1 to 6.

第1図は容積型エアポンプの体積流量−吐出圧特性の一
例であり、吐出側の通路面積をしぼることにより体積流
量は低減され、一方吐出圧が比較的大きく増大すること
が明らかである。更に、第2図には容積型エアポンプが
低地にある場合(実線で示した)と高地にある場合(破
線で示した)の重量坪量−叶出圧特性の一例を示してお
り同一重量流量を得る場合、高地では吐出圧を下げる即
ち。
FIG. 1 shows an example of the volumetric flow rate-discharge pressure characteristic of a positive displacement air pump, and it is clear that by narrowing down the passage area on the discharge side, the volumetric flow rate is reduced, while the discharge pressure increases relatively greatly. Furthermore, Fig. 2 shows an example of the weight basis weight vs. output pressure characteristics when the positive displacement air pump is located at a low altitude (indicated by a solid line) and at a high altitude (indicated by a broken line). ie lower the discharge pressure at high altitudes.

低地よりエア供給路のしぼりを拡げ、lll正圧下げる
必要があることが示されている。同じく第3図に示すよ
うに高度一定でもポンプ自体の変動。
It is shown that it is necessary to widen the restriction of the air supply path from low-lying areas and lower the positive pressure. Similarly, as shown in Figure 3, the pump itself fluctuates even at a constant altitude.

大気温度等により2本の破線で示した如く重量流量が変
動することが示されている。
It is shown that the weight flow rate varies depending on the atmospheric temperature, etc., as shown by the two broken lines.

このような特性を有する容積型エアポンプを2次エアポ
ンプとして用いた従来装置の一例を第4図に示した。デ
ィーゼルエンジン(以後単にエンジンと記す)1はクー
ホチャージャ2を備え、その排気路6の下流側にフィル
タ5を備え、その下流側にマフラ200を介し排気を放
出する。4はフィルタ5の排気路3の上流側に設けられ
たバーナであり、同バーナ4はイグニッションコイル6
を用いた発火装置を有し、圧力調整弁201により調量
された1次エアポンプ7からのエフで燃料ポンプ8から
の燃料を霧化させ、2次エアポンプ9からのエアで高温
ガスの空気過剰率を所定値に保つよう構成され、過剰酸
素でパティキュレートを燃焼させる。2次エアの供給路
10は流量制御弁か゛ 11により流路面積だ増減され、この弁を開閉作動させ
る真空室は負圧源である真空ポンプ12と真空調整弁1
6およびソレノイド弁14を介し連結される。
An example of a conventional device using a positive displacement air pump having such characteristics as a secondary air pump is shown in FIG. 4. A diesel engine (hereinafter simply referred to as engine) 1 includes a Kuho charger 2, a filter 5 on the downstream side of an exhaust path 6, and discharges exhaust gas through a muffler 200 on the downstream side. 4 is a burner provided upstream of the exhaust path 3 of the filter 5, and the burner 4 is connected to the ignition coil 6.
The fuel from the fuel pump 8 is atomized by the F from the primary air pump 7, which is metered by the pressure regulating valve 201, and the air from the secondary air pump 9 is used to atomize the excess air in the high-temperature gas. It is configured to maintain the rate at a predetermined value and burn the particulates with excess oxygen. The flow area of the secondary air supply path 10 is increased or decreased by a flow rate control valve 11, and the vacuum chamber that opens and closes this valve is controlled by a vacuum pump 12, which is a negative pressure source, and a vacuum adjustment valve 1.
6 and a solenoid valve 14.

また、この様なシステムにおいては、排気ガスの流れが
パティキュレートの再生に影響しないようにすることが
必要である。このため、第1図に示す様に、刊気路乙の
フィルタ5の上流側及び下流側において上記排気路6に
夫々連結された排気バイパス路202が設けられており
、更に排気路5と排気バイパス路202の上流側分岐点
には、排気切換弁210が設けられている。排気切換弁
210は、真空ポンプ12に連通されたダイアフラム2
03によりリンク機構を介して駆動される。
Further, in such a system, it is necessary to prevent the flow of exhaust gas from affecting the regeneration of particulates. For this reason, as shown in FIG. An exhaust switching valve 210 is provided at the upstream branch point of the bypass path 202. The exhaust switching valve 210 has a diaphragm 2 connected to the vacuum pump 12.
03 via a link mechanism.

ダイアフラム203と真空ポンプ12どの間には電磁弁
204が設けられている。同電磁弁204は弁体205
とコイル206とスプリング207とから構成され、コ
イル206に電流が流れると弁体205がコイル206
に引かれ電磁弁204が開放される。そして、真空ポン
プ12の負圧がダイアフラム203に作動し排気切換弁
210がaの位置からbの位置に動き排気路6を閉鎖す
る構成となっている。この結果、エンジン1かも排出さ
れる排気ガスは排気バイパス路202を通りマフラ20
0に導かれることとなり、これによりエンジン1かもの
排気ガスが、ノ・−す装置20の燃焼条件に影響しない
様になっている。
A solenoid valve 204 is provided between the diaphragm 203 and the vacuum pump 12. The solenoid valve 204 has a valve body 205
It is composed of a coil 206 and a spring 207, and when a current flows through the coil 206, the valve body 205 closes the coil 206.
The solenoid valve 204 is opened. Then, the negative pressure of the vacuum pump 12 acts on the diaphragm 203, and the exhaust switching valve 210 moves from the position a to the position b, closing the exhaust passage 6. As a result, the exhaust gas emitted from the engine 1 passes through the exhaust bypass passage 202 and reaches the muffler 202.
0, thereby preventing the exhaust gas from the engine 1 from affecting the combustion conditions of the combustion engine 20.

なお、符号17は燃料調整弁、符号18は圧力調1m!
弁、 符号15ハイグニッションフイル6.エフポンプ
7.9.ソレノイド弁14及び燃料調整弁17をコント
ルールするコントローラ、符号16は大気圧センサをそ
れぞれ示している。
In addition, numeral 17 is a fuel adjustment valve, and numeral 18 is a pressure adjustment valve of 1 m!
Valve, code 15 ignition filter 6. F pump 7.9. A controller controls the solenoid valve 14 and the fuel adjustment valve 17, and reference numeral 16 indicates an atmospheric pressure sensor.

このようなエンジン1のフィルタ5Iパテイキュレート
次過度に付着した場合、コンl−q−ラ15は、たとえ
ばフィルタ5上流側排気路圧が設定値を上回ったことを
圧カセンザ19により検出することにより、再燃焼を開
始させる。この場合、高地で大気圧が低いと大気圧セン
サ16の入力信号によりコントローラ15はソレノイド
弁14に出力し、2次エアの流路面積を基準値より一定
量増大させるよう制御する。
If excessive adhesion occurs on the filter 5I of the engine 1, the controller 15 detects, for example, through the pressure sensor 19 that the exhaust passage pressure on the upstream side of the filter 5 exceeds a set value. , initiates reburning. In this case, if the atmospheric pressure is low at a high altitude, the controller 15 outputs an input signal from the atmospheric pressure sensor 16 to the solenoid valve 14 to control the flow area of the secondary air to increase by a certain amount from the reference value.

これにより空気密度の低下による重量流量の低下を体積
流量増により防ぐことができる。しかし。
This makes it possible to prevent a decrease in the weight flow rate due to a decrease in air density by increasing the volumetric flow rate. but.

単に大気圧変化を一定負圧を受けるダイアフラム式の流
量制御弁11で制御するこの方式では、2次エアポンプ
自体のばらつきも加わり2次エアの流量精度が低いとい
う欠点がある。
This method, in which changes in atmospheric pressure are simply controlled by a diaphragm type flow control valve 11 that receives a constant negative pressure, has the disadvantage that the accuracy of the flow rate of the secondary air is low due to variations in the secondary air pump itself.

本発明は2次エアの流量を精度よく制御できるディービ
ルパティキュレートフィルタのバーナエア制御装置を提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a burner air control device for a diesel particulate filter that can accurately control the flow rate of secondary air.

本発明に、するディーゼルパティギュレートフィルタノ
ハ−ナエア制御装置は、フィルタをバイパスする排気バ
イパス路とバーナへのエア供給路と。
The diesel particulate filter burner air control device according to the present invention includes an exhaust bypass passage that bypasses the filter and an air supply passage to the burner.

エア供給路の流路面積を可変する流量制御弁と。A flow control valve that changes the flow area of the air supply path.

流量制御弁の前後差圧を一定にするよ泣谷動する逃し弁
と、流量制御弁の弁開閉量の操作を行う制御部とを有し
た構成である。
This configuration includes a relief valve that moves to keep the differential pressure across the flow control valve constant, and a control section that operates the amount of opening and closing of the flow control valve.

以下、添付図面と共に本発明を説明する。The present invention will be described below with reference to the accompanying drawings.

第5図には本発明の一実施例としてのディーゼルパティ
キュレートフィルタのバーナエア制御装置(以後単にバ
ーナエア制御装置と記す)を示した。
FIG. 5 shows a burner air control device (hereinafter simply referred to as burner air control device) for a diesel particulate filter as an embodiment of the present invention.

このバーナエア制御装置は第4図に示した従来装置と同
一部材を含んでおり、以後混同を生じない範囲で同一部
材には同一符号を付し、その重複説明を略す。排気路3
のフィルタ5に対し、所定高温で所定空気過剰率の熱風
を供給するバーナ20は2次エア流路(以後単に2次流
路と記す)21を介し2次エアポンプ(以後単に2次ポ
ンプと記す)9より2次エアを受ける。2次ポンプ9は
エアをエアフィルタ22を介し2次流路21に流入させ
、この2次流路の流路面積を増減させる流量21は、エ
アフィルタ22と2次ポンプ9との間に大気温センサ2
5を備え、流量制御弁28の上流側にその圧力を検出す
る圧カセンザ26を備えされる。
This burner air control device includes the same members as the conventional device shown in FIG. 4, and the same members will be given the same reference numerals to avoid confusion hereafter, and their repeated explanation will be omitted. Exhaust path 3
A burner 20 supplies hot air at a predetermined high temperature and a predetermined excess air ratio to the filter 5 through a secondary air flow path (hereinafter simply referred to as a secondary flow path) 21 and a secondary air pump (hereinafter simply referred to as a secondary pump). ) Receives secondary air from 9. The secondary pump 9 causes air to flow into the secondary flow path 21 via the air filter 22, and the flow rate 21 that increases or decreases the flow area of this secondary flow path is large between the air filter 22 and the secondary pump 9. Temperature sensor 2
5, and a pressure sensor 26 for detecting the pressure is provided upstream of the flow control valve 28.

弁駆動装置23は流量制御弁28をダイアフラム29と
一体的に連結し、このダイアフラムには大気開放室60
と圧縮ばね47を備えた負圧室61とが対向している。
The valve driving device 23 integrally connects the flow rate control valve 28 with a diaphragm 29, and the diaphragm has an atmosphere opening chamber 60.
and a negative pressure chamber 61 provided with a compression spring 47 are opposed to each other.

弁体流量制御弁28は2次エア流路21にその流路面積
Sを可変させるよう取付けられる。上記負圧室31はデ
ユーティソレノイド弁(以後単にデユーティ弁と記す)
32を介し負圧源である真空ポンプ12に連結されてい
る。
The valve body flow rate control valve 28 is attached to the secondary air flow path 21 so as to vary the flow path area S thereof. The negative pressure chamber 31 is a duty solenoid valve (hereinafter simply referred to as a duty valve).
It is connected via 32 to the vacuum pump 12, which is a negative pressure source.

デユーティ弁32は10Hz乃至20Hzで弁体なオン
オフさせて、負圧室31を真空ポンプ12に連通させる
か又は負王室31に大気を導くかの切換制御を行ない、
弁体のオンの時間幅となるパルス0?1 幅を燃焼制御装置27の出力信号により可変操作し、こ
れにより、負圧室61の負圧値を変え、こる。なお、流
量制御弁2Bは全開位置より全閉位置に向は変位し、こ
の変位量は可変する電気抵抗流量制御弁28と2次ポン
プ9どの間の2次流路21には、これよりエアを大気放
出させる逃し弁34が取付けられる。この逃し弁の弁体
65と一体のダイアフラム36は大気開放室37と負圧
室38とに対向する。負王室58は流量規制用のしぼり
39を介し負圧源である負圧ポンプ12に連結され、こ
のしぼり39と負圧室38間の負圧調整路aに負圧調整
弁40が連結される。
The duty valve 32 is turned on and off at a frequency of 10 Hz to 20 Hz to control switching between communicating the negative pressure chamber 31 with the vacuum pump 12 or guiding the atmosphere to the negative chamber 31,
The width of the pulse 0 to 1, which is the time width of the ON time of the valve body, is variably controlled by the output signal of the combustion control device 27, thereby changing the negative pressure value of the negative pressure chamber 61. Note that the flow control valve 2B is displaced from the fully open position to the fully closed position, and the amount of this displacement is variable.The secondary flow path 21 between the electrical resistance flow control valve 28 and the secondary pump 9 is filled with air. A relief valve 34 is installed to release the water to the atmosphere. A diaphragm 36 integral with the valve body 65 of this relief valve faces the atmosphere open chamber 37 and the negative pressure chamber 38. The negative pressure chamber 58 is connected to a negative pressure pump 12, which is a negative pressure source, via a flow rate regulating throttle 39, and a negative pressure regulating valve 40 is connected to a negative pressure regulating path a between this throttle 39 and the negative pressure chamber 38. .

負圧調整弁40は流量制御弁23の流入側の静圧を受け
る前室41と、流出側の静圧を受ける後室42とを有し
1画室はダイアフラム46で区分さく国  1〜 れる。後室は圧縮ばね45を備え、しかも、ダイアフラ
ノ、45が弁体として作動することにより開口48を閉
鎖され得るパイプ44が取付けられる。
The negative pressure regulating valve 40 has a front chamber 41 that receives static pressure on the inflow side of the flow control valve 23 and a rear chamber 42 that receives static pressure on the outflow side, and one compartment is divided by a diaphragm 46. The rear chamber is equipped with a compression spring 45 and is also fitted with a pipe 44 whose opening 48 can be closed by the diaphragm 45 acting as a valve body.

このパイプの外側端は」−述の負圧調整路a側に連結さ
Jする。このため、流量制御弁28の前後差圧によりダ
イアフラム4ろが受ける閉鎖力が圧縮ばね45による開
弁力を上回ると、パイプ44の開口48は閉じられ、逆
に下回ると開放される。パイプ44の開口48が開放さ
れるとしぼり69が働き、負圧室ろ8の減圧量を緩める
よう、負圧調整路aには後室42側のエアが流入し、閉
弁方向Cに弁体35が移動する。逆に、パイプ44が閉
じられろど負圧調整路aには真空ポツプ12がらの負圧
のみが加わり、開弁方向Pに弁体35が移動する。
The outer end of this pipe is connected to the negative pressure adjustment path a side described above. Therefore, when the closing force applied to the diaphragm 4 due to the differential pressure across the flow rate control valve 28 exceeds the opening force of the compression spring 45, the opening 48 of the pipe 44 is closed, and when the pressure becomes lower than the opening force, the opening 48 is opened. When the opening 48 of the pipe 44 is opened, the throttle 69 works, and air from the rear chamber 42 side flows into the negative pressure adjustment path a to loosen the amount of pressure reduction in the negative pressure chamber filter 8, and the valve moves in the valve closing direction C. The body 35 moves. Conversely, when the pipe 44 is closed, only the negative pressure from the vacuum pop 12 is applied to the negative pressure adjustment path a, and the valve element 35 moves in the valve opening direction P.

燃焼制御装置27はマイクロコンピュータでそのが 要部夕形成される。上記燃焼制御装置27は流量制御弁
2ろの上流側圧カセンザ26や大気温七ン→ノ25やイ
)シ置セ/゛りろ3やバーナ排ガス温度センサ46から
それぞれ出力信号を受け、流量制御弁の上流側圧力、大
気温度の増減に応じて2次エアの体積流量を適正量増減
させ、また、バーナ排ガさらに詳述すると、2次エアの
重量流量GaはG、L=紅E肩T      ■ ただし S:流路断面積。
The main part of the combustion control device 27 is formed by a microcomputer. The combustion control device 27 receives output signals from the upstream pressure sensor 26 of the flow rate control valve 2, the atmospheric temperature 7->25, the position control valve 3, and the burner exhaust gas temperature sensor 46, and controls the flow rate. The volumetric flow rate of the secondary air is increased or decreased by an appropriate amount according to the upstream pressure of the valve and the increase or decrease in the atmospheric temperature, and the burner exhaust gas is increased or decreased by an appropriate amount. T ■ However, S: Channel cross-sectional area.

÷ 、4I7’:流量制御弁28前後差圧。÷ , 4I7': Differential pressure before and after the flow control valve 28.

!=流量制御弁28′i流側空気密度 で与えられるが1本実施例においてはAPは常に一定に
保たれCは流量係数でほぼ一定の値をとるので、流路断
面積を空気の密度変化分だけ補正することにより、2次
エアの重量流量を一定にすることができる。
! =Flow rate control valve 28'i is given by the air density on the downstream side.1 In this embodiment, AP is always kept constant and C is the flow rate coefficient and takes an approximately constant value, so the flow path cross-sectional area is determined by the change in air density. By correcting this amount, the weight flow rate of the secondary air can be made constant.

さらに0式は空気y11’A度と圧力に鑑み1次の、1
うに変形される。
Furthermore, formula 0 is of first order, considering the air y11'A degree and pressure,
transformed into a sea urchin.

S−ら76層1−糺σが ただし T′浦(計制御弁上流空気温度。S-etc.76 layer 1-stack σ however T'ura (meter control valve upstream air temperature.

P:べ(、量制御弁上流側空気圧力。P: Be (, air pressure on the upstream side of the quantity control valve.

K:比例定数 すなわち、空気温度上シ1に対しては、流路断面積を増
大、空気圧力上Y1に対しては流路断面積を減少させる
制御をすることにより重量流量を一定にすることができ
る。なお、流路断面積は流量制御弁リフ1、損と一対一
に対応するので、T、Pに対して要求リフト律をマツプ
等で指示することにより9重量流量は一定に保たれる。
K: Constant of proportionality, that is, the weight flow rate is made constant by increasing the cross-sectional area of the flow path for air temperature Y1, and decreasing the cross-sectional area of the flow path for Y1 of air pressure. I can do it. Note that the cross-sectional area of the flow path has a one-to-one correspondence with the flow rate control valve lift 1 and loss, so by indicating the required lift rule for T and P using a map or the like, the 9 weight flow rate can be kept constant.

ここでPを流量制御弁28上流側空気圧力としたが+t
lF、損制御弁28の付近の流路内の圧力であれば良く
、流量制御弁28下流側の空気圧力としても成立つもの
である。
Here, P is the air pressure on the upstream side of the flow rate control valve 28, but +t
1F, the pressure in the flow path near the loss control valve 28 is sufficient, and can also be the air pressure on the downstream side of the flow rate control valve 28.

、+た。第6図に示すように、バーナ排ガス温度が一定
となるよう、基準値T。と比較し、基準値を設定111
1.at以上に下回っている間は基準燃料量q。
,+ta. As shown in FIG. 6, the reference value T is set so that the burner exhaust gas temperature is constant. Compare with and set reference value111
1. While the amount is below at or above, the standard fuel amount q.

を、逆に〕、(準値を設定値4を以上に上回っている間
は小さな燃料量q2を噴射するよう燃焼制御装置27に
よって燃料噴射量qが制御されている。
, conversely], (The fuel injection amount q is controlled by the combustion control device 27 so that a small fuel amount q2 is injected while the quasi-value exceeds the set value 4 or more.

第5図に示したバーナエア制御装置の作動を説明する。The operation of the burner air control device shown in FIG. 5 will be explained.

燃焼制御装置27はフィルタ5上流側の排圧を圧力検知
装置19で検知し、同排圧が設定値を上回ると再燃焼処
理に入る。まず、燃焼制御装置27は1次、2次の各エ
アポンプ7.9と燃料ポンプ8とイグニッションコイル
6とをオンさせる信号を発する。同時にバーナ排ガス温
度センサ46の出力信号に基づき、これが基準411度
T。より低いと、燃料流量値をq。よりqlに、逆の場
合はq2に調量するよう燃料調整弁17に出力信号を与
える。ところで、負圧調整弁40は流量制御弁28の前
後差圧を検出し、圧縮ばね45に設定された差圧値に常
時2次流路21を保つよう逃し弁34を制御する。即ち
9前後差圧が大きくなるとパイプ44は閉じられ真空ポ
ンプ12の負圧は全て負圧室38に加わり、弁体65は
開弁方向Pに比較的太き(移動し、2次流路21のエア
を大気放出し、逆に、差圧が小さくなると、パイプ44
の開口4Bは開き、負圧調整路aには後室42側よりエ
アが流入し、負圧室38には比較的弱い負圧しか与えら
れず、逃し弁35は閉弁方向Cに移動し。
The combustion control device 27 detects the exhaust pressure on the upstream side of the filter 5 using the pressure detection device 19, and when the exhaust pressure exceeds a set value, the combustion control device 27 enters a re-combustion process. First, the combustion control device 27 issues a signal to turn on each of the primary and secondary air pumps 7.9, the fuel pump 8, and the ignition coil 6. At the same time, based on the output signal of the burner exhaust gas temperature sensor 46, this is the standard 411 degrees T. The lower the q fuel flow value. An output signal is given to the fuel regulating valve 17 so that the amount of fuel is adjusted to ql, and vice versa, to q2. Incidentally, the negative pressure regulating valve 40 detects the differential pressure across the flow rate control valve 28 and controls the relief valve 34 so as to always maintain the secondary flow path 21 at the differential pressure value set in the compression spring 45. That is, when the differential pressure around 9 increases, the pipe 44 is closed and all the negative pressure of the vacuum pump 12 is added to the negative pressure chamber 38, and the valve body 65 is relatively thick (moved) in the valve opening direction P, and the secondary flow path 21 air is released into the atmosphere, and conversely, when the differential pressure decreases, the pipe 44
opening 4B opens, air flows into the negative pressure adjustment path a from the rear chamber 42 side, only relatively weak negative pressure is applied to the negative pressure chamber 38, and the relief valve 35 moves in the valve closing direction C. .

2次流路21からのエアの放出を押える。このような、
いわゆるニューマチック作動のみで流量制御弁28の前
後差圧は一定に保持される。
The release of air from the secondary flow path 21 is suppressed. like this,
The differential pressure across the flow rate control valve 28 is maintained constant only by so-called pneumatic operation.

これに対し、弁駆動装置23の負圧室61にはデユーテ
ィ弁ろ2を介し負圧が加わる。この場合。
On the other hand, negative pressure is applied to the negative pressure chamber 61 of the valve drive device 23 via the duty valve filter 2 . in this case.

燃焼制御装置27は流量制御弁28の上流側圧力および
大気ン晶度を基に、所定重量流量Gaを得ることのでき
ろ流量制御弁28のリフト位置を前以って記ta した
マツプを用いて求める。そして求めた弁体28のリフト
位置に対応する信号と位置センサ63が発する出力信号
とが一致するよう、燃焼制御装置27はデユーティ弁′
52にデユーティ比を大小変化させてフィードバック制
御する。なお。
The combustion control device 27 uses a map in which the lift position of the flow control valve 28 that can obtain a predetermined weight flow rate Ga is recorded in advance based on the upstream pressure of the flow control valve 28 and the atmospheric crystallinity. I ask. Then, the combustion control device 27 controls the duty valve '
52, feedback control is performed by varying the duty ratio. In addition.

上述の各マツプは前述した理論式を基に実験により比例
定数に等を設定の上、前以って入力してお(。これによ
り2次エアは2次流路21を通過する間に、常に重量流
量が一定となるよう調整され。
Each of the above maps is input in advance by setting the proportionality constant etc. through experiments based on the theoretical formulas mentioned above (this allows the secondary air to Adjusted so that the weight flow rate is always constant.

〕き−す20に供給される。] is supplied to the case 20.

以上より、第5図に示したノ・−ナエア制御装置は2次
ポンプ9の作動のばらつきあるいは流量制御弁28の上
流側圧力、大気温度の変動による空気密度の変化があっ
ても、流量制御弁28の前後差圧なニューマチック作動
する逃し弁駆動装置34等で常時一定に保つと共に制御
部27により流量制御弁28の上流側圧力、大気温度の
変動を打消すべく流路面積Sを所定値に修正するよう、
デユーティ弁32を作動制御することにより2次エアの
流量制御は精度よく行なわれ、しかも、燃焼制御装置2
7は2次ポンプ9自体の吐出量のばらつきを制御する必
要がなく、その分節素化されるという効果を奏する。
From the above, the non-air control device shown in FIG. The differential pressure across the valve 28 is always kept constant by a pneumatic relief valve driving device 34, etc., and the flow path area S is set by the control unit 27 in order to cancel fluctuations in the pressure on the upstream side of the flow rate control valve 28 and the atmospheric temperature. To correct the value,
By controlling the operation of the duty valve 32, the flow rate of the secondary air can be controlled with high accuracy.
7 has the effect that it is not necessary to control variations in the discharge amount of the secondary pump 9 itself, and that it can be segmented.

第5図に示した・・−ナエア制御装置は2次流路210
前後差圧な負圧調整弁40で検出し、この検出値に応じ
て負圧調整路aの負圧値の修正を行ない逃し弁駆動装置
34を作動させて(・た。これに代え、第7図に示すよ
うに、2次流路21のエアを大気放出させる逃し弁駆動
装置50を直接流量制御弁28の上流と下流の差圧で作
動させてもよい。この場合、逃し弁51を閉弁方向Cに
押圧する圧縮ばね52を備えた後室56と、流量制御弁
28と2次ポンプ9どの間の圧力を受ける前室54とが
ダイアフラム55にエア圧を加える。即ち1前後差圧に
よる押圧力が圧縮ばね52の押圧力を上回ると逃し弁5
1が開弁方向Pに作動し。
The air control device shown in FIG. 5 is the secondary flow path 210
The differential pressure between the front and rear is detected by the negative pressure regulating valve 40, and the negative pressure value of the negative pressure regulating path a is corrected according to this detected value, and the relief valve driving device 34 is operated. As shown in FIG. 7, the relief valve drive device 50 that releases the air in the secondary flow path 21 to the atmosphere may be actuated by the differential pressure between the upstream and downstream sides of the direct flow control valve 28. In this case, the relief valve 51 is A rear chamber 56 equipped with a compression spring 52 that presses in the valve closing direction C, and a front chamber 54 that receives pressure between the flow rate control valve 28 and the secondary pump 9 apply air pressure to the diaphragm 55. That is, a difference of around 1 When the pressing force due to pressure exceeds the pressing force of the compression spring 52, the relief valve 5
1 operates in the valve opening direction P.

逆に、下回ると逃し弁51が閉弁方向Cに作動する。こ
れにより、2次ポンプ9の吐出エアのばらつきが除去さ
れ、安定したエフが流量制御弁28に達することになる
。この装置は前記実施例(第5図)にて示した負圧調整
弁40を除去できる利点がある。ただし、圧縮ばね52
は2次エフを直接受ける前室54かもの押圧力に抗して
閉弁方向Cの押圧力を与えねばならず、ばね定数を大き
くする必要がある。
On the other hand, when the temperature drops below the limit, the relief valve 51 operates in the valve closing direction C. As a result, variations in the discharge air of the secondary pump 9 are eliminated, and stable air reaches the flow rate control valve 28. This device has the advantage that the negative pressure regulating valve 40 shown in the previous embodiment (FIG. 5) can be removed. However, the compression spring 52
It is necessary to apply a pressing force in the valve closing direction C against the pressing force of the front chamber 54 which directly receives the secondary F, and it is necessary to increase the spring constant.

第5図に示したバーナエア制御装置は弁駆動装置26を
燃焼制御装置27.流量制御弁28の上流側圧カセンザ
26.大気温センサ25を用い作動させていたが、これ
に代え、第8図に示すように流量制御弁61を大気圧で
のみ制御してもよい。
The burner air control device shown in FIG. 5 connects the valve drive device 26 to the combustion control device 27. Upstream pressure sensor 26 of flow control valve 28. Although the atmospheric temperature sensor 25 was used for operation, instead of this, the flow rate control valve 61 may be controlled only at atmospheric pressure, as shown in FIG.

圧縮ばね64を備えた定圧室65とに挾まれる。It is sandwiched between a constant pressure chamber 65 equipped with a compression spring 64.

定圧室65は絶対圧に対し一定の圧力を発生する定圧源
66に接続される。
The constant pressure chamber 65 is connected to a constant pressure source 66 that generates a constant pressure with respect to absolute pressure.

定圧源66は9例えば第9図に示す構成となっており、
ハウジング300により密閉された定圧室301、同定
圧室301内に設けられた真空ダイアフラム302.真
空ポンプ12と上記定圧室3’01とを連通ずると共に
途中に絞り部306aが設けられた負圧管50ろ、更に
一端が大気に開放され第9図に示す様にスプリングり0
4及び球体605が組込まれた大気開放管606.及び
定圧を供給する連通管307から構成されている。
The constant pressure source 66 has a configuration shown in FIG. 9, for example,
A constant pressure chamber 301 sealed by a housing 300, a vacuum diaphragm 302 provided within the constant pressure chamber 301. A negative pressure pipe 50 which communicates the vacuum pump 12 with the constant pressure chamber 3'01 and is provided with a constriction part 306a in the middle, has one end open to the atmosphere and has a spring spring 0 as shown in FIG.
4 and an atmosphere open tube 606 into which the sphere 605 is incorporated. and a communication pipe 307 that supplies constant pressure.

上記定圧室301の圧力が下がると、真空ダイヤフラム
302が膨張し大気開放管306内の球体305を押圧
し、大気が開放管306を通して定圧室301内に流入
されることとなる。大気が定圧室301内に流入すると
定圧室301内の圧力が上y1−シ真空ダイアフラムろ
02が収縮することとなり1球体ろ05が大気開放管3
06を閉鎖する。これらを繰返すことにより定圧室内の
圧力が略一定となるものである。
When the pressure in the constant pressure chamber 301 decreases, the vacuum diaphragm 302 expands and presses the sphere 305 in the atmosphere opening tube 306, causing the atmosphere to flow into the constant pressure chamber 301 through the opening tube 306. When the atmosphere flows into the constant pressure chamber 301, the pressure inside the constant pressure chamber 301 rises and the vacuum diaphragm filter 02 contracts, causing the spherical filter 05 to open to the atmosphere pipe 3.
06 will be closed. By repeating these steps, the pressure in the constant pressure chamber becomes approximately constant.

達すると)流量制御弁61は開弁方向Pに移動し。(when reaching the point), the flow rate control valve 61 moves in the valve opening direction P.

流路面積Sを増大させ体積流量を増加させる。逆に、大
気圧が上昇すると流量制御弁61は閉方向Cに移動し、
流路面積Sを狭め1体積流量を低下させる。このような
作動により2次エアはほぼ重量流量を一定に保持できる
。この場合制御部が簡素化され1部品低減効果がある。
The flow path area S is increased to increase the volumetric flow rate. Conversely, when atmospheric pressure rises, the flow control valve 61 moves in the closing direction C,
The flow path area S is narrowed to lower the 1 volume flow rate. By such an operation, the weight flow rate of the secondary air can be maintained substantially constant. In this case, the control section is simplified and there is an effect of reducing the number of parts by one.

第10図には、第7図で説明した逃し弁駆動装置50と
第8図で説明した流量制御装置60とを2次流路21に
取付けたバーナエア制御装置を示した。この実施例の場
合、全てニューマチック作動により各弁を制御すること
になり部品低減効果が流量制御装置23.60に代えて
内部が真空密閉されたアネロイドベp−ズ100を用い
て直接流量制御弁28を開閉作動させる流量制御装置1
02としてもよい。
FIG. 10 shows a burner air control device in which the relief valve drive device 50 explained in FIG. 7 and the flow rate control device 60 explained in FIG. 8 are attached to the secondary flow path 21. In this embodiment, all the valves are controlled by pneumatic operation, and the effect of reducing the number of parts is that an aneroid valve 100 whose inside is vacuum-sealed is used instead of the flow control device 23.60 to directly control the flow rate. Flow control device 1 that opens and closes 28
It may be set to 02.

第ξ図に基づいて説明すると、流量制御装置102は、
内部が真空密閉されたベローズ100と、同べp−ズ1
00を囲み大気に開放された開口103を有するケーシ
ング104と、べp−ズ内に設けられたスプリング10
5とから成り、ベローズ100と流量制御弁2Bとが連
結されている。
To explain based on FIG. ξ, the flow rate control device 102 is
A bellows 100 whose interior is vacuum-sealed and a bellows 1
00 and a spring 10 provided in the bead.
The bellows 100 and the flow rate control valve 2B are connected to each other.

上記構成によれば、大気圧が低くなるとベローズ100
が周囲の大気圧とスプリング105の付勢力とのバラン
スにより伸長し、流量制御弁28が下がり流路面積Sを
広げることとなる。また、大気圧が高くなると、ベロー
ズ100が収縮し、流量制御弁28が上り流量面積Sを
狭めることとなる。
According to the above configuration, when the atmospheric pressure becomes low, the bellows 100
expands due to the balance between the surrounding atmospheric pressure and the biasing force of the spring 105, and the flow rate control valve 28 is lowered to widen the flow path area S. Further, when the atmospheric pressure increases, the bellows 100 contracts, and the flow rate control valve 28 narrows the upward flow area S.

従って1本実施例の構成によれば極めて簡単な構成で大
気圧に応じて流量面積Sを制御できるものである。
Therefore, according to the configuration of this embodiment, the flow area S can be controlled in accordance with the atmospheric pressure with an extremely simple configuration.

なお、第12図に示した流量制御装置は第11図のもの
と同一のものであるので、同−何升を符して説明を省略
する。
Incidentally, since the flow rate control device shown in FIG. 12 is the same as that shown in FIG. 11, the explanation will be omitted by referring to the same number.

上 あるエンジン回転数、負荷等を加えてもよい。Up A certain engine speed, load, etc. may be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は容積型エアポンプの吐出圧一体積流量線図、第
2図は高低地差による重量流量の変化を説明する図、第
6図はエアポンプ自体の重量流量のす ばらつきを説明する図、第4図は従来の・・−\エア制
御装置の概略構成図、第5図、第7図、第8図、第10
図、第11図、及び第12図は本発明の各々異なる実施
例としてのバーナエア制御装置の概略構成図、第6図は
・・−す排ガス温度−燃料量特性線図、第9図は定圧源
の一実施例を示す断面図をそれぞれ示している。 3・・・排気路、      5・・フィルタ。 9・・・2次ポンプ、    20・・バーナ。 21・・・2次流路、    23・・・流量制御装置
。 27・・・燃焼制御装置、  28・・・流量制御弁。 34・・・逃し弁、     40・・・負圧調整弁。 66・・・定圧源、     a・・・負圧調整路。 102・・・べp−ズ、   202・・・排気バイパ
ス路第1図 q土山/E  (mmHう) 第2図 第3図 01出た[m−n)113
Fig. 1 is a discharge pressure-volume flow diagram of a positive displacement air pump, Fig. 2 is a diagram illustrating changes in weight flow rate due to elevation differences, and Fig. 6 is a diagram explaining variations in weight flow rate of the air pump itself. Figure 4 is a schematic diagram of the conventional air control device, Figures 5, 7, 8, and 10.
11 and 12 are schematic configuration diagrams of burner air control devices as different embodiments of the present invention, FIG. 6 is an exhaust gas temperature-fuel quantity characteristic diagram, and FIG. 9 is a constant pressure 3A and 3B each illustrate a cross-sectional view of one embodiment of a source; 3...Exhaust path, 5...Filter. 9... Secondary pump, 20... Burner. 21...Secondary flow path, 23...Flow rate control device. 27... Combustion control device, 28... Flow rate control valve. 34... Relief valve, 40... Negative pressure regulating valve. 66... Constant pressure source, a... Negative pressure adjustment path. 102...Beps, 202...Exhaust bypass path Fig. 1 q Tsuchiyama/E (mmH) Fig. 2 Fig. 3 01 appeared [m-n) 113

Claims (1)

【特許請求の範囲】 1、ディーゼルエンジンの排気路に設けられ排気ガス中
のパティキュレートを捕集するパティキュレートフィル
タ、同パティキュレートフィルタをバイパスする排気バ
イパス路、上記パティキュレートフィルタの上流側に設
けられ燃料及び空気が供給されるバーナ装置を備え、上
記パティキュレートフィルタに設定量以上のパティキュ
レートが捕集された状態で上記排気ガスを上記排気バイ
パス路に通すと共に上記バーナにより上記パティキュレ
ートを燃焼させるフィルタ再生装置において、上記バー
ナ装置に空気供給装置を介して空気を供給する供給路と
、同供給路に設けられ同供給路の流路面積を可変制御す
る流量制御弁と、上記供給路内の空気の温度又は圧力の
少なくとも一方の値に応じて上記流量制御弁を駆動する
流量制御装置と、上記供給路に設けられ上記供給路内の
空気の一部を外部に放出する逃し弁と、上記供給路内の
上記流量制御弁の上流側と下流側の圧力差に応動して上
記逃し弁を開閉制御する逃し弁制御装置と、上記フィル
タの再生時機を検知して排気ガスを上記排気バイパス路
に流すと共に上記バーナ装置を燃焼作動せしめる燃焼制
御装置とを具備したことを特徴とするディーゼルパティ
キュレートフィルタの再生装置 2、上記流量制御装置が、大気圧が導かれる大気圧室と
、所定の一定圧が導かれる定圧室と、上記両室を支切る
と共に上記流量制御弁と連結されたダイアフラムと、同
ダイアフラムに付勢力を与えるスプリングとから成る圧
力応動装置により構成され、大気圧が低下すると上記流
量制御弁の開度が大きくなる様に構成されたことを特徴
とする特許請求の範囲第1項記載のディーゼルパティキ
ュレートフィルタの再生装置 3、上記流量制御装置が上記流量制御弁に連結されたベ
ローズと、同ベローズを囲み大気開口を有するケーシン
グとから成る圧力応動装置により構成され、大気圧が低
下すると上記ベローズが伸長し上記流量制御弁の開度が
大きくなる様に構成された特許請求の範囲第1項記載の
ディーゼルパティキュレートフィルタの再生装置 4、上記逃し弁制御装置が上記供給路の上記流量制御弁
の下流側圧力が導かれる第一室と、上記流量制御弁の上
流側圧力が導かれる第二室と、上記第一室及び第二室を
支切ると共に上記逃し弁に連動する様に同逃し弁に連結
されたダイアフラムと、同ダイアフラムに付勢力を与え
るスプリングとから成り、上記流量制御弁の上流側の圧
力が同流量制御弁の下流側の圧力に比べ設定値以上の大
きさとなつたときに上記逃し弁が開く様に構成されたこ
とを特徴とする特許請求の範囲第1項記載のディーゼル
パティキュレートフィルタの再生装置 5、上記逃し弁制御装置が、上記供給路の上記流量制御
弁の下流側圧力が導かれる第1室と、同流量制御弁の上
流側圧力が導かれる第2室と、上記第1室及び第2室を
支切る第1ダイアフラムと、同第1ダイアフラムに付勢
力を加える第1スプリングとから成る負圧調整弁、負圧
源と第1通路により連通された負圧室と、大気圧に開放
された大気圧室と、上記負圧室と上記大気圧室とを支切
ると共に上記逃し弁に連結された第2ダイアフラムと、
同第2ダイアフラムに付勢力を与える第2スプリングと
から成る逃し弁駆動装置、一端が上記第1ダイアフラム
に対向して開口部が設けられ、他端が上記負圧源と上記
逃し弁駆動装置とを繋ぐ上記第1通路に連通された第2
通路とから構成され、上記流量制御弁の上流側の圧力が
同下流側の圧力に比べ設定値以上大きくなつたときに、
上記第1ダイアフラムにより上記第2通路の開口が閉じ
られ上記負圧室の負圧が上昇し、上記逃し弁が開く様に
構成されたことを特徴とする特許請求の範囲第1項記載
のディーゼルパティキュレートフィルタの再生装置 6、デイーゼルエンジンの排気路に設けられ排気ガス中
のパティキュレートを捕集するパティキュレートフィル
タ、同パティキュレートフィルタをバイパスする排気バ
イパス路、上記パティキュレートフィルタの上流側に設
けられ燃料及び空気が供給されるバーナ装置を備え、上
記パティキュレートフィルタに設定量以上のパティキュ
レートが捕集された状態で上記排気ガスを上記排気バイ
パス路に通すと共に上記バーナにより上記パティキュレ
ートを燃焼させるフィルタ再生装置において、上記フィ
ルタの再生時機を検知して排気ガスを上記排気バイパス
路に流すと共に上記バーナ装置を含むフィルタ再生装置
を燃焼作動せしめる制御装置と、上記バーナ装置に空気
を供給する供給路と、同供給路に設けられ同供給路の流
路面積を可変制御する流量制御弁と、上記供給路内の上
記流量制御弁付近に設けられた圧力検知手段、上記供給
路内の空気温度を検知する温度検知手段、上記制御装置
内に設けられ上記圧力及び温度に基づき流量制御弁の最
適リフト量を算出する演算部及び上記流量制御弁に連結
され上記演算部により算出されたリフト量に基づいて流
量制御弁を駆動する弁駆動装置から成る流量制御装置と
、上記供給路に設けられ上記供給路内の空気の一部を外
部に放出する逃し弁と、上記供給路内の上記流量制御弁
の上流側と下流側の圧力差に応動して上記逃し弁を開閉
制御する逃し弁制御装置とを具備したことを特徴とする
ディーゼルパティキュレートフィルタの再生装置 7、上記弁駆動装置が、負圧源に連通された負圧室と、
大気に開放された大気圧室と、上記大気圧室と上記負圧
室とを支切ると共に上記流量制御弁と連動する様に同流
量制御弁と連結されたダイアフラムと、同ダイアフラム
に付勢力を与えるスプリングと、上記負圧室と上記負圧
源との間に設けられ負圧室を大気に開放又は負圧室を負
圧源に連通する様に切換える切換弁とから成り、上記演
算部より算出された値に基づいて上記切換弁を制御する
ことにより上記流量制御弁を目標値に設定することを特
徴とする特許請求の範囲第6項記載のディーゼルパティ
キュレートフィルタの再生装置 8、上記切換弁が上記演算部からの信号によりデューテ
ィ制御されて上記流量制御弁のバルブリフト量を目標値
に設定することを特徴とする特許請求の範囲第7項記載
のディーゼルパティキュレートフィルタの再生装置 9、上記切換弁が上記演算部からの信号によりオンオフ
制御されて上記流量制御弁のバルブリフト量を目標値に
設定することを特徴とする特許請求の範囲第7項記載の
ディーゼルパティキュレートフィルタの再生装置 10、上記流量制御弁のバルブリフト位置を検出するリ
フト位置検出器を有し、同リフト位置検出器により検出
した値を上記演算部に入力し、上記流量制御弁のバルブ
リフト量をフィードバック制御により目標値に設定する
ことを特徴とする特許請求の範囲第7項記載のディーゼ
ルパティキュレートフィルタの再生装置 11、上記逃し弁制御装置が上記供給路の上記流量制御
弁の下流側圧力が導かれる第一室と、上記流量制御弁の
上流側圧力が導かれる第二室と、上記第一室及び第二室
を支切ると共に上記逃し弁に連動する様に同逃し弁に連
結されたダイアフラムと、同ダイアフラムに付勢力を与
えるスプリングとから成り、上記流量制御弁の上流側の
圧力が同流量制御弁の下流側の圧力に比べ設定値以上の
大きさとなつたときに上記逃し弁が開く様に構成された
ことを特徴とする特許請求の範囲第7項記載のディーゼ
ルパティキュレートフィルタの再生装置 12、上記逃し弁制御装置が、上記供給路の上記流量制
御弁の下流側圧力が導かれる第1室と、同流量制御弁の
上流側圧力が導かれる第2室と、上記第1室及び第2室
を支切る第1ダイアフラムと、同第1ダイアフラムに付
勢力を加える第1スプリングとから成る負圧調整弁、負
圧源と第1通路により連通された負圧室と、大気圧に開
放された大気圧室と上記負圧室と上記大気圧室とを支切
ると共に上記逃し弁に連結された第2ダイアフラムと、
同第2ダイアフラムに付勢力を与える第2スプリングと
から成る逃し弁駆動装置、一端が上記第1ダイアフラム
に対向して開口部が設けられ他端が上記負圧源と上記逃
し弁駆動装置とを繋ぐ上記第1通路に連通された第2通
路とから構成され、上記流量制御弁の上流側の圧力が同
下流側の圧力に比べ設定値以上大きくなつたときに上記
第1ダイアフラムにより上記第2通路の開口が閉じられ
上記負圧室の負圧が上昇し上記逃し弁が開く様に構成さ
れたことを特徴とする特許請求の範囲第7項記載のディ
ーゼルパティキュレートフィルタの再生装置
[Claims] 1. A particulate filter provided in the exhaust path of a diesel engine to collect particulates in exhaust gas, an exhaust bypass path bypassing the particulate filter, and provided upstream of the particulate filter. and a burner device to which fuel and air are supplied, the exhaust gas is passed through the exhaust bypass passage in a state in which more than a set amount of particulates are collected in the particulate filter, and the particulates are combusted by the burner. In the filter regeneration device, a supply path for supplying air to the burner device via an air supply device, a flow rate control valve provided in the supply path for variably controlling the flow path area of the supply path, and a a flow control device that drives the flow rate control valve according to at least one of the temperature or pressure of the air; a relief valve that is provided in the supply path and releases a part of the air in the supply path to the outside; a relief valve control device that controls opening and closing of the relief valve in response to a pressure difference between the upstream side and the downstream side of the flow rate control valve in the supply path; and a relief valve control device that controls the opening and closing of the relief valve in response to a pressure difference between the upstream side and the downstream side of the flow rate control valve in the supply path, and a relief valve control device that detects regeneration timing of the filter and directs the exhaust gas to the exhaust bypass. A regeneration device 2 for a diesel particulate filter is characterized in that it is equipped with a combustion control device for causing the burner device to operate the burner device while the flow rate is flowing through the flow rate control device. It consists of a pressure responsive device consisting of a constant pressure chamber into which a constant pressure is introduced, a diaphragm that separates both chambers and is connected to the flow control valve, and a spring that applies a biasing force to the diaphragm. The diesel particulate filter regeneration device 3 according to claim 1, characterized in that the opening degree of the flow rate control valve is increased, and the flow rate control device is connected to the flow rate control valve. A pressure-responsive device comprising a bellows and a casing surrounding the bellows and having an opening to the atmosphere, the bellows expanding when the atmospheric pressure decreases and the opening degree of the flow rate control valve increasing. In the diesel particulate filter regeneration device 4 according to item 1, the relief valve control device is connected to a first chamber to which the downstream pressure of the flow rate control valve of the supply path is introduced, and the upstream pressure of the flow rate control valve. a second chamber into which is guided, a diaphragm that separates the first and second chambers and is connected to the relief valve so as to operate in conjunction with the relief valve, and a spring that applies a biasing force to the diaphragm, Claims characterized in that the relief valve is configured to open when the pressure on the upstream side of the flow control valve exceeds a set value compared to the pressure on the downstream side of the flow control valve. In the diesel particulate filter regeneration device 5 according to item 1, the relief valve control device is connected to a first chamber to which the downstream pressure of the flow rate control valve of the supply path is introduced, and a first chamber to which the downstream pressure of the flow rate control valve of the supply path is guided. A negative pressure regulating valve, a negative pressure source, and a first passage, comprising a second chamber to be guided, a first diaphragm that separates the first chamber and the second chamber, and a first spring that applies a biasing force to the first diaphragm. a negative pressure chamber communicated with the atmospheric pressure chamber, an atmospheric pressure chamber opened to atmospheric pressure, and a second diaphragm that separates the negative pressure chamber and the atmospheric pressure chamber and is connected to the relief valve;
a relief valve drive device comprising a second spring that applies a biasing force to the second diaphragm; one end is provided with an opening facing the first diaphragm; the other end is connected to the negative pressure source and the relief valve drive device; A second passageway connected to the first passageway connecting the
When the pressure on the upstream side of the flow control valve becomes greater than the set value compared to the pressure on the downstream side of the flow control valve,
The diesel engine according to claim 1, wherein the opening of the second passage is closed by the first diaphragm, the negative pressure in the negative pressure chamber is increased, and the relief valve is opened. A particulate filter regeneration device 6, a particulate filter provided in the exhaust path of the diesel engine to collect particulates in exhaust gas, an exhaust bypass path bypassing the particulate filter, and provided on the upstream side of the particulate filter. and a burner device to which fuel and air are supplied, the exhaust gas is passed through the exhaust bypass passage in a state in which more than a set amount of particulates are collected in the particulate filter, and the particulates are combusted by the burner. In the filter regeneration device, the control device detects the regeneration timing of the filter and causes the exhaust gas to flow through the exhaust bypass path and causes the filter regeneration device including the burner device to perform combustion operation, and a supply supply that supplies air to the burner device. a flow rate control valve provided in the supply path to variably control the flow path area of the supply path, a pressure detection means provided in the vicinity of the flow rate control valve in the supply path, and an air temperature in the supply path. temperature detection means for detecting the temperature, a calculation section provided in the control device for calculating the optimum lift amount of the flow control valve based on the pressure and temperature, and a calculation section connected to the flow control valve to calculate the lift amount calculated by the calculation section. a flow control device comprising a valve driving device that drives a flow rate control valve based on the flow rate control valve; a relief valve provided in the supply path and discharging a part of the air in the supply path to the outside; and the flow control device in the supply path. A diesel particulate filter regeneration device 7 characterized in that it is equipped with a relief valve control device that controls opening and closing of the relief valve in response to a pressure difference between the upstream side and the downstream side of the valve, wherein the valve drive device is a negative pressure chamber communicating with a pressure source;
an atmospheric pressure chamber opened to the atmosphere, a diaphragm that separates the atmospheric pressure chamber and the negative pressure chamber and is connected to the flow control valve so as to operate in conjunction with the flow control valve, and a biasing force is applied to the diaphragm. and a switching valve provided between the negative pressure chamber and the negative pressure source to open the negative pressure chamber to the atmosphere or to communicate the negative pressure chamber with the negative pressure source, The diesel particulate filter regeneration device 8 according to claim 6, characterized in that the flow rate control valve is set to a target value by controlling the switching valve based on the calculated value. The diesel particulate filter regeneration device 9 according to claim 7, wherein the valve is duty-controlled by a signal from the calculation section to set the valve lift amount of the flow rate control valve to a target value. The diesel particulate filter regeneration device according to claim 7, wherein the switching valve is controlled on and off by a signal from the calculation section to set the valve lift amount of the flow rate control valve to a target value. 10. It has a lift position detector that detects the valve lift position of the flow control valve, and inputs the value detected by the lift position detector to the calculation section, and controls the valve lift amount of the flow control valve by feedback control. The diesel particulate filter regeneration device 11 according to claim 7 is characterized in that the pressure is set to a target value, and the relief valve control device is configured to set the pressure to the downstream side of the flow rate control valve in the supply path. a second chamber to which the upstream pressure of the flow rate control valve is guided; a diaphragm that separates the first and second chambers and is connected to the relief valve so as to be interlocked with the relief valve; The relief valve is configured to open when the pressure on the upstream side of the flow control valve exceeds a set value compared to the pressure on the downstream side of the flow control valve. The diesel particulate filter regeneration device 12 according to claim 7 is configured such that the relief valve control device is connected to a first valve to which pressure on the downstream side of the flow rate control valve in the supply path is guided. a second chamber to which the upstream pressure of the flow rate control valve is guided, a first diaphragm that separates the first chamber and the second chamber, and a first spring that applies a biasing force to the first diaphragm. A negative pressure regulating valve, a negative pressure chamber communicated with a negative pressure source through a first passage, an atmospheric pressure chamber opened to atmospheric pressure, separating the negative pressure chamber and the atmospheric pressure chamber, and connecting to the relief valve. a second diaphragm;
a relief valve drive device comprising a second spring that applies a biasing force to the second diaphragm; one end is provided with an opening facing the first diaphragm; the other end connects the negative pressure source and the relief valve drive device; and a second passage communicating with the first passage, and when the pressure on the upstream side of the flow control valve becomes greater than the set value compared to the pressure on the downstream side, the first diaphragm The diesel particulate filter regeneration device according to claim 7, characterized in that the opening of the passage is closed, the negative pressure in the negative pressure chamber rises, and the relief valve opens.
JP59131284A 1983-07-15 1984-06-26 Regenerating device of diesel particulate filter Granted JPS6111413A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59131284A JPS6111413A (en) 1984-06-26 1984-06-26 Regenerating device of diesel particulate filter
US06/630,053 US4589254A (en) 1983-07-15 1984-07-12 Regenerator for diesel particulate filter
KR1019840004150A KR890001344B1 (en) 1983-07-15 1984-07-14 Regenerating apparatus for diesel particulate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131284A JPS6111413A (en) 1984-06-26 1984-06-26 Regenerating device of diesel particulate filter

Publications (2)

Publication Number Publication Date
JPS6111413A true JPS6111413A (en) 1986-01-18
JPH0429849B2 JPH0429849B2 (en) 1992-05-20

Family

ID=15054349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131284A Granted JPS6111413A (en) 1983-07-15 1984-06-26 Regenerating device of diesel particulate filter

Country Status (1)

Country Link
JP (1) JPS6111413A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941620A (en) * 1982-08-31 1984-03-07 Mazda Motor Corp Exhaust gas purifier of diesel engine
JPS6019909A (en) * 1983-07-14 1985-02-01 Mitsubishi Motors Corp Control device for burner air for diesel particulate filter
JPS6022015A (en) * 1983-07-15 1985-02-04 Mitsubishi Motors Corp Burner air control system in diesel exhaust gas cleaning device
JPS6050212A (en) * 1983-08-30 1985-03-19 Mitsubishi Motors Corp Burner air controller for diesel exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941620A (en) * 1982-08-31 1984-03-07 Mazda Motor Corp Exhaust gas purifier of diesel engine
JPS6019909A (en) * 1983-07-14 1985-02-01 Mitsubishi Motors Corp Control device for burner air for diesel particulate filter
JPS6022015A (en) * 1983-07-15 1985-02-04 Mitsubishi Motors Corp Burner air control system in diesel exhaust gas cleaning device
JPS6050212A (en) * 1983-08-30 1985-03-19 Mitsubishi Motors Corp Burner air controller for diesel exhaust emission control device

Also Published As

Publication number Publication date
JPH0429849B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
KR890001344B1 (en) Regenerating apparatus for diesel particulate filter
JPH0243068B2 (en)
US3945205A (en) Secondary air control device
JPS5982559A (en) Exhaust gas recirculation apparatus
US6886335B2 (en) Device for preventing the turbo-charger from over-running
US4200120A (en) Area type flow rate measuring device
JPS5845593B2 (en) Additional fluid control device for internal combustion engines
JPS6111413A (en) Regenerating device of diesel particulate filter
JPS6135372B2 (en)
JPH06108923A (en) Exhaust gas reflux controller
GB1496798A (en) Fuel feed devices for internal combustion engines
JPH0684724B2 (en) Burner air control unit for diesel filter unit
US4503834A (en) Feedback control system for supplying a fluid to an apparatus operable with the fluid
JPS6367010B2 (en)
JPS6363743B2 (en)
JPH0550568B2 (en)
US4206731A (en) Exhaust gas recirculation for an internal combustion engine
US4147033A (en) Secondary air supply system for internal combustion engines
JPS6019908A (en) Control device for burner air for diesel particulate filter
JPS5815657Y2 (en) Supply fuel control device for fuel-injected internal combustion engines
GB2027124A (en) I.C. engine idle speed control method and valve therefor
JPS6019909A (en) Control device for burner air for diesel particulate filter
JPH04272460A (en) Exhaust gas feedback control device of diesel engine
JPH08165956A (en) Piston valve type carburetor
JPS62246672A (en) Idling speed control device for automobile