JPH0429849B2 - - Google Patents

Info

Publication number
JPH0429849B2
JPH0429849B2 JP13128484A JP13128484A JPH0429849B2 JP H0429849 B2 JPH0429849 B2 JP H0429849B2 JP 13128484 A JP13128484 A JP 13128484A JP 13128484 A JP13128484 A JP 13128484A JP H0429849 B2 JPH0429849 B2 JP H0429849B2
Authority
JP
Japan
Prior art keywords
valve
pressure
control valve
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13128484A
Other languages
Japanese (ja)
Other versions
JPS6111413A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59131284A priority Critical patent/JPS6111413A/en
Priority to US06/630,053 priority patent/US4589254A/en
Priority to KR1019840004150A priority patent/KR890001344B1/en
Publication of JPS6111413A publication Critical patent/JPS6111413A/en
Publication of JPH0429849B2 publication Critical patent/JPH0429849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • F01N3/032Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start during filter regeneration only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/04Arrangements for controlling or regulating exhaust apparatus using electropneumatic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/04By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device during regeneration period, e.g. of particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Description

【発明の詳細な説明】 本発明はデイーゼルパテイキユレートフイルタ
の再燃焼に使用するバーナのバーナエア制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a burner air control device for a burner used for reburning a diesel particulate filter.

デイーゼルエンジンの排出するパテイキユレー
トは公害防止のため、通常はセラミツクス製のデ
イーゼルパテイキユレートフイルタ(以後単にフ
イルタと記す)により、排気中より取り除かれて
おり、所定時にフイルタ自体の再生を兼ね、再燃
焼により無公害物質として除去される。このパテ
イキユレートの再燃焼には適度の燃焼温度と適度
の酸素量、即ち、所定量の空気過剰率を保つエア
が必要であり、加熱温度が低いとパテイキユレー
トは除去されず、逆に、過度に加熱するとフイル
タ自体が溶損を生じるという不都合がある。
To prevent pollution, particulate matter emitted by diesel engines is usually removed from the exhaust by a ceramic diesel particulate filter (hereinafter simply referred to as a filter), which also regenerates the filter itself at designated times and re-burns it. It is removed as a non-polluting substance. This re-burning of the particulate yulate requires a moderate combustion temperature and a suitable amount of oxygen, that is, air that maintains a predetermined amount of excess air.If the heating temperature is low, the particulate yate will not be removed, and on the contrary, it will not be heated too much. Then, there is an inconvenience that the filter itself is damaged by melting.

ところで、フイルタの加熱源としてバーナが使
用されることが多く、特に、高圧少流量の1次エ
アにより燃料を霧化し、低圧大流量の2次エアに
よりパテイキユレートの燃焼を行なう霧吹式バー
ナが多用されている。このバーナに供給される1
次エアの最適供給量はほぼ燃料流量と比例し、こ
の燃料流量を一定とするため、通常は一次エア量
は一定に保たれる。これに対し、2次エアは低圧
だが大流量を必要とされると共に、パテイキユレ
ートの燃焼に必要となる所定重量流量値だけのエ
アが供給されるように制御する必要がある。この
2次エアは、通常、容積型エアポンプを用いて供
給するが、このエアポンプは回転数のみを一定に
すれば体積流量が一定となるが、大気圧、大気温
度及びエンジン排圧の変化に応じて重量流量の変
化を受け易い。このため、容積型エアポンプの利
点である大吐出量の確保という点を利用する一
方、重量流量の変化を修正する必要がある。たと
えば一般の容積型エアポンプは第1図〜第3図に
示すごとき特性を有している。
By the way, burners are often used as heating sources for filters, and in particular, atomizer burners are often used, which atomize fuel with high-pressure, small-flow primary air and burn particulate with low-pressure, large-flow secondary air. ing. 1 supplied to this burner
The optimum supply amount of primary air is approximately proportional to the fuel flow rate, and in order to keep this fuel flow rate constant, the primary air amount is usually kept constant. On the other hand, secondary air is required to have a low pressure but a large flow rate, and must be controlled so that only a predetermined weight flow rate value necessary for combustion of the particulate is supplied. This secondary air is normally supplied using a positive displacement air pump, and although this air pump has a constant volumetric flow rate by keeping only the rotation speed constant, it responds to changes in atmospheric pressure, atmospheric temperature, and engine exhaust pressure. It is susceptible to changes in weight flow rate. For this reason, it is necessary to take advantage of the advantage of positive displacement air pumps, which is ensuring a large discharge amount, while also correcting changes in weight flow rate. For example, a general positive displacement air pump has characteristics as shown in FIGS. 1 to 3.

第1図は容積型エアポンプの体積流量−吐出圧
特性の一例であり、吐出側の通路面積をしぼるこ
とにより体積流量は低減され、一方吐出圧が比較
的大きく増大することが明らかである。更に、第
2図には容積型エアポンプが低地にある場合(実
線で示した)と高地にある場合(破線で示した)
の重量理量−吐出圧特性の一例を示しており同一
重量流量を得る場合、高地では吐出圧を下げる即
ち、低地よりエア供給路のしぼりを拡げ、吐出圧
を下げる必要があることが示されている。同じく
第3図に示すように高度一定でもポンプ自体の変
動、大気温度等により2本の破線で示した如く重
量流量が変動することが示されている。
FIG. 1 shows an example of the volumetric flow rate-discharge pressure characteristic of a positive displacement air pump, and it is clear that by narrowing down the passage area on the discharge side, the volumetric flow rate is reduced, while the discharge pressure increases relatively greatly. Furthermore, Figure 2 shows the case where the positive displacement air pump is located at a low altitude (indicated by a solid line) and the case where it is located at a high altitude (indicated by a dashed line).
The figure shows an example of the gravimetric-discharge pressure characteristics of , and shows that in order to obtain the same weight flow rate, it is necessary to lower the discharge pressure at high altitudes, that is, to widen the restriction of the air supply passage and lower the discharge pressure from low altitudes. ing. Similarly, as shown in FIG. 3, even if the altitude is constant, the weight flow rate fluctuates as shown by the two broken lines due to fluctuations in the pump itself, atmospheric temperature, etc.

このような特性を有する容積型エアポンプを2
次エアポンプとして用いた従来装置の一例を第4
図に示した。デイーゼルエンジン(以後単にエン
ジンと記す)1はターボチヤージヤ2を備え、そ
の排気路3の下流側にフイルタ5を備え、その下
流側にマフラ200を介し排気を放出する。4は
フイルタ5の排気路3の上流側に設けられたバー
ナであり、同バーナ4はイグニツシヨンコイル6
を用いた発火装置を有し、圧力調整弁201によ
り調量された1次エアポンプ7からのエアで燃料
ポンプ8からの燃料を霧化させ、2次エアポンプ
9からのエアで高温ガスの空気過剰率を所定値に
保つよう構成され、過剰酸素でパテイキユレート
を燃焼させる。2次エアの供給路10は流量制御
弁11により流路面積が増減され、この弁を開閉
作動させる真空室は負圧源である真空ポンプ12
と真空調整弁13およびソレノイド弁14を介し
連結される。
Two positive displacement air pumps with these characteristics
An example of a conventional device used as an air pump is shown in the 4th section.
Shown in the figure. A diesel engine (hereinafter simply referred to as engine) 1 includes a turbocharger 2, a filter 5 on the downstream side of an exhaust path 3, and discharges exhaust gas through a muffler 200 on the downstream side. 4 is a burner provided upstream of the exhaust path 3 of the filter 5, and the burner 4 is connected to the ignition coil 6.
The fuel from the fuel pump 8 is atomized using the air from the primary air pump 7, which is metered by the pressure regulating valve 201, and the air from the secondary air pump 9 is used to atomize the excess air in the high-temperature gas. It is configured to maintain the rate at a predetermined value and burns the particulate with excess oxygen. The flow area of the secondary air supply path 10 is increased or decreased by a flow control valve 11, and the vacuum chamber that opens and closes this valve is a vacuum pump 12 that is a negative pressure source.
and is connected via a vacuum regulating valve 13 and a solenoid valve 14.

また、この様なシステムにおいては、排気ガス
の流れがパテイキユレートの再生に影響しないよ
うにすることが必要である。このため、第1図に
示す様に、排気路3のフイルタ5の上流側及び下
流側において上記排気路3に夫々連結された排気
バイパス路202が設けられており、更に排気路
3と排気バイパス路202の上流側分岐点には、
排気切換弁210が設けられている。排気切換弁
210は、真空ポンプ12に連通されたダイアフ
ラム203によりリンク機構を介して駆動され
る。ダイアフラム203と真空ポンプ12との間
には電磁弁204が設けられている。同電磁弁2
04は弁体205とコイル206とスプリング2
07とから構成され、コイル206に電流が流れ
ると弁体205がコイル206に引かれ電磁弁2
04が開放される。そして、真空ポンプ12の負
圧がダイアフラム203に作動し排気切換弁21
0がaの位置からbの位置に動き排気路3を閉鎖
する構成となつている。この結果、エンジン1か
ら排出される排気ガスは排気バイパス路202を
通りマフラ200に導かれることとなり、これに
よりエンジン1からの排気ガスが、バーナ装置2
0の燃焼条件に影響しない様になつている。
Additionally, in such a system, it is necessary to ensure that the flow of exhaust gas does not affect the regeneration of the particulate. For this reason, as shown in FIG. 1, exhaust bypass passages 202 are provided on the upstream and downstream sides of the filter 5 of the exhaust passage 3, respectively, and are connected to the exhaust passage 3. At the upstream branch of road 202,
An exhaust switching valve 210 is provided. The exhaust switching valve 210 is driven by a diaphragm 203 connected to the vacuum pump 12 via a link mechanism. A solenoid valve 204 is provided between the diaphragm 203 and the vacuum pump 12. Same solenoid valve 2
04 is the valve body 205, coil 206 and spring 2
07, when current flows through the coil 206, the valve body 205 is pulled by the coil 206, and the solenoid valve 2
04 is released. Then, the negative pressure of the vacuum pump 12 acts on the diaphragm 203, and the exhaust switching valve 21
0 moves from position a to position b to close the exhaust passage 3. As a result, the exhaust gas discharged from the engine 1 passes through the exhaust bypass passage 202 and is guided to the muffler 200, so that the exhaust gas discharged from the engine 1 is directed to the burner device 200.
It is designed so that it does not affect the combustion conditions of 0.

なお、符号17は燃料調整弁、符号18は圧力
調整弁、符号15はイグニツシヨンコイル6、エ
アポンプ7,9、ソレノイド弁14及び燃料調整
弁17をコントロールするコントローラ、符号1
6は大気圧センサをそれぞれ示している。
Note that 17 is a fuel adjustment valve, 18 is a pressure adjustment valve, 15 is a controller that controls the ignition coil 6, air pumps 7, 9, solenoid valve 14, and fuel adjustment valve 17.
6 indicates an atmospheric pressure sensor.

このようなエンジン1のフイルタ5にパテイキ
ユレートが過度に付着した場合、コントローラ1
5は、たとえばフイルタ5上流側排気路圧が設定
値を上回つたことを圧力センサ19により検出す
ることにより、再燃焼を開始させる。この場合、
高地で大気圧が低いと大気圧センサ16の入力信
号によりコントローラ15はソレノイド弁14に
出力し、2次エアの流路面積を基準値より一定量
増大させるよう制御する。
If excessive particulate matter adheres to the filter 5 of the engine 1, the controller 1
5 starts re-combustion, for example, by detecting with the pressure sensor 19 that the exhaust passage pressure on the upstream side of the filter 5 has exceeded a set value. in this case,
When the atmospheric pressure is low at a high altitude, the controller 15 outputs an input signal from the atmospheric pressure sensor 16 to the solenoid valve 14, and controls the flow area of the secondary air to increase by a certain amount from the reference value.

これにより空気密度の低下による重量流量の低
下を体積流量増により防ぐことができる。しか
し、単に大気圧変化を一定負圧を受けるダイアフ
ラム式の流量制御弁11で制御するこの方式で
は、2式エアポンプ自体のばらつきも加わり2次
エアの流量精度が低いという欠点がある。
This makes it possible to prevent a decrease in the weight flow rate due to a decrease in air density by increasing the volumetric flow rate. However, this system in which changes in atmospheric pressure are simply controlled by a diaphragm type flow control valve 11 that receives a constant negative pressure has the disadvantage that the precision of the flow rate of the secondary air is low due to variations in the type 2 air pump itself.

本発明は2次エアの流量を簡単な構成によつて
精度よく制御できるデイーゼルパテイキユレート
フイルタのバーナエア制御装置を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a burner air control device for a diesel particulate filter that can accurately control the flow rate of secondary air with a simple configuration.

本発明によるデイーゼルパテイキユレートフイ
ルタのバーナエア制御装置は、フイルタをバイパ
スする排気バイパス路とバーナへのエア供給路
と、エア供給路の流路面積を可変する流量制御弁
と、流量制御弁の前後差圧を一定にするように作
動する逃し弁と、流量制御弁の弁開閉量の操作を
行う制御部とを有した構成であり、さらに、逃し
弁が流量制御弁の前後圧を直接導く二つの室を有
した構成である。
The burner air control device for a diesel particulate filter according to the present invention includes an exhaust bypass passage that bypasses the filter, an air supply passage to the burner, a flow control valve that changes the flow area of the air supply passage, and a flow control valve before and after the flow control valve. The configuration includes a relief valve that operates to keep the differential pressure constant, and a control section that operates the valve opening/closing amount of the flow control valve. It has a configuration with two chambers.

以下、添付図面と共に本発明を説明する。 The present invention will be described below with reference to the accompanying drawings.

第5図には本発明の一実施例としてのデイーゼ
ルパテイキユレートフイルタのバーナエア制御装
置(以後単にバーナエア制御装置と記す)を示し
た。このバーナエア制御装置は第4図に示した従
来装置と同一部材を含んでおり、以後混同を生じ
ない範囲で同一部材には同一符号を付し、その重
複説明を略す。排気路3のフイルタ5に対し、所
定高温で所定空気過剰率の熱風を供給するバーナ
20は2次エア流路(以後単に2次流路と記す)
21を介し2次エアポンプ(以後単に2次ポンプ
と記す)9より2次エアを受ける。2次ポンプ9
はエアをエアフイルタ22を介し2次流路21に
流入させ、この2次流路の流路面積を増減させる
流量制御弁28を介しバーナ20に供給する。2
次流路21は、エアフイルタ22と2次ポンプ9
との間に大気温センサ25を備え、流量制御弁2
8の上流側にその圧力を検出する圧力センサ26
を備える。これら2つのセンサはその出力信号を
2次エアの流量を制御する燃料制御装置27に伝
えるよう接続される。
FIG. 5 shows a burner air control device (hereinafter simply referred to as burner air control device) for a diesel particulate filter as an embodiment of the present invention. This burner air control device includes the same members as the conventional device shown in FIG. 4, and the same members will be given the same reference numerals to avoid confusion hereafter, and their repeated explanation will be omitted. A burner 20 that supplies hot air with a predetermined high temperature and a predetermined excess air ratio to the filter 5 of the exhaust path 3 is a secondary air flow path (hereinafter simply referred to as a secondary flow path).
Secondary air is received from a secondary air pump (hereinafter simply referred to as secondary pump) 9 via 21. Secondary pump 9
Air flows into the secondary flow path 21 through the air filter 22, and is supplied to the burner 20 through a flow control valve 28 that increases or decreases the flow area of the secondary flow path. 2
The next flow path 21 includes an air filter 22 and a secondary pump 9.
An atmospheric temperature sensor 25 is provided between the flow control valve 2 and the flow control valve 2.
A pressure sensor 26 is provided on the upstream side of 8 to detect the pressure.
Equipped with. These two sensors are connected to transmit their output signals to a fuel control device 27 that controls the flow rate of secondary air.

弁駆動装置23は流動制御弁28をダイアフラ
ム29と一体的に連結し、このダイアフラムには
大気開放室30と圧縮ばね47を備えた負圧室3
1とが対向している。弁対流量制御弁28は2次
エア流路21にその流路面積Sを可変させるよう
取付けられる。上記負圧室31はデユーテイソレ
ノイド弁(以後単にデユーテイ弁と記す)32を
介し負圧源である真空ポンプ12に連結されてい
る。デユーテイ弁32は10Hz乃至20Hzで弁体をオ
ンオフさせて、負圧室31を真空ポンプ12に連
通させるか又は負圧室31に大気を導くかの切換
制御を行ない、弁体のオンの時間幅となるパルス
幅を燃焼制御装置27の出力信号により可変操作
し、これにより、負圧室31の負圧値を変え、こ
の値と圧縮ばねと大気圧とがバランスする位置に
流量制御弁28を移動させ、流路面積Sを可変制
御する。なお、流量制御弁28は全開位置より全
閉位置に向け変位し、この変位量は可変する電気
抵抗値に対応する出力信号として位置センサ33
より燃料制御装置27にフイードバツクされる。
The valve drive device 23 integrally connects the flow control valve 28 with a diaphragm 29 , which has a negative pressure chamber 3 equipped with an atmosphere opening chamber 30 and a compression spring 47 .
1 is facing. The valve-to-flow control valve 28 is attached to the secondary air flow path 21 so as to vary the flow path area S thereof. The negative pressure chamber 31 is connected to the vacuum pump 12, which is a negative pressure source, via a duty solenoid valve (hereinafter simply referred to as duty valve) 32. The duty valve 32 turns the valve body on and off at a frequency of 10Hz to 20Hz to control switching between communicating the negative pressure chamber 31 with the vacuum pump 12 or guiding the atmosphere to the negative pressure chamber 31, and controls the ON time period of the valve body. The pulse width is variably controlled by the output signal of the combustion control device 27, thereby changing the negative pressure value of the negative pressure chamber 31, and moving the flow control valve 28 to a position where this value, the compression spring, and the atmospheric pressure are in balance. The flow path area S is variably controlled. Note that the flow rate control valve 28 is displaced from the fully open position to the fully closed position, and this displacement is detected by the position sensor 33 as an output signal corresponding to the variable electrical resistance value.
This is fed back to the fuel control device 27.

流量制御弁28と2次ポンプ9との間に2次流
路21には、これよりエアを大気放出させる逃し
弁51が取付けられる。この逃し弁51は閉弁方
向Cに押圧する圧縮ばね52を備えた後室53
と、流量制御弁28と2次ポンプ9との間の圧力
を受ける前室54とがダイアフラム55にエア圧
を加える。即ち、前後差圧による押圧力が圧縮ば
ね52の押圧力を上回るとると逃し弁51が開弁
方向Pに移動し、逆止に、下回ると逃し弁51が
閉弁方向Cに移動する。燃焼制御装置27はマイ
クロコンピユータでその要部が形成される。上記
燃焼制御装置27は流量制御弁23の上流側圧力
センサ26や大気温センサ25や位置センサ33
やバーナ排ガス温度センサ46からそれぞれ出力
信号を受け、流量制御弁の上流側圧力、大気温度
の増減に応じて2次エアの体積流量を適正量増減
させ、また、バーナ排ガス温度に応じて燃料流量
を適正量に増減させる特性を有する。
A relief valve 51 is installed in the secondary flow path 21 between the flow rate control valve 28 and the secondary pump 9 to release air to the atmosphere. This relief valve 51 has a rear chamber 53 equipped with a compression spring 52 that presses in the valve closing direction C.
The front chamber 54, which receives the pressure between the flow rate control valve 28 and the secondary pump 9, applies air pressure to the diaphragm 55. That is, when the pressing force due to the pressure difference between the front and rear pressures exceeds the pressing force of the compression spring 52, the relief valve 51 moves in the valve opening direction P, and when it becomes a check, the relief valve 51 moves in the valve closing direction C. The main part of the combustion control device 27 is formed by a microcomputer. The combustion control device 27 includes a pressure sensor 26 on the upstream side of the flow rate control valve 23, an atmospheric temperature sensor 25, and a position sensor 33.
It receives output signals from the burner exhaust gas temperature sensor 46 and increases or decreases the volumetric flow rate of the secondary air by an appropriate amount according to the upstream pressure of the flow control valve and the atmospheric temperature, and also adjusts the fuel flow rate according to the burner exhaust gas temperature. It has the property of increasing or decreasing the amount to an appropriate amount.

さら詳述すると、2次エアの重量流量Gaは Ga=SC√2・ ただし S:流路断面積、 Δρ:流量制御弁28の前後差圧、 ρ:流量制御弁28の上流側空気密度 で与えられるが、本実施例においてはΔρは常に
一定に保たれCは流量係数でほぼ一定の値をとる
ので、流路断面積を空気の密度変化分だけ補正す
ることにより、2次エアの重量流量を一定にする
ことができる。
To explain in more detail, the weight flow rate Ga of the secondary air is Ga=SC√2, where S: flow path cross-sectional area, Δρ: differential pressure across the flow control valve 28, ρ: air density on the upstream side of the flow control valve 28. However, in this example, Δρ is always kept constant and C is a flow rate coefficient that takes an almost constant value, so by correcting the flow passage cross-sectional area by the change in air density, the weight of the secondary air can be adjusted. The flow rate can be kept constant.

さらに式は空気温度と圧力に鑑み、次のよう
に変形される。
Furthermore, the equation can be modified as follows, taking into account the air temperature and pressure.

すなわち、式が空気温度T、空気圧力Pのと
きの重量流量であるとすると、 空気密度ρは ρ=C1×273.16/(273.16+t)×P/760 T=273.16+tより ここで C2=273.1/760とおくと Ca=一定、P=一定とすると とおくことができる。
In other words, if the formula is the weight flow rate when the air temperature is T and the air pressure is P, then the air density ρ is ρ=C 1 ×273.16/(273.16+t)×P/760 From T=273.16+t Here, if we set C 2 = 273.1/760 If Ca=constant, P=constant You can leave it as

従つて、S=K√ ただし T:流量制御弁上流空気温度、 P:流量制御弁上流側空気圧力、 K:比例定数 すなわち、空気温度上昇に対しては、流路断面
積を増大、空気圧力上昇に対しては流路断面積を
減少させる制御をすることにより重量流量を一定
にすることができる。なお、流路断面積は流量制
御弁リフト量と一対一に対応するので、T、Pに
対して要求リフト量をマツプ等で指示することに
より、重量流量は一定に保たれる。
Therefore, S=K√ Where, T: Air temperature upstream of the flow control valve, P: Air pressure upstream of the flow control valve, K: Proportionality constant In other words, as the air temperature rises, increase the cross-sectional area of the flow path, and increase the air pressure. In response to a rise, the weight flow rate can be kept constant by controlling the cross-sectional area of the flow path to be reduced. Note that since the cross-sectional area of the flow path has a one-to-one correspondence with the lift amount of the flow control valve, the weight flow rate can be kept constant by indicating the required lift amount for T and P using a map or the like.

ここでpを流量制御弁28上流側空気圧力とし
たが、流量制御弁28の付近の流路内の圧力であ
れば良く、流量制御弁28下流側の空気圧力とし
ても成立つものである。
Here, p is the air pressure on the upstream side of the flow rate control valve 28, but it may be any pressure in the flow path near the flow rate control valve 28, and can also be the air pressure on the downstream side of the flow rate control valve 28.

また、第6図に示すように、バーナ排ガス温度
が一定となるよう、基準値T0と比較し、基準値
を設定値Δt以上に下回つている間は基準燃料量
q0を、逆に基準値を設定値Δt以上に上回つてい
る間は小さな燃料量q2を噴射するよう燃焼制御装
置27によつて燃料噴射量qが制御されている。
第5図に示したバーナエア制御装置の作動を説明
する。
In addition, as shown in Figure 6, in order to keep the burner exhaust gas temperature constant, it is compared with the reference value T 0 , and while the reference value is below the set value Δt, the reference fuel amount is
The fuel injection amount q is controlled by the combustion control device 27 so that a small fuel amount q 2 is injected while q 0 exceeds the reference value by a set value Δt or more.
The operation of the burner air control device shown in FIG. 5 will be explained.

燃焼制御装置27はフイルタ5上流側の排圧を
圧力検知装置19で検知し、同排圧が設定値を上
回ると再燃焼処理に入る。まず、燃焼制御装置2
7は1次、2次の各エアポンプ7,9と燃料ポン
プ8とイグニツシヨンコイル6とをオンさせる信
号を発する。同時にバーナ排ガス温度センサ46
の出力信号に基づき、これが基準温度T0より低
いと、燃料流量値をq0よりq1に、逆の場合はq2
調量するよう燃料調整弁17に出力信号を与え
る。ところで、逃し弁51は圧縮ばね52に設定
された差圧値に常時2次流路21を保ように制御
する。すなわち、前後差圧による押圧力が圧縮ば
ね52の押圧力を上回るとると逃し弁51が3開
弁方向Pに移動し、逆止に、下回ると逃し弁51
が閉弁方向Cに移動する。このような、いわゆる
ニユーマチツク作動のみで流量制御弁28の前後
差圧は一定に保持される。
The combustion control device 27 detects the exhaust pressure on the upstream side of the filter 5 with the pressure detection device 19, and when the exhaust pressure exceeds a set value, starts re-combustion processing. First, combustion control device 2
7 issues a signal to turn on each of the primary and secondary air pumps 7 and 9, the fuel pump 8, and the ignition coil 6. At the same time, the burner exhaust gas temperature sensor 46
Based on the output signal of , if this is lower than the reference temperature T 0 , an output signal is given to the fuel regulating valve 17 to meter the fuel flow value from q 0 to q 1 and vice versa to q 2 . By the way, the relief valve 51 is controlled to always maintain the secondary flow path 21 at the differential pressure value set in the compression spring 52. That is, when the pressing force due to the differential pressure between the front and rear exceeds the pressing force of the compression spring 52, the relief valve 51 moves in the third valve opening direction P and becomes a check;
moves in the valve closing direction C. The differential pressure across the flow rate control valve 28 is maintained constant only by this so-called pneumatic operation.

これに対し、弁駆動装置23の負圧室31には
デユーテイ弁32を介し負圧が加わる。この場
合、燃焼制御装置27は流量制御弁28の上流側
圧力および大気温度を基に、所定重量流量Gaを
得ることのできる流量制御弁28のリフト位置を
前以つて記憶したマツプを用いて求める。そして
求めた弁体28のリフト位置に対応する信号と位
置センサ33が発する出力信号とが一致するよ
う、燃焼制御装置27はデユーテイ弁32にデユ
ーテイ比を大小変化させてフイードバツク制御す
る。なお、上述の各マツプは前述した理論式を基
に実験により比例定数K等を設定の上、前以つて
入力しておく。これにより2次エアは2次流路2
1を通過する間に、常に重量流量が一定となるよ
う調整され、バーナ20に供給される。
On the other hand, negative pressure is applied to the negative pressure chamber 31 of the valve drive device 23 via the duty valve 32. In this case, the combustion control device 27 uses a map stored in advance to determine the lift position of the flow control valve 28 that can obtain a predetermined weight flow rate Ga based on the upstream pressure of the flow control valve 28 and the atmospheric temperature. . Then, the combustion control device 27 performs feedback control by varying the duty ratio of the duty valve 32 so that the signal corresponding to the determined lift position of the valve body 28 and the output signal generated by the position sensor 33 match. It should be noted that each of the above-mentioned maps is inputted in advance after setting the proportionality constant K etc. through experiments based on the above-mentioned theoretical formulas. This allows the secondary air to flow through the secondary flow path 2.
1, the weight flow rate is always adjusted to be constant and supplied to the burner 20.

以上より、第5図に示したバーナエア制御装置
は2次ポンプ9の作動のばらつきあるいは流量制
御弁28の上流側圧力、大気温度の変動による空
気密度の変化があつても、流量制御弁28の前後
差圧をニユーマチツク作動する逃し弁駆動装置3
4等で常時一定に保つと共に制御部27により流
量制御弁28の上流側圧力、大気温度の変動を打
消すべく流路面積Sを所定値に修正するよう、デ
ユーテイ弁32を作動制御することにより2次エ
アの流量制御は精度よく行なわれ、しかも、燃焼
制御装置27は2次ポンプ9自体の吐出量のばら
つきを制御する必要がなく、その分簡素化される
という効果を奏する。
From the above, the burner air control device shown in FIG. Relief valve drive device 3 that automatically operates the differential pressure between the front and rear
By controlling the operation of the duty valve 32 so that the flow area S is always kept constant at 4, etc., and the flow path area S is corrected to a predetermined value by the control unit 27 to cancel fluctuations in the pressure on the upstream side of the flow rate control valve 28 and the atmospheric temperature. The flow rate control of the secondary air is performed with high precision, and the combustion control device 27 does not need to control variations in the discharge amount of the secondary pump 9 itself, resulting in an effect of being simplified accordingly.

第5図に示したバーナエア制御装置は弁駆動装
置23を燃焼制御装置27、流量制御弁28の上
流側圧力センサ26、大気温センサ25を用い作
動させていたが、これに代え、第7図に示すよう
に流量制御弁61を大気圧でのみ制御してもよ
い。この流量制御弁61と一体のダイアフラム6
2は大気開放室63と、開弁方向Pの押圧力を生
ずる圧縮ばね64を備えた定圧室65とに挟まれ
る。定圧室65は絶対圧に対し一定の圧力を発生
する定圧源66に接続される。
The burner air control device shown in FIG. 5 operates the valve drive device 23 using the combustion control device 27, the upstream pressure sensor 26 of the flow rate control valve 28, and the atmospheric temperature sensor 25, but instead of this, FIG. The flow rate control valve 61 may be controlled only at atmospheric pressure as shown in FIG. A diaphragm 6 integrated with this flow control valve 61
2 is sandwiched between an atmosphere open chamber 63 and a constant pressure chamber 65 equipped with a compression spring 64 that generates a pressing force in the valve opening direction P. The constant pressure chamber 65 is connected to a constant pressure source 66 that generates a constant pressure with respect to absolute pressure.

定圧源66は、例えば第9図に示す構成となつ
ており、ハウジング300により密閉された定圧
室301、同定圧室301内に設けられた真空ダ
イアフラム302、真空ポンプ12と上記定圧室
301とを連通すると共に途中に絞り部303a
が設けられた負圧管303、更に一端が大気に開
放され第9図に示す様にスプリング304及び球
体305が組込まれた大気開放管306、及び定
圧を供給する連通管307から構成されている。
上記定圧室301の圧力が下がると、真空ダイヤ
フラム302が膨張し大気開放管306内の球体
305を押圧し、大気が開放管306を通して定
圧室301内に流入されることとなる。大気が定
圧室301内に流入すると定圧室301内の圧力
が上昇し真空ダイアフラム302が収縮すること
となり、球体305が大気開放管306を閉鎖す
る。これらを繰返すことにより定圧室内の圧力が
略一定となるものである。
The constant pressure source 66 has the configuration shown in FIG. 9, for example, and includes a constant pressure chamber 301 sealed by a housing 300, a vacuum diaphragm 302 provided in the identified pressure chamber 301, a vacuum pump 12, and the constant pressure chamber 301. While communicating, there is a constriction part 303a in the middle.
It is composed of a negative pressure pipe 303 provided with a negative pressure pipe 303, an air release pipe 306 whose one end is open to the atmosphere and has a spring 304 and a sphere 305 incorporated therein as shown in FIG. 9, and a communication pipe 307 which supplies a constant pressure.
When the pressure in the constant pressure chamber 301 decreases, the vacuum diaphragm 302 expands and presses the sphere 305 in the atmosphere opening tube 306, causing the atmosphere to flow into the constant pressure chamber 301 through the opening tube 306. When the atmosphere flows into the constant pressure chamber 301, the pressure inside the constant pressure chamber 301 increases, the vacuum diaphragm 302 contracts, and the sphere 305 closes the atmosphere opening pipe 306. By repeating these steps, the pressure in the constant pressure chamber becomes approximately constant.

このようなニユーマチツク系からなる制御部は
次のように作動する。大気圧が低下すると(例え
ば高地に達すると)流量制御弁61は開弁方向P
に移動し、流路面積Sを増大させ体積流量を増加
させる。逆に、大気圧が上昇すると流量制御弁6
1は閉方向Cに移動し、流路面積Sを狭め、体積
流量を低下させる。このような作動により2次エ
アはほぼ重量流量を一定に保持できる。この場合
制御部が簡素化され、部品低減効果がある。
The control section consisting of such a pneumatic system operates as follows. When the atmospheric pressure decreases (for example, when reaching a high altitude), the flow control valve 61 opens in the valve opening direction P.
The flow path area S is increased to increase the volumetric flow rate. Conversely, when atmospheric pressure rises, the flow control valve 6
1 moves in the closing direction C, narrowing the flow path area S and lowering the volumetric flow rate. By such an operation, the weight flow rate of the secondary air can be maintained substantially constant. In this case, the control section is simplified and there is an effect of reducing parts.

更に、第8図に示す様に上述の流量制御装置6
0に代えて内部が真空密閉されたアネロイドベロ
ーズ100をもちいて直接流量制御弁28を開閉
作動させる流量制御装置102としてもよい。流
量制御装置102は、内部が真空密閉されたベロ
ーズ100と、同ベローズ100を囲み大気に開
放された開口103を有するケーシング104
と、ベローズ内に設けられたスプリング105と
から成り、ベローズ100と流量制御弁28とが
連結されている。
Furthermore, as shown in FIG. 8, the above-mentioned flow rate control device 6
The flow rate control device 102 may use an aneroid bellows 100 whose interior is vacuum-sealed instead of the bellows 100 to directly open and close the flow rate control valve 28. The flow rate control device 102 includes a bellows 100 whose interior is vacuum-sealed, and a casing 104 surrounding the bellows 100 and having an opening 103 open to the atmosphere.
and a spring 105 provided within the bellows, and the bellows 100 and the flow control valve 28 are connected.

上記構成によれば、大気圧が低くなるとベロー
ズ100が周囲の大気圧とスプリング105の付
勢力とのバランスにより伸長し、流量制御弁28
が下がり流路面積Sを広げることとなる。また、
大気圧が高くなると、ベローズ100が収縮し、
流量制御弁28が上り流量面積Sを狭めることと
なる。
According to the above configuration, when the atmospheric pressure becomes low, the bellows 100 expands due to the balance between the surrounding atmospheric pressure and the biasing force of the spring 105, and the flow control valve 28
decreases, and the flow path area S increases. Also,
When the atmospheric pressure increases, the bellows 100 contracts,
The flow control valve 28 narrows the upward flow area S.

従つて、本実施例の構成によれば極めて簡単な
構成で大気圧に応じて流量面積Sを制御できるも
のである。
Therefore, according to the configuration of this embodiment, the flow area S can be controlled in accordance with atmospheric pressure with an extremely simple configuration.

更に第5図に示した制御部27は流量制御弁の
上流側圧力、大気温に基づき流路面積Sを制御し
たが、これを流量制御弁の流出側圧力または大気
温度のいずれかに応じて制御してもよく他の要素
であるエンジン回転数、負荷等を加えてもよい。
Furthermore, the control unit 27 shown in FIG. 5 controls the flow path area S based on the upstream pressure of the flow control valve and the atmospheric temperature, but it can also be controlled depending on either the outflow side pressure of the flow control valve or the atmospheric temperature. It may be controlled or other factors such as engine speed and load may be added.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は容積型エアポンプの吐出圧−体積流量
線図、第2図は高低地差による重量流量の変化を
説明する図、第3図はエアポンプ自体の重量流量
のばらつきを説明する図、第4図は従来のバーナ
エア制御装置の概略構成図、第5図、第7図、第
8図は本発明の各々異なる実施例としてのバーナ
エア制御装置の概略構成図、第6図はバーナ排ガ
ス温度−燃料量特性線図、第9図は定圧源の一実
施例を示す断面図をそれぞれ示している。 3……排気路、5……フイルタ、9……2次ポ
ンプ、20……バーナ、21……2次流路、23
……流量制御装置、27……燃焼制御装置、28
……流量制御弁、34……逃し弁、66……定圧
源、a……負圧調整路、102……ベローズ、2
02……排気バイパス路。
Figure 1 is a discharge pressure-volume flow diagram of a positive displacement air pump, Figure 2 is a diagram explaining changes in weight flow rate due to differences in altitude, Figure 3 is a diagram explaining variations in weight flow rate of the air pump itself, FIG. 4 is a schematic diagram of a conventional burner air control device, FIGS. 5, 7, and 8 are schematic diagrams of burner air control devices as different embodiments of the present invention, and FIG. 6 is a diagram of burner exhaust gas temperature. The fuel quantity characteristic diagram and FIG. 9 each show a sectional view showing an embodiment of the constant pressure source. 3... Exhaust path, 5... Filter, 9... Secondary pump, 20... Burner, 21... Secondary flow path, 23
...Flow control device, 27...Combustion control device, 28
...flow control valve, 34 ... relief valve, 66 ... constant pressure source, a ... negative pressure adjustment path, 102 ... bellows, 2
02...Exhaust bypass path.

Claims (1)

【特許請求の範囲】 1 デイーゼルエンジンの排気路に設けられ排気
ガス中のパテイキユレートを捕集するパテイキユ
レートフイルタ、同パテイキユレートフイルタを
バイパスする排気バイパス路、上記パテイキユレ
ートフイルタの上流側に設けられ燃料及び空気が
供給されるバーナ装置を備え、上記パテイキユレ
ートフイルタに設定量以上のパテイキユレートが
捕集された状態で上記排気ガスを上記排気バイパ
ス路に通すと共に上記バーナにより上記パテイキ
ユレートを燃焼させるフイルタ再生装置におい
て、上記バーナ装置に空気供給装置を介して空気
を供給する供給路と、同供給路に設けられ同供給
路の流路面積を可変制御する流量制御弁と、同流
量制御弁の開度を大気圧が低下するに応じて大き
くなるように駆動する流量制御装置と、上記供給
路に設けられ上記供給路内の空気の一部を外部に
放出する逃し弁と、同逃し弁を開閉制御する逃し
弁制御装置と、上記フイルタの再生時期を検知し
て排気ガスを上記排気バイパス路に流すと共に上
記バーナ装置を燃焼作動せしめる燃焼制御装置と
を具備し、さらに上記逃し弁制御装置が上記流量
制御弁の下流側圧力が導かれる第一室と、上流側
圧力が導かれる第二室と、上記第一室及び第二室
を仕切ると共に上記逃し弁に連動する様に同逃し
弁に連結されたダイアフラムと、同ダイアフラム
に付勢力を与えるスプリングとから成り、上記流
量制御弁の上流側の圧力が下流側の圧力に比べて
設定値以上の時上記逃し弁を開き上記流量制御弁
の上下流側の圧力差を一定とする様に構成したこ
とを特徴とするデイーゼルパテイキユレートフイ
ルタの再生装置。 2 上記流量制御装置が大気圧が導かれる大気圧
室と、所定の一定圧が導かれる定圧室と、上記両
室を仕切ると共に上記流量制御弁と連結されたダ
イアフラムと、同ダイアフラムに付勢力を与える
スプリングとから成る圧力応動装置により構成さ
れたことを特徴とする特許請求の範囲第1項記載
のデイーゼルパテイキユレートフイルタの再生装
置。 3 上記流量制御装置が上記流量制御弁に連結さ
れたベロースと、同ベローズを囲み大気開口を有
するケーシングとから成る圧力応動装置により構
成され、大気圧が低下すると上記ベローズが伸長
する様に構成されたことを特徴とする特許請求の
範囲第1項記載のデイーゼルパテイキユレートフ
イルタの再生装置。 4 デイーゼルエンジンの排気路に設けられ排気
ガス中のパテイキユレートを捕集するパテイキユ
レートフイルタ、同パテイキユレートフイルタを
バイパスする排気バイパス路、上記パテイキユレ
ートフイルタの上流側に設けられ燃料及び空気が
供給されるバーナ装置を備え、上記パテイキユレ
ートフイルタに設定量以上のパテイキユレートが
捕集された状態で上記排気ガスを上記排気バイパ
ス路に通すと共に上記バーナにより上記パテイキ
ユレートを燃焼させるフイルタ再生装置におい
て、上記フイルタの再生時期を検知して排気ガス
を上記排気バイバス路に流すと共に上記バーナ装
置を含むフイルタ再生装置を燃焼作動せしめる制
御装置と、上記バーナ装置に空気を供給する供給
路と、同供給路に設けられ同供給路の流路面積を
可変制御する流量制御弁と、上記供給路内の上記
流量制御弁付近に設けられた圧力検知手段と、上
記供給路内の空気温度を検知する温度検知手段
と、上記制御装置内に設けられ上記圧力及び温度
に基づき流量制御弁の最適リフト量を算出する演
算部及び上記流量制御弁に連結され上記演算部に
より算出されたリフト量に基づいて流量制御弁を
駆動する弁駆動装置から成る流量制御装置と、上
記供給路に設けられ上記供給路内の空気の一部を
外部に放出する逃し弁と、同逃し弁を開閉制御す
る逃し弁制御装置とを具備し、さらに、上記逃し
弁制御装置が上記流量制御弁の下流側圧力が導か
れる第一室と、上流側圧力が導かれる第二室と、
上記第一室及び第二室を仕切ると共に上記逃し弁
に連動する様に同逃し弁に連結されたダイヤフラ
ムと、同ダイアフラムに付勢力を与えるスプリン
グとから成り、上記流量制御弁の上流側の圧力が
下流側の圧力に比べて設定値以上のとき上記逃し
弁を開き上記流量制御弁の上下流側の圧力差を一
定とするように構成されたことを特徴とするデイ
ーゼルパテイキユレートフイルタの再生装置。 5 上記弁駆動装置が、負圧源に連通された負圧
室と、大気に開放された大気圧室と、上記大気圧
室と上記負圧室とを仕切ると共に上記流量制御弁
と連動する様に同流量制御弁と連結されたダイア
フラムと、同ダイアフラムに付勢力を与えるスプ
リングと、上記負圧室と上記負圧源との間に設け
られ負圧室を大気に開放又は負圧室を負圧源に連
通する様に切換える切換弁とから成り、上記演算
部より算出された値に基づいて上記切換弁を制御
することにより上記流量制御弁を目標値に設定す
ることを特徴とする特許請求の範囲第4項記載の
デイーゼルパテイキユレートフイルタの再生装
置。 6 上記切換弁が上記演算部からの信号によりデ
ユーテイ制御されて上記流量制御弁のバルブリフ
ト量を目標値に設定することを特徴とする特許請
求の範囲第5項記載のデイーゼルパテイキユレー
トフイルタの再生装置。 7 上記切換弁が上記演算部からの信号によりオ
ンオフ制御されて上記流量制御弁のバルブリフト
量を目標値に設定することを特徴とする特許請求
の範囲第5項記載のデイーゼルパテイキユレート
フイルタの再生装置。 8 上記流量制御弁のバルブリフト位置を検出す
るリフト位置検出器を有し、同リフト位置検出器
により検出した値を上記演算部に入力し、上記流
量制御弁のバルブリフト量をフイードバツク制御
により目標値に設定することを特徴とする特許請
求の範囲第5項記載のデイーゼルパテイキユート
フイルタの再生装置。
[Claims] 1. A particulate filter that is provided in the exhaust passage of a diesel engine and collects particulate matter in the exhaust gas, an exhaust bypass passage that bypasses the particulate filter, and an upstream side of the particulate filter. The burner device is provided with a burner device to which fuel and air are supplied, and the exhaust gas is passed through the exhaust bypass passage in a state where a set amount or more of particulate matter is collected in the particulate matter filter, and the particulate matter is combusted by the burner. A filter regeneration device that supplies air to the burner device via an air supply device, a flow rate control valve that is provided in the supply path and variably controls a flow path area of the supply path, and the flow rate control valve. a flow rate control device that increases the opening degree as atmospheric pressure decreases, a relief valve that is provided in the supply path and releases a part of the air in the supply path to the outside, and the relief valve. A relief valve control device that controls opening and closing, and a combustion control device that detects the regeneration timing of the filter and causes the exhaust gas to flow into the exhaust bypass path and causes the burner device to perform combustion operation, further comprising: a relief valve control device that controls opening and closing; a first chamber to which the downstream pressure of the flow control valve is guided, a second chamber to which the upstream pressure is guided, and a relief valve that partitions the first and second chambers and is linked to the relief valve. It consists of a diaphragm connected to the diaphragm and a spring that applies a biasing force to the diaphragm, and when the pressure on the upstream side of the flow control valve is higher than the set value compared to the pressure on the downstream side, the relief valve is opened. 1. A regeneration device for a diesel particulate filter, characterized in that the pressure difference between upstream and downstream sides is constant. 2. The flow control device includes an atmospheric pressure chamber to which atmospheric pressure is introduced, a constant pressure chamber to which a predetermined constant pressure is introduced, a diaphragm that partitions the two chambers and is connected to the flow control valve, and applies an urging force to the diaphragm. 2. The diesel particulate filter regeneration device according to claim 1, characterized in that it is constituted by a pressure responsive device comprising a spring for applying pressure. 3. The flow control device is constituted by a pressure responsive device consisting of a bellows connected to the flow control valve and a casing surrounding the bellows and having an opening to the atmosphere, and the bellows is configured to expand when atmospheric pressure decreases. A diesel particulate filter regeneration device according to claim 1, characterized in that: 4. A particulate filter installed in the exhaust passage of a diesel engine to collect particulate matter in the exhaust gas, an exhaust bypass path that bypasses the particulate filter, and a particulate filter provided upstream of the particulate filter to collect particulate matter from the exhaust gas. In a filter regeneration device, the filter regeneration device is equipped with a burner device supplied with the particulate matter, and causes the exhaust gas to pass through the exhaust bypass passage in a state where a set amount or more of particulate matter is collected in the particulate matter filter, and burns the particulate matter by the burner, a control device that detects the regeneration timing of the filter and causes the exhaust gas to flow through the exhaust bypass path and causes a filter regeneration device including the burner device to perform a combustion operation; a supply path that supplies air to the burner device; a flow rate control valve provided in the supply path for variably controlling the flow area of the supply path; a pressure detection means provided in the vicinity of the flow rate control valve in the supply path; and a temperature sensor for detecting the air temperature in the supply path. means, a calculation section provided in the control device for calculating an optimum lift amount of the flow control valve based on the pressure and temperature, and a flow control section connected to the flow control valve based on the lift amount calculated by the calculation section. a flow control device comprising a valve drive device for driving a valve; a relief valve provided in the supply path for releasing a part of the air in the supply path to the outside; and a relief valve control device for controlling opening and closing of the relief valve. Further, the relief valve control device includes a first chamber to which the downstream pressure of the flow control valve is guided, and a second chamber to which the upstream pressure is guided.
It consists of a diaphragm that partitions the first chamber and the second chamber and is connected to the relief valve so as to operate in conjunction with the relief valve, and a spring that applies a biasing force to the diaphragm, and the pressure on the upstream side of the flow rate control valve is Regeneration of a diesel particulate filter characterized in that the relief valve is opened when the pressure on the downstream side is greater than a set value compared to the pressure on the downstream side, and the pressure difference between the upstream and downstream sides of the flow rate control valve is kept constant. Device. 5. The valve driving device partitions a negative pressure chamber communicated with a negative pressure source, an atmospheric pressure chamber open to the atmosphere, and the atmospheric pressure chamber and the negative pressure chamber, and operates in conjunction with the flow rate control valve. a diaphragm connected to the flow rate control valve, a spring that applies a biasing force to the diaphragm, and a spring provided between the negative pressure chamber and the negative pressure source to open the negative pressure chamber to the atmosphere or to The claim is characterized in that the flow rate control valve is set to a target value by controlling the switching valve based on a value calculated by the calculation unit, the switching valve being switched to communicate with a pressure source. A regeneration device for a diesel particulate filter according to item 4. 6. The diesel particulate filter according to claim 5, wherein the switching valve is duty-controlled by a signal from the calculation section to set the valve lift amount of the flow rate control valve to a target value. playback device. 7. The diesel particulate filter according to claim 5, wherein the switching valve is controlled on and off by a signal from the calculation section to set the valve lift amount of the flow rate control valve to a target value. playback device. 8. It has a lift position detector that detects the valve lift position of the flow control valve, and inputs the value detected by the lift position detector to the calculation section, and sets the valve lift amount of the flow control valve to a target by feedback control. 6. The diesel particulate filter regeneration device according to claim 5, wherein the regeneration device is set to a value of 0.
JP59131284A 1983-07-15 1984-06-26 Regenerating device of diesel particulate filter Granted JPS6111413A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59131284A JPS6111413A (en) 1984-06-26 1984-06-26 Regenerating device of diesel particulate filter
US06/630,053 US4589254A (en) 1983-07-15 1984-07-12 Regenerator for diesel particulate filter
KR1019840004150A KR890001344B1 (en) 1983-07-15 1984-07-14 Regenerating apparatus for diesel particulate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131284A JPS6111413A (en) 1984-06-26 1984-06-26 Regenerating device of diesel particulate filter

Publications (2)

Publication Number Publication Date
JPS6111413A JPS6111413A (en) 1986-01-18
JPH0429849B2 true JPH0429849B2 (en) 1992-05-20

Family

ID=15054349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131284A Granted JPS6111413A (en) 1983-07-15 1984-06-26 Regenerating device of diesel particulate filter

Country Status (1)

Country Link
JP (1) JPS6111413A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941620A (en) * 1982-08-31 1984-03-07 Mazda Motor Corp Exhaust gas purifier of diesel engine
JPS6019909A (en) * 1983-07-14 1985-02-01 Mitsubishi Motors Corp Control device for burner air for diesel particulate filter
JPS6022015A (en) * 1983-07-15 1985-02-04 Mitsubishi Motors Corp Burner air control system in diesel exhaust gas cleaning device
JPS6050212A (en) * 1983-08-30 1985-03-19 Mitsubishi Motors Corp Burner air controller for diesel exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941620A (en) * 1982-08-31 1984-03-07 Mazda Motor Corp Exhaust gas purifier of diesel engine
JPS6019909A (en) * 1983-07-14 1985-02-01 Mitsubishi Motors Corp Control device for burner air for diesel particulate filter
JPS6022015A (en) * 1983-07-15 1985-02-04 Mitsubishi Motors Corp Burner air control system in diesel exhaust gas cleaning device
JPS6050212A (en) * 1983-08-30 1985-03-19 Mitsubishi Motors Corp Burner air controller for diesel exhaust emission control device

Also Published As

Publication number Publication date
JPS6111413A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
KR890001344B1 (en) Regenerating apparatus for diesel particulate filter
US4727848A (en) Device for and method of supplying cases into a combustion space of a self-igniting internal combustion engine
JPH0243068B2 (en)
GB1454419A (en) Pilot valve for use in an exhaust gas recirculation
US3945205A (en) Secondary air control device
US4027638A (en) Exhaust gas recirculation device
US3080712A (en) Compressor anti-surge control for a gas turbine engine
US4200120A (en) Area type flow rate measuring device
US4014169A (en) Anti-afterburn device for engine having air pump
JPH0429849B2 (en)
JPS6017938B2 (en) Fuel supply system for internal combustion engines operating with diesel combustion
JPS6135372B2 (en)
GB908629A (en) Fuel control for gas turbine engines
US4411244A (en) Air flow measuring device for internal combustion engines
US4161933A (en) Mixture control apparatus for internal combustion engines
US4222237A (en) Exhaust gas purifying apparatus for internal combustion engine
US4114575A (en) Exhaust pressure regulating system
US4100741A (en) Hot-gas engine
JPS6022013A (en) Burner air control of diesel particulate filter
GB1496798A (en) Fuel feed devices for internal combustion engines
JPS6367010B2 (en)
JPH0550568B2 (en)
GB2085522A (en) Ic engine idling speed control systems
US4206731A (en) Exhaust gas recirculation for an internal combustion engine
US4147033A (en) Secondary air supply system for internal combustion engines