JPH0550568B2 - - Google Patents

Info

Publication number
JPH0550568B2
JPH0550568B2 JP15824183A JP15824183A JPH0550568B2 JP H0550568 B2 JPH0550568 B2 JP H0550568B2 JP 15824183 A JP15824183 A JP 15824183A JP 15824183 A JP15824183 A JP 15824183A JP H0550568 B2 JPH0550568 B2 JP H0550568B2
Authority
JP
Japan
Prior art keywords
pressure
air
valve
flow rate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15824183A
Other languages
Japanese (ja)
Other versions
JPS6050211A (en
Inventor
Satoshi Kume
Michasu Yoshida
Yoshihiro Konno
Takeo Kume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP58158241A priority Critical patent/JPS6050211A/en
Publication of JPS6050211A publication Critical patent/JPS6050211A/en
Publication of JPH0550568B2 publication Critical patent/JPH0550568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust

Description

【発明の詳細な説明】 この発明は、デイーゼル排出ガス浄化装置にお
けるデイーゼルパテイキユレートフイルタの再燃
焼に使用するバーナのためのバーナエア制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a burner air control device for a burner used for reburning a diesel particulate filter in a diesel exhaust gas purification device.

デイーゼルエンジンから排出されるパテイキユ
レートは、公害防止のために通常はセラミツク製
のデイーゼルパテイキユレートフイルタにより排
気中より取り除かれ、所定時にフイルタ自体の再
生を兼ねて再燃焼され、無公害物質として排出さ
れる。このパテイキユレートの再燃焼には、適度
の燃焼温度および適度の酸素量すなわち所定の空
気過剰率を保つエアが必要であり、加熱温度が低
いとパテイキユレートは除去されず、逆に過度に
加熱するとフイルタ自体が溶損を生じるという不
都合がある。
To prevent pollution, particulate matter discharged from a diesel engine is usually removed from the exhaust by a ceramic diesel particulate filter, which is then re-burned at a designated time to regenerate the filter itself, and is discharged as a non-polluting substance. Ru. This re-burning of the particulate hydrate requires air that maintains an appropriate combustion temperature and an appropriate amount of oxygen, that is, a predetermined excess air ratio.If the heating temperature is low, the particulate ylate will not be removed, and if it is heated too much, the filter itself will burn out. However, there is a disadvantage in that it causes melting loss.

ところで、フイルタの加熱源としてバーナが使
用されることが多く、その中で高圧少流量の1次
エアにより燃料を霧化し、低圧大流量の2次エア
によりパテイキユレートの燃焼を行なう霧吹式バ
ーナが最も改良された技術である。このバーナに
供給される1次エアはほぼ燃料流量と比例し、こ
の燃料流量を一定とするため、通常は一次エア量
は一定に保たれる。これに対し、2次エアは低圧
だが大流量を必要とされると共に、パテイキユレ
ートの燃焼に必要となる所定重量流量値だけのエ
アが供給されるように制御する必要がある。この
2次エアは、通常、容積型エアポンプを用いて供
給するが、このエアポンプは回転数のみを一定に
すれば体積流量が一定となるが、大気圧、大気温
度の変化に応じて重量流量の変化を受け易い。こ
のため、容積型エアポンプの利点である大吐出量
の確保という点を利用する一方、重量流量の変化
を修正する必要がある。たとえば第1図に示すよ
うに、大気圧は高度の上昇と共に低下し、これに
応じてエアポンプの前後の差圧、即ち大気圧と空
気流路内圧との差圧△Pも同様に変化する。なお
bは排気路側圧損を示す。第2図は容積型エアポ
ンプの体積流量/吐出圧特性の一例であり、吐出
側の流量をしぼることにより吐出圧が増加するこ
とが分かる。更に、第3図には容積型エアポンプ
が実線で示した低地にある場合と破線で示した高
地にある場合との重量流量/吐出圧特性の一例を
示しており、同一重量流量を得る場合、高地では
吐出圧を下げる即ち低地よりエア供給路のしぼり
を拡げて吐出圧を下げる必要があることが示され
ている。同じく第4図に示すように、吐出圧は一
定でもポンプ自体のばらつきや大気温度等の変化
により重量流量が変動することが示されている。
Incidentally, burners are often used as heating sources for filters, and among these, the most popular is the atomizing burner, which atomizes the fuel with high-pressure, small-flow primary air and burns particulate with low-pressure, large-flow secondary air. This is an improved technology. The primary air supplied to the burner is approximately proportional to the fuel flow rate, and in order to keep the fuel flow rate constant, the primary air amount is normally kept constant. On the other hand, secondary air is required to have a low pressure but a large flow rate, and must be controlled so that only a predetermined weight flow rate value necessary for combustion of the particulate is supplied. This secondary air is normally supplied using a positive displacement air pump, and although this air pump has a constant volume flow rate by keeping only the rotation speed constant, the weight flow rate changes depending on changes in atmospheric pressure and atmospheric temperature. susceptible to change. For this reason, it is necessary to take advantage of the advantage of positive displacement air pumps, which is ensuring a large discharge amount, while also correcting changes in weight flow rate. For example, as shown in FIG. 1, the atmospheric pressure decreases as the altitude increases, and the differential pressure across the air pump, that is, the differential pressure ΔP between the atmospheric pressure and the internal pressure of the air flow path changes accordingly. Note that b indicates pressure loss on the exhaust path side. FIG. 2 shows an example of the volume flow rate/discharge pressure characteristics of a positive displacement air pump, and it can be seen that the discharge pressure increases by reducing the flow rate on the discharge side. Furthermore, Fig. 3 shows an example of the weight flow rate/discharge pressure characteristics when the positive displacement air pump is located at a low altitude, indicated by a solid line, and when it is located at a high altitude, indicated by a broken line.When obtaining the same weight flow rate, It has been shown that it is necessary to lower the discharge pressure at high altitudes, that is, to lower the discharge pressure by widening the restriction of the air supply path than at low altitudes. Similarly, as shown in FIG. 4, even if the discharge pressure is constant, the weight flow rate fluctuates due to variations in the pump itself, changes in atmospheric temperature, etc.

次に、このような容積型エアポンプを2次エア
ポンプとして用いた従来のバーナエア制御装置の
一例を第5図を参照して説明する。デイーゼルエ
ンジン1はターボチヤージヤ2を備え、その排気
路3の下流側にバーナ4とフイルタ5とを備え、
その下流側の図示しないマフラを介し排気を放出
する。排気路3の途中には、始端部に切換弁6を
備えたバイパス7が接続され、その終端部はフイ
ルタ5の下流側に接続されている。バーナ4はイ
グニシヨンコイル8を用いた発火装置を有し、1
次エアポンプ9からのエアで燃料ポンプ10から
の燃料を霧化させ、2次エアポンプ11からのエ
アで高温ガスの空気過剰率を所定値に保つよう構
成され、過剰酸素でパテイキユレートを燃焼させ
る。2次エアの供給路12は流量制御弁13によ
り流路面積を増減され、この弁を開閉作動させる
真空室は真空ポンプ14と真空調整弁15および
ソレノイド弁16を介し連結される。なお、符号
19は燃料調整弁、符号20は圧力調整弁をそれ
ぞれ示している。
Next, an example of a conventional burner air control device using such a positive displacement air pump as a secondary air pump will be described with reference to FIG. The diesel engine 1 includes a turbocharger 2, and a burner 4 and a filter 5 on the downstream side of an exhaust path 3,
Exhaust gas is released through a muffler (not shown) on the downstream side. A bypass 7 having a switching valve 6 at its starting end is connected in the middle of the exhaust path 3, and its terminal end is connected to the downstream side of the filter 5. The burner 4 has an ignition device using an ignition coil 8;
The air from the secondary air pump 9 atomizes the fuel from the fuel pump 10, the air from the secondary air pump 11 maintains the excess air ratio of high temperature gas at a predetermined value, and the excess oxygen burns the particulate. The flow area of the secondary air supply path 12 is increased or decreased by a flow rate control valve 13, and a vacuum chamber for opening and closing this valve is connected to a vacuum pump 14 via a vacuum adjustment valve 15 and a solenoid valve 16. Note that the reference numeral 19 indicates a fuel regulating valve, and the reference numeral 20 indicates a pressure regulating valve.

このようなエンジン1のフイルタ5がパテイキ
ユレートを過度に付着した場合、コントローラ1
7は、たとえばフイルタ5上流側排気路圧が設定
値を上回つたことを検出することにより、再燃焼
を開始させる。この場合、高地で大気圧が低いと
大気圧センサ18の入力信号により、コントロー
ラ17はソレノイド弁16に出力し、2次エアの
流路面積を基準値より一定量増大させるよう制御
する。これにより空気密度の低下による重量流量
の低下を体積流量増により防ぐことができる。し
かし、単に大気圧変化を一定負圧を受けるダイア
フラム式の流量制御弁13で制御するこの方式で
は、2次エアポンプ11自体のばらつきも加わり
2次エアの流量精度が悪いという欠点がある。ま
た、フイルタ5を再生している間は、エンジン1
からの排出ガスがバーナ4における燃焼条件に悪
影響を与えないように、切換弁6を作動させて排
出ガスをバイパス7に通すようにしているが、エ
ンジンの高負荷運転時には排出ガス圧力が高まつ
て、これがフイルタ5およびバーナ4に背圧とし
て作用するので、これにより2次エアの流量が変
化してしまう。勿論、このバイパス7に別のマフ
ラを取付けて系を独立させればこのようなことは
ないが、マフラが余計に必要になる。
If the filter 5 of the engine 1 is excessively coated with particulate matter, the controller 1
7 starts re-combustion, for example, by detecting that the exhaust passage pressure on the upstream side of the filter 5 exceeds a set value. In this case, if the atmospheric pressure is low at a high altitude, the controller 17 outputs an output to the solenoid valve 16 based on the input signal from the atmospheric pressure sensor 18, and controls the flow area of the secondary air to increase by a certain amount from the reference value. This makes it possible to prevent a decrease in the weight flow rate due to a decrease in air density by increasing the volumetric flow rate. However, this method in which changes in atmospheric pressure are simply controlled by a diaphragm type flow control valve 13 that receives a constant negative pressure has the disadvantage that the accuracy of the flow rate of the secondary air is poor due to variations in the secondary air pump 11 itself. Also, while the filter 5 is being regenerated, the engine 1
In order to prevent the exhaust gas from having an adverse effect on the combustion conditions in the burner 4, the switching valve 6 is operated to pass the exhaust gas to the bypass 7, but when the engine is operated under high load, the exhaust gas pressure increases. This acts as a back pressure on the filter 5 and the burner 4, which changes the flow rate of the secondary air. Of course, if another muffler is attached to the bypass 7 to make the system independent, this problem will not occur, but an additional muffler will be required.

この発明の目的は、したがつてデイーゼルパテ
イキユレートフイルタを備えたデイーゼル排出ガ
ス浄化装置において、フイルタ再生用バーナに供
給され2次エアの重量流量を精度良く一定に保つ
ことのできる改良されたバーナエア制御装置を提
供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an improved burner air supply system for a diesel exhaust gas purification device equipped with a diesel particulate filter, which is capable of maintaining a constant weight flow rate of secondary air supplied to a filter regeneration burner with high precision. The purpose is to provide a control device.

この発明によるバーナエア制御装置は、容積型
エアポンプから再生用バーナへの空気流路に設け
られた逃がし弁と流量制御弁、および流量制御弁
の弁開閉量を制御する制御部とを備えている。こ
の発明においては、エアポンプにばらつきがあつ
てもバーナエア重量流量が一定になるように逃が
し弁により流量制御弁の上流圧をゲージ圧一定に
制御するとともに、流量制御弁の弁開閉を大気圧
およびまた大気温の変化に対応させて制御してい
る。
The burner air control device according to the present invention includes a relief valve and a flow control valve provided in an air flow path from a positive displacement air pump to a regeneration burner, and a control section that controls the amount of opening and closing of the flow control valve. In this invention, the upstream pressure of the flow control valve is controlled to a constant gauge pressure by the relief valve so that the burner air weight flow rate is constant even if there are variations in the air pump, and the valve opening/closing of the flow control valve is controlled at atmospheric pressure and at the same time. It is controlled in response to changes in atmospheric temperature.

以下、この発明を添付図面を参照してさらに詳
しく説明する。
Hereinafter, the present invention will be explained in more detail with reference to the accompanying drawings.

第6図には、この発明の一実施例であるデイー
ゼルパテイキユレートフイルタのバーナエア制御
装置が示されている。このバーナエア制御装置は
第5図に示した従来装置と同一部材を含んでお
り、以後混同を生じない範囲で同一部材には同一
部号を付し、その重複説明を略す。排気路3のフ
イルタ5に対し、所定高温で所定空気過剰率の熱
風を供給するバーナ4は、2次エア流路21を介
し2次エアポンプ11より2次エアを受ける。2
次エアポンプ11はエアをエアフイルタ22を介
し2次エア流路21に流入させ、この2次エア流
路の流路面積を増減させるための流量制御弁23
を介しバーナ4に供給する。2次エア流路21
は、流量制御弁23の直前に圧力センサ24と温
度センサ25とを備え、流量制御弁23の後側に
そこの圧力を検出するための圧力センサ26を備
えている。これら3つのセンサはその出力信号を
2次エアの流量を制御する制御部27に伝えるよ
う接続される。流量制御弁23はその弁体28を
ダイアフラム29と一体的に連結し、このダイア
フラムには大気開放室30と圧縮コイルばねを備
えた負圧室31とが対向している。弁体28は2
次エア流路21にその流路面積Sを可変させるよ
うに取付けられる。この負圧室31はデユーテイ
ソレノイド弁32を介し真空ポンプ14に連結さ
れる。デユーテイソレノイド弁32は10Hz乃至20
Hzで弁体をオンオフさせ、弁体のオンの時間幅と
なるパルス幅を制御部27の出力信号により可変
操作し、これにより負圧室31の負圧値を変え、
この値と大気圧とがバランスする位置に弁体28
を移動させ、流路面積Sを可変する。なお、弁体
28は全開位置より全閉位置に向け変位し、この
変位量は可変する電気抵抗値に対応する出力信号
として位置センサ33からの制御部27にフイー
ドバツクされる。
FIG. 6 shows a burner air control device for a diesel particulate filter, which is an embodiment of the present invention. This burner air control device includes the same members as the conventional device shown in FIG. 5, and the same members will be given the same numbers to avoid confusion hereafter, and their repeated explanation will be omitted. The burner 4 that supplies hot air at a predetermined high temperature and with a predetermined excess air ratio to the filter 5 of the exhaust passage 3 receives secondary air from the secondary air pump 11 via the secondary air passage 21 . 2
The secondary air pump 11 causes air to flow into the secondary air passage 21 via the air filter 22, and a flow rate control valve 23 for increasing or decreasing the passage area of this secondary air passage.
It is supplied to the burner 4 via. Secondary air flow path 21
is equipped with a pressure sensor 24 and a temperature sensor 25 immediately before the flow control valve 23, and a pressure sensor 26 behind the flow control valve 23 for detecting the pressure there. These three sensors are connected to transmit their output signals to a controller 27 that controls the flow rate of secondary air. The flow control valve 23 has a valve body 28 integrally connected to a diaphragm 29, and an atmosphere open chamber 30 and a negative pressure chamber 31 equipped with a compression coil spring are opposed to the diaphragm. The valve body 28 is 2
It is attached to the next air flow path 21 so that the flow path area S thereof can be varied. This negative pressure chamber 31 is connected to the vacuum pump 14 via a duty solenoid valve 32. Duty solenoid valve 32 is 10Hz to 20Hz
The valve body is turned on and off at a frequency of Hz, and the pulse width, which is the ON time width of the valve body, is variably controlled by the output signal of the control unit 27, thereby changing the negative pressure value in the negative pressure chamber 31,
The valve body 28 is located at a position where this value and atmospheric pressure are balanced.
is moved to vary the flow path area S. The valve body 28 is displaced from the fully open position to the fully closed position, and the amount of this displacement is fed back to the control unit 27 from the position sensor 33 as an output signal corresponding to the variable electrical resistance value.

流量制御弁23と2次ポンプ11との間の2次
流路21には、そこからエアを大気放出させるた
めの逃がし弁34が取付けられる。この逃がし弁
の弁体35と一体のダイアフラム36は大気開放
室37と負圧室38とに対向する。負圧室38は
流量規制用のしぼり39を介し真空ポンプ14に
連結され、このしぼり39と負圧室38間の負圧
調整路aに、この逃がし弁38の上流側に設けら
れた負圧調整弁40の一方の室が連結される。負
圧調整弁40は流量制御弁23の流入側の流路内
圧力を受ける上流室41と、大気に開放された大
気室42とを有し、両室はダイアフラム43で区
分される。大気室42は圧縮コイルばね45を備
え、しかも、ダイアフラム43が弁体として作動
することにより開口を閉鎖され得るパイプ44が
取付けられる。このパイプの外側端は上述の負圧
調整路a側に連結される。
A relief valve 34 is attached to the secondary flow path 21 between the flow rate control valve 23 and the secondary pump 11 to release air therefrom to the atmosphere. A diaphragm 36 integral with the valve body 35 of this relief valve faces an atmosphere open chamber 37 and a negative pressure chamber 38. The negative pressure chamber 38 is connected to the vacuum pump 14 via a flow rate regulating throttle 39, and a negative pressure regulating path a between the throttle 39 and the negative pressure chamber 38 is provided with a negative pressure provided upstream of the relief valve 38. One chamber of the regulating valve 40 is connected. The negative pressure regulating valve 40 has an upstream chamber 41 that receives the pressure within the flow path on the inflow side of the flow rate control valve 23 and an atmospheric chamber 42 that is open to the atmosphere, and both chambers are separated by a diaphragm 43. The atmospheric chamber 42 is equipped with a compression coil spring 45, and is attached with a pipe 44 whose opening can be closed by a diaphragm 43 acting as a valve body. The outer end of this pipe is connected to the above-mentioned negative pressure adjustment path a side.

次に、このバーナエア制御装置の作用について
説明する。
Next, the operation of this burner air control device will be explained.

制御部27はフイルタ5上流側の排気圧が設定
値を上回ると再燃焼処理に入る。まず、制御部2
7は1次、2次の各エアポンプ9および11、真
空ポンプ14、燃料ポンプ10、イグニジヨンコ
イル8等をオンする信号を発する。同時にバーナ
排ガス温度センサ46の出力信号に基づき、これ
が基準温度T0より低いと、バーナ燃料流量値q0
をより大きいq1に、逆の場合はより小さなq2に調
量するよう熱量調整弁17に出力信号を与える。
一方、負圧調整弁40は流量制御弁23の流入側
の流路内圧力の変動を検出し、圧縮ばね45に設
定された大気圧との差圧すなわちゲージ圧に常時
流量制御弁23の流入側を保つよう、逃し弁34
を制御する。即ち、大気圧に対する差圧が大きく
なると圧縮ばね45は圧縮されパイプ44は閉じ
られ真空ポンプ14の負圧は全て負圧室38に加
わり、弁体35は開弁方向Pに比較的大きく移動
し、2次流路21のエアを大気放出して差圧を小
さくする。このようにして差圧が小さくなると、
パイプ44は開き、負圧調整路aに大気室42側
よりエアが流入して負圧室38には比較的弱い負
圧しか与えられず、圧縮ばねは長さを拡大して弁
体35は閉弁方向Cに移動し、これにより2次流
路21からのエアの放出は抑えられて、その差圧
がばね45により設定された一定のゲージ圧に維
持される。このようにして、ニユーマチツク作動
のみで流量制御弁23の流入側圧力がゲージ圧一
定に保持される。これに対し、流量制御弁23の
負圧室31にはデユーテイソレノイド弁32を介
し負圧が加わる。この場合制御部27は各センサ
により検出された流量制御弁流入側の圧力および
温度および流出側の圧力を表わす信号を基に、前
以つて入力されているマツプから弁制御のための
位置信号を選択する。そして、求められた位置信
号と位置センサ33がフイードバツクする出力信
号とが一致するよう、制御部27はデユーテイソ
レノイド弁32にデユーテイ比を大小変化させて
出力する。これにより2次エアは2次流路21を
通過する間に常に、重量流量が一定値となるよう
調整されバーナ4に供給される。
When the exhaust pressure upstream of the filter 5 exceeds a set value, the control unit 27 enters the reburning process. First, control section 2
7 issues a signal to turn on the primary and secondary air pumps 9 and 11, the vacuum pump 14, the fuel pump 10, the ignition coil 8, etc. At the same time, based on the output signal of the burner exhaust gas temperature sensor 46, if this is lower than the reference temperature T 0 , the burner fuel flow rate value q 0
An output signal is given to the heat amount regulating valve 17 to adjust the amount of heat to a larger q 1 and vice versa to a smaller q 2 .
On the other hand, the negative pressure regulating valve 40 detects fluctuations in the pressure inside the flow path on the inflow side of the flow control valve 23, and the inflow of the flow control valve 23 is constantly adjusted to the differential pressure with the atmospheric pressure set in the compression spring 45, that is, the gauge pressure. Relief valve 34 to keep the side
control. That is, when the differential pressure with respect to atmospheric pressure becomes large, the compression spring 45 is compressed, the pipe 44 is closed, all the negative pressure of the vacuum pump 14 is applied to the negative pressure chamber 38, and the valve body 35 moves relatively largely in the valve opening direction P. , the air in the secondary flow path 21 is released into the atmosphere to reduce the differential pressure. In this way, when the differential pressure decreases,
The pipe 44 opens, air flows into the negative pressure adjustment path a from the atmospheric chamber 42 side, and only a relatively weak negative pressure is applied to the negative pressure chamber 38, and the compression spring expands in length and the valve body 35 The valve moves in the valve closing direction C, thereby suppressing the release of air from the secondary flow path 21 and maintaining the differential pressure at a constant gauge pressure set by the spring 45. In this way, the pressure on the inlet side of the flow rate control valve 23 is maintained at a constant gauge pressure only by the pneumatic operation. On the other hand, negative pressure is applied to the negative pressure chamber 31 of the flow rate control valve 23 via the duty solenoid valve 32. In this case, the control unit 27 obtains a position signal for controlling the valve from a previously inputted map based on signals representing the pressure and temperature on the inflow side of the flow control valve and the pressure on the outflow side detected by each sensor. select. Then, the control section 27 changes the duty ratio to the duty solenoid valve 32 and outputs it so that the obtained position signal and the output signal fed back by the position sensor 33 match. As a result, while the secondary air passes through the secondary flow path 21, the weight flow rate is always adjusted to a constant value, and the secondary air is supplied to the burner 4.

第7図には、このような制御部27における流
量制御のためのフローチヤートが示されている。
まず2次エアポンプ11がオンか否かが判断さ
れ、否の場合は制御終了となり、元に戻つて他の
ルーチンの処理に向かう。オンの場合は、圧力セ
ンサ24および26によつて流量制御弁ACVの
前後圧が検出され、温度センサ25によつて
OCVの前温度が検出され、ACVの開口面積が位
置センサ33からの読み取り値から換算される。
次にこれらのデータを基に2次エアの重量流量
Qgが計算される。このQgは、ACV前後の差圧、
ACV前の空気密度(ACV前の圧力と温度により
算出)ならびにACV開口面積から求められる。
そしてこの求められたQgが、目標値よりも小さ
ければバルブ開口面積を増大させ、目標値よりも
大きければバルブ開口面積を減少させるよう、デ
ユーテイソレノイド弁32が制御される。圧力セ
ンサ24はエアクリーナ22の直後に設けてこれ
により大気圧を検出するようにしてもよい。大気
圧と流路内のゲージ圧とは相関関係にあるからで
ある。勿論この場合は、検出された大気圧から
ACV前圧を算出することになる。
FIG. 7 shows a flowchart for flow rate control in such a control section 27.
First, it is determined whether or not the secondary air pump 11 is on, and if it is not, the control ends, and the process returns to the original routine to proceed to other routine processing. When it is on, the pressure sensors 24 and 26 detect the pressure before and after the flow control valve ACV, and the temperature sensor 25 detects the pressure before and after the flow control valve ACV.
The pre-temperature of the OCV is detected and the opening area of the ACV is calculated from the reading from the position sensor 33.
Next, based on these data, calculate the weight flow rate of the secondary air.
Qg is calculated. This Qg is the differential pressure before and after the ACV,
It is determined from the air density before the ACV (calculated from the pressure and temperature before the ACV) and the ACV opening area.
The duty solenoid valve 32 is controlled so that if the calculated Qg is smaller than the target value, the valve opening area is increased, and if it is larger than the target value, the valve opening area is decreased. The pressure sensor 24 may be provided immediately after the air cleaner 22 to detect atmospheric pressure. This is because there is a correlation between atmospheric pressure and gauge pressure within the flow path. Of course, in this case, from the detected atmospheric pressure
The ACV front pressure will be calculated.

第6図に示したバーナエア制御装置は流量制御
弁23の流入側圧力を負圧調整弁40で検出し、
この検出値に応じて負圧調整路aの負圧値の修正
を行ない逃し弁34を作動させていた。これに代
え、第8図に示すように、2次流路21のエアを
大気放出させる逃し弁50を直接流量制御弁23
の上流側圧力で作動させてもよい。この場合、弁
体51を閉弁方向Cに押圧する圧縮ばね52を備
えた大気室53と、流量制御弁23の上流側圧力
を受ける上流室54とがダイアフラム55によつ
て区分される。この場合はばね52の強さにより
上流側圧力がゲージ圧一定に保たれ、設定ゲージ
圧に対して2次流路21内の圧力が上回ると圧縮
ばね52は圧縮され弁体51は開弁方向Pに移動
し、逆に下回ると圧縮ばね52は拡長でき弁体5
1は閉弁方向Cに移動する。これにより流量制御
弁23の流入側は常にゲージ圧一定に保持され、
2次ポンプ自体のばらつきの影響が除去される。
一方、流量制御弁23は第6図で説明したと同様
に圧力センサ24,26および温度センサ25の
出力信号を基に適正な流路面積Sを保持する。こ
のため2次流路21よりバーナ4に適するエアは
常に重量流量を一定に保持できる。
The burner air control device shown in FIG. 6 detects the inflow side pressure of the flow rate control valve 23 with a negative pressure regulating valve 40,
According to this detected value, the negative pressure value of the negative pressure adjustment path a is corrected and the relief valve 34 is operated. Instead, as shown in FIG.
It may be operated at an upstream pressure of . In this case, the diaphragm 55 separates an atmospheric chamber 53 equipped with a compression spring 52 that presses the valve body 51 in the valve-closing direction C and an upstream chamber 54 that receives upstream pressure of the flow rate control valve 23 . In this case, the upstream pressure is kept constant at the gauge pressure by the strength of the spring 52, and when the pressure in the secondary flow path 21 exceeds the set gauge pressure, the compression spring 52 is compressed and the valve body 51 is moved in the valve opening direction. P and vice versa, the compression spring 52 can expand and the valve body 5
1 moves in the valve closing direction C. As a result, the gauge pressure on the inflow side of the flow control valve 23 is always kept constant,
The effects of variations in the secondary pump itself are removed.
On the other hand, the flow rate control valve 23 maintains an appropriate flow path area S based on the output signals of the pressure sensors 24, 26 and the temperature sensor 25, as described in FIG. Therefore, the weight flow rate of the air that is more suitable for the burner 4 than the secondary flow path 21 can always be maintained constant.

以上のように、この発明のバーナエア制御装置
によれば、流量制御弁の上流圧をゲージ圧一定に
保つので、エアポンプ自体の流量のばらつきに左
右されずに一定の重量流量の2次エアをバーナに
供給することができ、しかも流量制御弁の下流圧
が変動してもエアポンプにかかる負荷はほぼ一定
であり、ポンプの耐久性が向上するとともに、大
気圧が変動してもポンプの吐出圧はゲージ圧で一
定なので、一定量の小容量の安価なポンプを使用
することができる。また、流路内圧力信号および
または温度信号に応じて流量制御弁の弁開閉量を
制御するので、大気圧やバーナ背圧およびまたは
大気温の変動による2次エアの重量流量の変動を
有効に補正することができる。
As described above, according to the burner air control device of the present invention, the upstream pressure of the flow control valve is kept constant at the gauge pressure, so a constant weight flow rate of secondary air is supplied to the burner without being affected by variations in the flow rate of the air pump itself. Moreover, even if the downstream pressure of the flow control valve fluctuates, the load on the air pump remains almost constant, improving the durability of the pump, and the pump's discharge pressure remains constant even if the atmospheric pressure fluctuates. Since it is a constant gauge pressure, an inexpensive pump with a small capacity can be used. In addition, since the valve opening/closing amount of the flow control valve is controlled according to the pressure signal and/or temperature signal in the flow path, fluctuations in the weight flow rate of the secondary air due to fluctuations in atmospheric pressure, burner back pressure, and/or atmospheric temperature can be effectively accommodated. Can be corrected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高度変化と気圧との関係を示すグラ
フ、第2図は、容積型ポンプの異なる駆動電圧に
おける吐出圧/体積流量特性を示すグラフ、第3
図は、高地および低地における吐出圧/重量流量
特性を示すグラフ、第4図は、エアポンプ自体の
流量のばらつきを説明するための吐出圧/重量流
量特性を示すグラフ、第5図は、従来のバーナエ
ア制御装置の一例を示す制御回路図、第6図は、
この発明によるバーナエア制御装置の一例を示す
制御回路図、第7図は、この発明の一実施例にお
けるバーナエア制御のためのフローチヤート、第
8図は、この発明の別の実施例における制御回路
図である。 1……エンジン、3……排気路、4……バー
ナ、5……フイルタ、6……切換弁、7……バイ
パス、11……2次エアポンプ、14……真空ポ
ンプ、21……空気流路、22……エアクリー
ナ、23……流量制御弁、24,26……圧力セ
ンサ、25……温度センサ、32……デユーテイ
ソレノイド弁、34,50……逃がし弁、40…
…真空調整弁。
Figure 1 is a graph showing the relationship between altitude change and atmospheric pressure, Figure 2 is a graph showing discharge pressure/volume flow characteristics at different drive voltages of a positive displacement pump, and Figure 3 is a graph showing the relationship between altitude change and atmospheric pressure.
The figure is a graph showing the discharge pressure/weight flow rate characteristics at high and low altitudes, Figure 4 is a graph showing the discharge pressure/weight flow rate characteristics to explain the variation in the flow rate of the air pump itself, and Figure 5 is a graph showing the conventional FIG. 6 is a control circuit diagram showing an example of a burner air control device.
A control circuit diagram showing an example of a burner air control device according to the present invention, FIG. 7 is a flow chart for burner air control in one embodiment of the present invention, and FIG. 8 is a control circuit diagram in another embodiment of the present invention. It is. 1...Engine, 3...Exhaust path, 4...Burner, 5...Filter, 6...Switching valve, 7...Bypass, 11...Secondary air pump, 14...Vacuum pump, 21...Air flow 22... Air cleaner, 23... Flow rate control valve, 24, 26... Pressure sensor, 25... Temperature sensor, 32... Duty solenoid valve, 34, 50... Relief valve, 40...
...Vacuum adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 1 デイーゼルパテイキユレートフイルタの再生
用バーナに対し、容積型エアポンプより吐出され
たエアを流入させるエア流路と、上記エア流路の
流路面積を可変する流量制御弁と、この流量制御
弁の流入側のエア流路内の圧力をゲージ圧一定に
なるよう、流量制御弁に流入するエアの一部を大
気中に放出させる逃がし弁と、上記流量制御弁に
対し、流路内の圧力信号およびまたは温度信号に
応じて弁開閉量の制御を行なう制御部とを備えた
バーナエア制御装置。
1. An air flow path through which air discharged from a positive displacement air pump flows into a regeneration burner of a diesel particulate filter, a flow control valve for varying the flow path area of the air flow path, and a flow control valve for controlling the flow rate control valve. In order to maintain the pressure in the air flow path on the inflow side at a constant gauge pressure, there is a relief valve that releases part of the air flowing into the flow control valve into the atmosphere, and a pressure signal in the flow path to the flow control valve. A burner air control device comprising: and/or a control section that controls the amount of valve opening/closing according to a temperature signal.
JP58158241A 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device Granted JPS6050211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158241A JPS6050211A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158241A JPS6050211A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Publications (2)

Publication Number Publication Date
JPS6050211A JPS6050211A (en) 1985-03-19
JPH0550568B2 true JPH0550568B2 (en) 1993-07-29

Family

ID=15667344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158241A Granted JPS6050211A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Country Status (1)

Country Link
JP (1) JPS6050211A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623538B2 (en) * 1989-03-30 1994-03-30 いすゞ自動車株式会社 Reburner for particulate trap

Also Published As

Publication number Publication date
JPS6050211A (en) 1985-03-19

Similar Documents

Publication Publication Date Title
KR890001344B1 (en) Regenerating apparatus for diesel particulate filter
JPH02256813A (en) Re-burner for particulate trap
US8082736B2 (en) Temperature determination technique for a turbocharger
US5138835A (en) Diesel engine with an exhaust-gas filter
US6871632B2 (en) Method for regulating the fuel injection of an internal combustion engine
JPH0550568B2 (en)
JPS6022013A (en) Burner air control of diesel particulate filter
US4100741A (en) Hot-gas engine
JPH06108923A (en) Exhaust gas reflux controller
JPS5846648B2 (en) Secondary air control device
JPH0550570B2 (en)
JPS6019909A (en) Control device for burner air for diesel particulate filter
JPH0550569B2 (en)
JPH0429849B2 (en)
JPS6042331B2 (en) Diesel engine exhaust purification device
JPH077207Y2 (en) Air controller for heating and heating
JPH06294317A (en) Regenerating timing detecting device of exhaust particulate collecting device for diesel engine
JP2802312B2 (en) Exhaust gas purification device for internal combustion engine
JPS6019908A (en) Control device for burner air for diesel particulate filter
JPH03233123A (en) Exhaust gas purifier of engine
JPS60216020A (en) Regenerating device for diesel particulate oxidizer
JPS59226218A (en) Burner air controlling system of diesel particulate filter system
JP2935304B2 (en) Control device for bypass gas flow
JPS63179172A (en) Exhaust gas recirculation device for engine
JPS5874818A (en) Exhaust gas purifying device of diesel engine