JPS5874818A - Exhaust gas purifying device of diesel engine - Google Patents

Exhaust gas purifying device of diesel engine

Info

Publication number
JPS5874818A
JPS5874818A JP56172373A JP17237381A JPS5874818A JP S5874818 A JPS5874818 A JP S5874818A JP 56172373 A JP56172373 A JP 56172373A JP 17237381 A JP17237381 A JP 17237381A JP S5874818 A JPS5874818 A JP S5874818A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
burner
fuel
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56172373A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuoka
松岡 孟
Koichi Takahashi
高橋 侯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP56172373A priority Critical patent/JPS5874818A/en
Publication of JPS5874818A publication Critical patent/JPS5874818A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To prevent wasteful consumption of a fuel by controlling a burner so that the burner generates the heat of necessary minimum quantity under consideration of the exhaust gas temperature and the exhaust gas flow quantity despite the operational state of an EGR, upon burning minute particles captured by a filter member. CONSTITUTION:When the loading of the filter member 9 arresting minute particles such as carbon particles and the like within exhaust gas proceeds, the electric resistance between a pair of electrodes 10 and 11 gradually decreases and the voltage difference exceeds the reference value. At that time, a signal S1 is generated from a loading detection circuit 28. Then, a current is supplied to an ignition heater 14d by this signal S1 through a control circuit 29, and adjusting valves 26a and 26b are opened and an air pipeline 16 and a fuel pipeline 18 to fire a burner 14 through diaphragm devices 22 and 23. Upon this occasion, in accordance with the output of a throttle valve opening degree senser 8, an engine rotational speed sensor 30 and an exhaust air temperature senser 31, the opening degree of each of valves 26a and 26b is controlled, and the burner fuel quantity is maintained at an optimum quantity.

Description

【発明の詳細な説明】 本発明は、ディーゼルエンジンの排気中のカーボン粒子
等の微粒子成分を捕集するフィルタ一部材を排気通路に
設けたディーゼルエンジンの排気浄化装置に関し、さら
に詳細にはEGRが実施されるディーゼルエンジンに使
用され、捕集された成分をバーナ装置を用いて燃焼させ
ることによって、フィルタ一部材の目詰まりを解消する
ようにした排気浄化装置メ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas purification device for a diesel engine in which an exhaust passage is provided with a filter member that collects particulate components such as carbon particles in the exhaust gas of a diesel engine, and more particularly, The present invention relates to an exhaust purification device used in a diesel engine, which eliminates clogging of a filter member by burning the collected components using a burner device.

ディーゼルエンジンの排気中には、カーボン粒子等の微
粒子成分が多く含まれ、ディーゼルエンジンの排気浄化
を実施するにあたっては、この微粒子成分を除去するこ
とが不可欠とされてきた。従来、そのための排気浄化装
置としては、例えば特開昭49−71315号公報に示
されているように、排気通路内に上記微粒子成分を捕集
するフィルタ一部材を配し、捕集成分は該フィルタ一部
材よりも上流側に配しにバーナ装置によって適宜燃焼さ
せて、フィルタ一部材の目詰まりを解消するようにしk
ものが知られ℃いる。
The exhaust gas of a diesel engine contains many particulate components such as carbon particles, and it has been considered essential to remove these particulate components when purifying the exhaust gas of a diesel engine. Conventionally, as shown in Japanese Patent Laid-Open No. 49-71315, a conventional exhaust gas purification device for this purpose has a filter member disposed in the exhaust passage to collect the above-mentioned particulate components, and the collected components are The burner device is placed upstream of the filter member and burns it as appropriate to eliminate clogging of the filter member.
Things are known.

上記のような排気浄化装置においては、定期的にもしく
は目詰まり検出手段によってフィルタ一部材の目詰まり
が検知されたならば適宜バーナ装置が作動されるように
なっている。上記捕集成分は一般に、580〜600℃
程度まで加熱されると数十秒程度の短時間で燃え尽き、
フィルタ一部材の目詰まりが解消されろ。
In the exhaust purification device as described above, the burner device is operated periodically or as appropriate when clogging of the filter member is detected by the clogging detection means. The above-mentioned scavenging component is generally heated at 580 to 600°C.
When heated to a certain degree, it burns out in a short period of about tens of seconds,
Clear the clogging of the filter part.

捕集成分の加熱温度は当然、バーナ装置の燃焼の強さ、
すなわちバーナ装置に供給される燃料量によるが、従来
の装置にあってはこの燃料量は一定に固定されていたた
め、若し燃料量の設定が低いような場合には、排気温度
が低い、あるいは排気流量が多いときにバーナ装置が作
、動すると、捕集成分が十分に加熱されず、したがって
完全に燃え尽きないことが起こり得る。反対に、排気温
度が高い、あるいは排気流量が少ないときにバーナ装置
が作動すると捕集成分が必要以上に高熱化することもあ
る。フィルタ一部材の目詰まり解消の見地からは、捕集
成分が必要以上に加熱されても不都合はないが、そのた
めにバーナ燃料は必要以上に消費されることになるので
極めて不経済である。とともに、フィルタ一部材等の排
気系部品を高熱化してそれらの寿命を縮めることにもな
る。
The heating temperature of the collected components naturally depends on the combustion strength of the burner device,
In other words, it depends on the amount of fuel supplied to the burner device, but in conventional devices, this fuel amount was fixed constant, so if the fuel amount is set low, the exhaust temperature will be low or If the burner device is activated and operated at high exhaust flow rates, it may occur that the captured components are not heated sufficiently and therefore are not completely burnt out. On the other hand, if the burner device is operated when the exhaust gas temperature is high or the exhaust gas flow rate is low, the collected components may become hotter than necessary. From the standpoint of eliminating clogging of the filter member, there is no problem if the collected components are heated more than necessary, but this causes more burner fuel to be consumed than necessary, which is extremely uneconomical. At the same time, exhaust system parts such as filter members are heated up and their lifespans are shortened.

したがってバーナ燃料量を、上記排気流量。Therefore the burner fuel quantity is above the exhaust flow rate.

排気温度に対応させて最適量に制御するようにすれば、
経済的でしかも排気系部品を劣化させることのない排気
浄化装置が提供されるようになる。
If you control the amount to the optimum amount in response to the exhaust temperature,
An exhaust gas purification device that is economical and does not deteriorate exhaust system components can now be provided.

上記排気流量は一般のディーゼルエンジンにおいては、
エンジンの回転数を知ることによって算定され得る。一
方、今日ではノッキング防止、燃焼音の低下等のためK
EGR□□□気再循環)を行なうようにしたディーゼル
エンジンも考えられており、EAR率は、主にノッキン
グ防止を目的とする場合にはアイドリング下で20〜3
0%程度であるが、燃焼音低下を目的とする時には同じ
くアイドリンク下で80〜90%にも達することがある
The above exhaust flow rate is for a general diesel engine.
It can be calculated by knowing the engine speed. On the other hand, today K is used to prevent knocking and reduce combustion noise.
Diesel engines that perform EGR (air recirculation) are also being considered, and the EAR rate is 20 to 3 at idling if the main purpose is to prevent knocking.
It is approximately 0%, but when the purpose is to reduce combustion noise, it can reach 80 to 90% under idle link conditions.

このようにEGR率が高いレベルに設定されれば、エン
ジンの回転数によって正しい排気流量を知ることは全く
不可能となり、前述したようなバーナ燃料量を正しく制
御することが不可能になる。
If the EGR rate is set at such a high level, it becomes completely impossible to know the correct exhaust flow rate based on the engine rotation speed, and it becomes impossible to correctly control the amount of burner fuel as described above.

本発明は上記事情に鑑みてなされたものであり、EGR
が行なわれるディーゼルエンジンにおいて、フィルタ一
部材の捕集成分を完全に燃し尽くシ、シかもバーナ燃料
を必要以上に消費することがないようにノ々−す燃料量
が正しく制御される経済的な排気浄化装置を提供するこ
とを目的とするものである。
The present invention has been made in view of the above circumstances, and is an EGR
In a diesel engine in which burner fuel is consumed, it is economical to completely burn out the trapped components of the filter member, and to control the amount of fuel discharged correctly so that burner fuel is not consumed more than necessary. The purpose of the present invention is to provide an exhaust gas purification device that provides excellent exhaust gas purification.

本発明のディーゼルエンジンの排気浄化装置は、前述の
排気浄化装置、すなわちEGR用の排気還流通路が設け
られ1こディーゼルエンジンの該排気還流通路開口部よ
りも下流の排気通路に、排気中のカーボン粒子等微粒子
を捕集するフィルタ一部材が配設されるとともに、該フ
ィルタ一部材よりも上流で前記開口部よりも下流の排気
通路にフィルタ一部材の目詰まりを解消するバーナ装置
が設けられたディーゼル二゛/ジンの排気浄化装置にお
いて、バーナ用燃料量な制御するアクチュエータと、排
気還流量に対応した出力を発生する排気還流量検出装置
と、エンジン回転数センサおよび排気温度センサからの
出力によりバーナ装置の必要燃料量を演算して前記アク
チュエータを制御するとともに排気還流時、前記排気還
流量検出装置からの出力により前記アクチュエータ制御
出力を補正する制御装置とを設けたことを特徴とするも
のである。
The exhaust gas purification device for a diesel engine of the present invention is provided with an exhaust gas recirculation passage for EGR. A filter member for collecting fine particles such as particles is provided, and a burner device for unclogging the filter member is provided in an exhaust passage upstream of the filter member and downstream of the opening. In an exhaust purification system for a diesel engine, there is an actuator that controls the amount of fuel for the burner, an exhaust recirculation amount detection device that generates an output corresponding to the amount of exhaust recirculation, and outputs from the engine speed sensor and exhaust temperature sensor. The present invention is characterized by comprising a control device that calculates the amount of fuel required for the burner device and controls the actuator, and also corrects the actuator control output based on the output from the exhaust gas recirculation amount detection device during exhaust gas recirculation. be.

上記構造の本発明のディーゼルエンジンの排気浄化装置
に涜いては、バーナ装置には排気温度、排気流量も考慮
して、捕集成分を所要温度まで加熱し、完全燃焼させる
ために必要最小限のバーナ燃料が供給され得るようにな
るから、補集成分が燃え残ることがない一方、排気系部
品の劣化な早めることもなく。
In addition to the diesel engine exhaust purification device of the present invention having the above structure, the burner device is designed to heat the collected components to the required temperature and to burn the minimum amount necessary for complete combustion, taking into account the exhaust temperature and exhaust flow rate. Since burner fuel can now be supplied, the scavenging components will not remain unburned, and the deterioration of exhaust system parts will not be accelerated.

しかも余分なバーナ燃料の消費も抑えられるようになる
。そして、排気流量はエンジンの回転数から検出される
ようになっているが、EGRが行なわれている時には排
気還流量検出装置が検出した排気還流量によってバーナ
燃料量を補正するようにしているから、常に実際の排気
流量に即した正確なバーナ燃料量制御が行なわれ得るよ
うになる。
Moreover, consumption of excess burner fuel can also be suppressed. The exhaust flow rate is detected from the engine rotation speed, but when EGR is being performed, the burner fuel amount is corrected based on the exhaust recirculation amount detected by the exhaust recirculation amount detection device. Therefore, accurate burner fuel amount control can always be performed in accordance with the actual exhaust flow rate.

高率のEQRが望まれる場合、排気還流通路を大きく開
くのみでは所望の高EGR率は得られないので、一般に
吸気通路の排気還流通路開口部上流側には空気吸入を制
御する絞り弁が設けられ、この絞り弁を絞り方向に操作
することによってより高いEGR率が得られるようにな
っている。したがってこの絞り弁の開度はEGR率に対
応したものとなる。
If a high rate of EQR is desired, the desired high EGR rate cannot be obtained by simply opening the exhaust gas recirculation passage wide, so a throttle valve is generally provided upstream of the exhaust gas recirculation passage opening in the intake passage to control air intake. By operating this throttle valve in the throttle direction, a higher EGR rate can be obtained. Therefore, the opening degree of this throttle valve corresponds to the EGR rate.

したがって上記排気還流量は、この絞り弁開度の開度な
検出することによって間接的に横巾されてもよい。
Therefore, the exhaust gas recirculation amount may be indirectly changed by detecting the opening degree of the throttle valve.

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の1実施例によるディーゼルエンジンの
排気浄化装置を示すものである。
FIG. 1 shows an exhaust purification device for a diesel engine according to one embodiment of the present invention.

ディーゼルエンジン1の排気痛路2と吸気通路3は、還
流弁4が設けられた排気還流通路5によって接続されて
いる。還流弁4はF)OR制御回路6によって制御され
、1iGR不要時には全閉に設定される一方EGR実施
時には開かれる。吸気通路3の前記排気還流通路開口部
よりも上流側には絞り弁7が設けられている。この絞り
弁7が絞り方向に操作されると、吸気通路3に新しく吸
入される空気量はより少なくなるから、相対的にEGR
率は高くなる。そしてこの絞り弁7には、該絞り弁7の
開度な検出する絞り弁開度センサ8が接続されている。
An exhaust passage 2 and an intake passage 3 of the diesel engine 1 are connected by an exhaust recirculation passage 5 provided with a recirculation valve 4. The recirculation valve 4 is controlled by the F)OR control circuit 6, and is set to be fully closed when 1iGR is not required, but is opened when EGR is performed. A throttle valve 7 is provided in the intake passage 3 upstream of the opening of the exhaust gas recirculation passage. When the throttle valve 7 is operated in the throttle direction, the amount of air newly sucked into the intake passage 3 becomes smaller, so the EGR
rate will be higher. A throttle valve opening sensor 8 is connected to the throttle valve 7 to detect the opening of the throttle valve 7.

排気通路2の、前記排気還流通路5の開口部よりも下流
側の位置には、ハニカム状の非導電性フィルタ一部材9
が配設されている。
A honeycomb-shaped non-conductive filter member 9 is provided in the exhaust passage 2 at a position downstream of the opening of the exhaust gas recirculation passage 5.
is installed.

フィルj一部材9は多孔質の隔壁98によって多数の細
孔9bが形成されてなる。細孔9bは1つおきに端部な
変えて各々の一端部がブラインドプラグ9Cで閉−され
ており、上流側端部が開いに細孔9b内に流入した排気
は、多孔質の隔壁9aを通過して、下流側端部が開いた
細孔9bに流出する。排気が隔壁9aを通過する際に、
この排気中に含まれていたカーボン粒子等の微粒子が該
隔壁9al/i捕集される。フィルタ一部材9には、そ
の軸心と直交する方向に1対の電極10.11が挿入さ
れて(・る。これら電極10.11は、それぞれ絶縁部
材12.13を介してフィルタ一部材9の周壁に固定さ
れ、各隔壁9aに対しては密に、すなわち隔@9aとの
間に間隙を形成しないように挿入されている。フィルタ
一部材9よりも上流側で前記排気還流通路5の開口部よ
りも下流側の排気通路2内には、バーナ14が配設され
ている。このバーナ14は1次エアノズル14aと2次
エアノズル14b、それに燃料ノズル14Cおよび着火
ヒータ14dからなる。1次エアノズル14aおよび2
次エアノズル14bはともに、燃焼用空気を供給するエ
アポンプ15の吐出口から引かれたエア配管16に接続
されている。一方、燃料ノズル14cは、燃料ポンプ1
7が介設された燃料配管18によって、燃料Fを貯える
燃料タンク19と接続されている。上記エア配管16と
燃料配管18中にはそれぞれオリフィス20.21が設
けられ、これらオリフィス20.21中には各々ダイヤ
フラム装置22.23のダイヤフラム22a、23aに
固定された略円錐状のニードル22b 、23bが挿通
されるようになっている。そしてこれらダイヤフラム装
置22.23のダイヤフラム室22C,23Cは、主管
24とこの主管24から分岐された制御エア配管24a
、24bを介してサージタンク25に接続されている。
The member 9 of the film j has a large number of pores 9b formed by porous partition walls 98. One end of every other pore 9b is closed with a blind plug 9C, and the upstream end is open, and the exhaust gas flowing into the pore 9b passes through the porous partition wall 9a. and flows out into the pore 9b, which has an open downstream end. When the exhaust gas passes through the partition wall 9a,
Fine particles such as carbon particles contained in this exhaust gas are collected by the partition walls 9al/i. A pair of electrodes 10.11 are inserted into the filter member 9 in a direction perpendicular to its axis. It is fixed to the peripheral wall of the exhaust gas recirculation passage 5 on the upstream side of the filter member 9 and inserted into each partition wall 9a tightly, that is, without forming a gap between the partition wall 9a and the partition wall 9a. A burner 14 is disposed in the exhaust passage 2 on the downstream side of the opening.The burner 14 includes a primary air nozzle 14a, a secondary air nozzle 14b, a fuel nozzle 14C, and an ignition heater 14d. Air nozzles 14a and 2
Both of the secondary air nozzles 14b are connected to an air pipe 16 drawn from a discharge port of an air pump 15 that supplies combustion air. On the other hand, the fuel nozzle 14c is connected to the fuel pump 1.
It is connected to a fuel tank 19 that stores fuel F by a fuel pipe 18 with a fuel pipe 7 interposed therebetween. An orifice 20.21 is provided in each of the air pipe 16 and fuel pipe 18, and each orifice 20.21 includes a substantially conical needle 22b fixed to a diaphragm 22a, 23a of a diaphragm device 22.23, respectively. 23b is inserted. The diaphragm chambers 22C and 23C of these diaphragm devices 22 and 23 are connected to a main pipe 24 and a control air pipe 24a branched from the main pipe 24.
, 24b to the surge tank 25.

制御エア配管24a 、24bには開度が調節され得る
調節パルプ26a、26bがそれぞれ配設され、またサ
ージタンク25にはバキュームポンプ27の゛吸込側が
接続されている。
Control pulps 26a and 26b whose opening degrees can be adjusted are provided in the control air pipes 24a and 24b, respectively, and the suction side of a vacuum pump 27 is connected to the surge tank 25.

前述した電極10.11は目詰まり検出回路28に接続
され、この目詰まり検出回路28の出力は制御回路29
に入力されるようになっている。またディーゼルエンジ
ン1には。
The aforementioned electrodes 10.11 are connected to a clogging detection circuit 28, and the output of this clogging detection circuit 28 is sent to a control circuit 29.
It is now entered into Also for diesel engine 1.

例えばパルス発生式の回転センサ30が、そして排気通
路2内には温度センサ31が設けられ、こ扛ら回転セン
サ30、温度センサ31の出力、および前記絞り弁開度
センサ8の出力も上記制御回路29に入力されるように
なっている。
For example, a pulse generation type rotation sensor 30 and a temperature sensor 31 are provided in the exhaust passage 2, and the outputs of the rotation sensor 30, the temperature sensor 31, and the throttle valve opening sensor 8 are also controlled as described above. The signal is input to the circuit 29.

以下、上記構造を有する本実施例の排気浄化装置の作動
を、まず還流弁4が閉じられてEQ)1が行なわれt4
い場合について説明する。
Hereinafter, the operation of the exhaust gas purification device of this embodiment having the above structure will be described.First, the recirculation valve 4 is closed and EQ)1 is performed.
Let's explain the case.

前述した1対の電極10.11間の電気抵抗は、フィル
タ一部材9の隔壁9aにカーボン粒子等の微粒子が付着
すると、付着したその微粒子の量の増大に応じて減少す
る特性を有する。したがって例えば一方の電極10(1
1)を抵抗を介してバッテリの陽極に接続する一方、該
バッテリの陰極をアースに接続し、他方の電極11(1
0)をアースに接続すると、上記抵抗の両端の電圧差は
、隔壁9aに付着した微粒子の量の増大に応じて増大す
るようになる。したがってここで、バーナ14を燃焼さ
せてフィルタ一部材9の目詰まりを解消することが必要
である程度に微粒子が付着したときの上記電圧差と同じ
基準電圧を発生する基準電圧発生回路を設け、この基準
電圧と上記電圧差を比較して上記電圧差が基準電圧を上
回ったときに電気信号を発するようにすれば、この電気
信号を用いてバーナ作動を自動的に開始させることがで
きる。
The electrical resistance between the pair of electrodes 10, 11 described above has a characteristic that when fine particles such as carbon particles adhere to the partition wall 9a of the filter member 9, the electric resistance decreases as the amount of the adhered fine particles increases. Therefore, for example, one electrode 10 (1
1) is connected to the anode of the battery through a resistor, while the cathode of the battery is connected to ground, and the other electrode 11 (1) is connected to the anode of the battery through a resistor.
0) is connected to ground, the voltage difference across the resistor increases in accordance with the increase in the amount of particles attached to the partition wall 9a. Therefore, here, a reference voltage generation circuit is provided which generates the same reference voltage as the voltage difference when fine particles are attached to a degree necessary to unclog the filter member 9 by burning the burner 14. If the reference voltage and the voltage difference are compared and an electric signal is generated when the voltage difference exceeds the reference voltage, the burner operation can be automatically started using this electric signal.

前記i・詰ま・り検出回路28はこのように構成された
ものであり、バーナ作動が必要な程にフィルタ一部材9
の目詰まりが進行すると、目詰まり検出信号S1を制御
回路29に送る。
The i/clogging/clogging detection circuit 28 is configured as described above, and the filter member 9 is not activated to the extent that the burner operation is necessary.
When clogging progresses, a clogging detection signal S1 is sent to the control circuit 29.

上記目詰まり検出信号S1が入力されると制御回路29
は、電気ヒータからなる浸入ヒータ14dに通電する着
火信号S2を出力し、次いで調節パルプ26a、26b
を開くパルプ開信号S3、S 3/を出力する。パルプ
開信号S3.83′により調節パルプ26a、26bが
開かれると、ダイヤフラム装置22、゛会3のダイヤフ
ラム室22C,23Cは、バキュームポンプ27によっ
て負圧に保たれたサージタンク25と連通されるように
なり、各ダイヤフラA22a、23aはリターンバネ2
2d、23dに抗して図中右方に引かれる。したがって
これらダイヤフラム22a、23aに固定されているニ
ードル22b、23bは、それまで嵌合していたオリフ
ィス20.21から右方に退出して、それぞれエア配管
16、燃料配管18を開き、パ!す14に各々燃焼用の
空気と燃料Fを供給させる。
When the clogging detection signal S1 is input, the control circuit 29
outputs an ignition signal S2 that energizes an immersion heater 14d consisting of an electric heater, and then outputs an ignition signal S2 that energizes an immersion heater 14d consisting of an electric heater, and then
Pulp opening signals S3 and S3/ are output. When the regulating pulps 26a and 26b are opened by the pulp opening signal S3.83', the diaphragm chambers 22C and 23C of the diaphragm device 22 and the chamber 3 are communicated with the surge tank 25 maintained at negative pressure by the vacuum pump 27. , each diaphragm A22a, 23a is connected to the return spring 2.
2d and 23d and is pulled to the right in the figure. Therefore, the needles 22b and 23b fixed to these diaphragms 22a and 23a exit to the right from the orifice 20.21 in which they had been fitted, open the air pipe 16 and the fuel pipe 18, respectively, and open the air pipe 16 and fuel pipe 18, respectively. The combustion air and fuel F are supplied to the combustion chambers 14 and 14, respectively.

ここで上述のパルプ開信号S3、S31は一定信号では
なく、温度センサ31からの排気温度信号S4&回転セ
ンサ30からの回転数信号S5とによって変動、される
ようになっている。
Here, the above-mentioned pulp opening signals S3 and S31 are not constant signals, but are changed depending on the exhaust temperature signal S4 from the temperature sensor 31 and the rotation speed signal S5 from the rotation sensor 30.

EGRが行なわれていないとき、エンジン1の回転数は
排気流量に対応する。したがって制御回路29は、この
回転数信号S5を排気流量を表わす信号として用い、エ
ンジン回転数が高いほど排気流量大と判断しそ上記パル
プ開信号S3.83′をパルプ開度大方向に変化させる
。またこの制御回路29は、温度センサ31からの排気
温度信号S4を受け、排気温度が低いほどパルプ開信号
S3.83′をバルブ開度大方向に変化させる。調節パ
ルプ26a、26bの開度が大であるほどダイヤフラム
室22c、23Cにかかる負圧量が大きくなり、ニード
ル22b、23bの退出量が太き(なる。したがってオ
リフィス20.21の開口面積が増大し、燃焼空気量、
燃料量が増量される。
When EGR is not being performed, the rotational speed of the engine 1 corresponds to the exhaust flow rate. Therefore, the control circuit 29 uses this rotational speed signal S5 as a signal representing the exhaust flow rate, determines that the higher the engine rotational speed is, the larger the exhaust flow rate is, and changes the pulp opening signal S3.83' to increase the pulp opening degree. Further, this control circuit 29 receives the exhaust gas temperature signal S4 from the temperature sensor 31, and changes the pulp opening signal S3.83' toward a larger valve opening as the exhaust gas temperature becomes lower. The larger the opening degree of the regulating pulps 26a, 26b, the larger the amount of negative pressure applied to the diaphragm chambers 22c, 23C, and the larger the exit amount of the needles 22b, 23b. Therefore, the opening area of the orifice 20.21 increases. and combustion air amount,
The amount of fuel is increased.

ここでパルプ開信号S3、エアポンプ15、ダイヤフラ
ム装置22等の空気供給系と、パルプ開信号83′、燃
料ポンプ17、ダイヤフラム装置23等の燃料供給系は
、燃焼空気量が燃料量に対して重量比で1.2〜2.5
倍程度となるように設定されている。このように設定す
ることにより、燃焼空気不足による未燃ガスの発生ある
いは燃焼空気過多による未着火を防止できる。そして燃
料量は、与えられた排気温度、排気流量下でバーナ14
がフィルタ一部材9に捕集されている微粒子を、完全に
燃え尽きる所定温度、例えば600°Cまで加熱し、か
つ完全に燃焼させるのに必要でかつ最小限程度の熱量を
発生するように設定される。したがって排気温度1.排
気流量がいかに変動しようとも捕集された微粒子は完全
に燃し尽くされ、またバーナが必要以上の熱量を発生す
る程に、燃料が浪費されることもない。
Here, in the air supply system such as the pulp open signal S3, air pump 15, and diaphragm device 22, and in the fuel supply system such as the pulp open signal 83', fuel pump 17, and diaphragm device 23, the amount of combustion air is the weight relative to the amount of fuel. 1.2 to 2.5 in ratio
It is set to be approximately double that. By setting in this way, it is possible to prevent generation of unburned gas due to insufficient combustion air or non-ignition due to excess combustion air. And the amount of fuel is determined by the burner 14 under the given exhaust temperature and exhaust flow rate.
is set to heat the particulates collected in the filter member 9 to a predetermined temperature at which they are completely burned out, for example 600°C, and to generate the minimum amount of heat necessary to completely burn them out. Ru. Therefore, the exhaust temperature is 1. No matter how the exhaust flow rate varies, the trapped particulates are completely burned out, and no fuel is wasted to the extent that the burner generates more heat than necessary.

EGR制御回路6によって還流弁4が開かれてEGRが
行なりれると、排気流量はEGR不実施の場合と比べ、
同一エンジン回転数下では当然減少する。したがって、
EGRを行なうべく絞り弁7が操作されたとき絞り弁開
度センサ8から出力される絞り弁開度信号S6は制御回
路29に入力され、この絞り弁開度信号S6によってパ
ルプ開信号S3.83′はパルプ開度小方向に補正され
る。
When the recirculation valve 4 is opened by the EGR control circuit 6 and EGR is performed, the exhaust flow rate will be lower than when EGR is not performed.
Naturally, it decreases under the same engine speed. therefore,
When the throttle valve 7 is operated to perform EGR, the throttle valve opening signal S6 output from the throttle valve opening sensor 8 is input to the control circuit 29, and the throttle valve opening signal S6 generates a pulp opening signal S3.83. ' is corrected in the direction of decreasing pulp opening.

ここでEGR不実施の場合と比較した排気流量の減少の
度合いは、当然EGR率が高い場合はど著しい。そして
このEGR率は絞り弁7を絞り方向に操作することによ
って高めしたものとなっている。そこでこの絞り弁開度
信号S6を用い、絞り弁開度/J%のとき、すなわち高
EGR率のときは上記補正の量を大きく、絞り弁開慶大
すなわち低EGR率のときは上記補正量を小さくするよ
うに制御を行なう。EGR実施時にはこのような補正を
行なうことにより、常に実際の排気流量に即した正確な
バーナ燃料量制御が行なわれるようになる。
Here, the degree of decrease in the exhaust flow rate compared to the case where EGR is not performed is, of course, remarkable when the EGR rate is high. This EGR rate is increased by operating the throttle valve 7 in the throttle direction. Therefore, using this throttle valve opening signal S6, when the throttle valve opening is /J%, that is, when the EGR rate is high, the above correction amount is increased, and when the throttle valve opening is large, that is, when the EGR rate is low, the above correction amount is increased. Control is performed to reduce the By performing such a correction when performing EGR, accurate burner fuel amount control can always be performed in accordance with the actual exhaust flow rate.

なお前述したパルプ開信号S3.83′は、着火信号S
2が着火ヒータ14dに送られた後、着火ヒータ14d
が燃料Fの点火に十分なだけ例えば9000C程度に加
熱されたことを検知してから発せられるようにすれば、
バーナ14からの未燃焼ガス放出による2次汚染を防止
できる。またバーナ14の1作動停止時も、パルプ開信
号S3.83′が全閉信号に変えられて燃焼空気、燃料
の供給が断たれてから、着火信号S2を断つようにすれ
ば同様の2次汚染が防止される。
The above-mentioned pulp open signal S3.83' is the ignition signal S
2 is sent to the ignition heater 14d, then the ignition heater 14d
If it is made to emit after detecting that the fuel F has been heated enough to ignite, for example, about 9000C, then
Secondary pollution due to unburned gas released from the burner 14 can be prevented. Also, when the burner 14 stops operating, if the pulp open signal S3.83' is changed to a fully closed signal and the supply of combustion air and fuel is cut off, then the ignition signal S2 is cut off. Contamination is prevented.

また、バーナ14による目詰まり解消は、目詰まり検出
回路28によって目詰まりが検知された後、特に火急的
に行なわれなくてもよいので、回転センサ30によりア
イドリング状態を検出し、アイドリンク下でバーナ14
を作動させることが好ましい。アイドリンク下では排気
流量が安定するので、バーナ制御がし易いという利点が
ある。また、フィルタ一部材9の目詰まり検出は、前述
のような電極間抵抗の変化を見る方法以:外の方、法1
、例えばフィルタ一部材9の上流側と下流側の圧力差の
変化を見る方法等によって行なわれてもよい。
Further, since the clogging by the burner 14 does not need to be carried out immediately after the clogging is detected by the clogging detection circuit 28, the rotation sensor 30 detects the idling state and the idling state is detected by the rotation sensor 30. Burner 14
It is preferable to operate. Since the exhaust flow rate is stable under idle link, there is an advantage that burner control is easy. In addition, clogging of the filter member 9 can be detected by methods other than the above-mentioned method of observing changes in interelectrode resistance.
For example, this may be carried out by observing changes in the pressure difference between the upstream side and the downstream side of the filter member 9.

第2図は以上説明した装置をコンピュータ制御する場合
の信号の流れを示すフローチャートである。この第2図
のフローチャートには一般的に表示しであるように、E
GR量は上記実施例におけるように絞り弁7の開度がら
検出する他、その他EGRを制御する装置の種々の出力
を用いて検出され得るものである。
FIG. 2 is a flowchart showing the flow of signals when the apparatus described above is controlled by a computer. As generally indicated in the flowchart of FIG.
In addition to detecting the opening degree of the throttle valve 7 as in the above embodiment, the GR amount can also be detected using various outputs of a device that controls EGR.

燃料Fおよび燃焼用空気の流量制御は、第1図に示され
た装置以外の種々の公知の装置例えば、気化器方式で燃
料と空気の混合気を生成し、該混合気の流量を調節パル
プで調節する装置を用いて行なってもよいことは勿論で
あり、また例えば第3図に示すように燃料配管18中に
配設した調節パルプ26cによって直接燃料量を制御す
るようにしてもよい。
The flow rate control of the fuel F and the combustion air can be carried out using various known devices other than the device shown in FIG. Needless to say, the fuel amount may be controlled by using a device for adjusting the amount of fuel, or the amount of fuel may be directly controlled by a regulating pulp 26c disposed in the fuel pipe 18, as shown in FIG. 3, for example.

このような調節パルプ26Cや前記第1図の実施例にお
いて使用された調節パルプ26a、26b等は開度を調
節して流量を制御するものであってもよいし、開時間を
変化させて流量を制御するものであってもよい。この第
3図においては、第1図の装置における構成と同じ構成
は一部省略し、図示した構成においても第1図のものと
同等の部品、信号には第1図における番号、符号を付し
、重複した説明は省略する。なお、この第3図において
は、制御回路29の構成を詳しく示しである。すなわち
制御回路29は、目詰まり判別部40、ヒータ制御部4
1、排気流量補正部42、燃料制御部43、燃焼空気制
御部44からなり、例えば吸気通路の絞り弁等のEGR
制御装置45からのEGR量信号86′は排気流量補正
部42に入力されて、回転センサ30からの回転数信号
S5を、EGR実施下での実際の排気流量に対応するよ
うに補正する。燃料制御部43にはこの補正された信号
が入力されるようになるから、パルプ開信号S3、Sa
’が前述のように補正される。
The regulating pulp 26C, the regulating pulps 26a, 26b, etc. used in the embodiment shown in FIG. It may also be something that controls. In this Fig. 3, some parts that are the same as those in the device shown in Fig. 1 are omitted, and the numbers and symbols in Fig. 1 are used for parts and signals that are equivalent to those in Fig. 1 even in the illustrated structure. However, duplicate explanations will be omitted. In addition, in this FIG. 3, the structure of the control circuit 29 is shown in detail. That is, the control circuit 29 includes a clogging determination section 40 and a heater control section 4.
1. Consists of an exhaust flow rate correction section 42, a fuel control section 43, and a combustion air control section 44, such as an EGR control section such as a throttle valve in an intake passage.
The EGR amount signal 86' from the control device 45 is input to the exhaust flow rate correction section 42, and the rotation speed signal S5 from the rotation sensor 30 is corrected to correspond to the actual exhaust flow rate under EGR execution. Since this corrected signal is now input to the fuel control unit 43, the pulp open signals S3 and Sa
' is corrected as described above.

以上詳細に説明した通り本発明のディーゼルエンジンの
排気浄化装置においては、フィルタ一部材に捕集された
微粒子をバーナ装置によって燃焼させる際、EGRの実
施、不実施にかかわらずバーナ装置は常に排気温度、排
気流量を考慮して必要最小限の熱量を発生するように制
御され得るから、バーナ燃料の無駄な消費が抑えられて
極めて経済的であるとともに、排気温度過上昇によるフ
ィルタ一部材等排気系部品の劣化を招かず、その一方微
粒子が燃え残ることもな(、その実用的価値は極めて高
い。
As explained in detail above, in the diesel engine exhaust purification device of the present invention, when the burner device burns the particulates collected on the filter member, the burner device always maintains the exhaust gas temperature regardless of whether EGR is performed or not. Since the exhaust flow rate can be controlled to generate the minimum necessary amount of heat, wasteful consumption of burner fuel can be suppressed and it is extremely economical. It does not cause deterioration of parts, and on the other hand, it does not leave particulates unburned (its practical value is extremely high).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す系統図、第2図は第1
図の実施例における制御の流れを示すフローチャート、 第3図は本発明の異なった実施例を示す系統図である。 1・・・ディーゼルエンジン 2・・・排気通路5・・
・排気還流通路 7・・・絞 リ 弁8 ・・・絞り弁
開度センサ 9 ・・・フィルタ一部材14・・・バー
ナ   16・・・エア配管18・・・燃料配管   
 20 、21・・・オリフィス22.23・・・ダイ
ヤフラム装置 26a 、 26b 、 26c −−・調節ハルツ2
9・・・制御回路  30・・・回転センサ31・・・
温度センサ   45・・・EGR制御装置S3.83
′・・・パルプ開信号  S6・・・絞り弁開度信号S
6′・・・EGR量信号
Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is a system diagram showing one embodiment of the present invention.
FIG. 3 is a flowchart showing the flow of control in the embodiment shown in the figure. FIG. 3 is a system diagram showing a different embodiment of the present invention. 1...Diesel engine 2...Exhaust passage 5...
・Exhaust recirculation passage 7... Throttle valve 8... Throttle valve opening sensor 9... Filter member 14... Burner 16... Air pipe 18... Fuel pipe
20, 21... Orifice 22, 23... Diaphragm device 26a, 26b, 26c --- Adjustment Harz 2
9... Control circuit 30... Rotation sensor 31...
Temperature sensor 45...EGR control device S3.83
'... Pulp open signal S6... Throttle valve opening signal S
6'...EGR amount signal

Claims (1)

【特許請求の範囲】 l)排気還流通路が設けられたディーゼルエンジンの該
排気還流通路開口部よりも下流の排気通゛路に、排気中
のカーボン粒子等微粒子を捕集するフィルタ一部材が配
設されるとともに、該フィルタ一部材よりも上流で前記
開口部よりも下流の排気通路にフィルタ一部材の目詰ま
りを解消するバーナ装置が設けられたディーゼルエンジ
ンの排気浄化装置において、バーナ用燃料量を制御する
アクチュエータと、゛排気還流量に対応した出力を発生
する排気還流量検出装置と、エンジン回転数センサおよ
び排気温度センサからの出力によりバーナ装置の必要燃
料量を演算して前記アクチュエータを制御するとと′も
に排気還流時、前記排気還流量検出装置からの出力によ
り@紀アクチュエータ制御゛出力を補正する制御装置と
を備えたことを特徴とするディーゼルエンジンの排気浄
化装置。 2)前記排気還流量検出装置が、吸気通路内に設けられ
た絞り弁の開度な検出する絞り弁開度センサによって構
成されていることを特徴とする特許請求の範囲第1項記
載のディーゼルエンジンの排気浄化装置。
[Scope of Claims] l) A filter member for collecting fine particles such as carbon particles in the exhaust gas is disposed in the exhaust passage downstream of the opening of the exhaust gas recirculation passage of a diesel engine provided with the exhaust gas recirculation passage. In the exhaust purification device for a diesel engine, the exhaust gas purification device for a diesel engine is provided with a burner device for eliminating clogging of the filter member in an exhaust passage upstream of the filter member and downstream of the opening. an actuator that controls the exhaust gas recirculation amount, an exhaust gas recirculation amount detection device that generates an output corresponding to the amount of exhaust gas recirculation, and the amount of fuel required for the burner device is calculated based on outputs from the engine rotation speed sensor and the exhaust temperature sensor to control the actuator. An exhaust gas purification device for a diesel engine, comprising: a control device that corrects the output of the actuator control according to the output from the exhaust gas recirculation amount detection device when the exhaust gas is recirculated. 2) The diesel engine according to claim 1, wherein the exhaust gas recirculation amount detection device is constituted by a throttle valve opening sensor that detects the opening of a throttle valve provided in an intake passage. Engine exhaust purification device.
JP56172373A 1981-10-28 1981-10-28 Exhaust gas purifying device of diesel engine Pending JPS5874818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56172373A JPS5874818A (en) 1981-10-28 1981-10-28 Exhaust gas purifying device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56172373A JPS5874818A (en) 1981-10-28 1981-10-28 Exhaust gas purifying device of diesel engine

Publications (1)

Publication Number Publication Date
JPS5874818A true JPS5874818A (en) 1983-05-06

Family

ID=15940699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56172373A Pending JPS5874818A (en) 1981-10-28 1981-10-28 Exhaust gas purifying device of diesel engine

Country Status (1)

Country Link
JP (1) JPS5874818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184918A (en) * 1984-03-02 1985-09-20 Mitsubishi Motors Corp Device for protecting diesel particulates collection member
US7770385B2 (en) * 2003-11-25 2010-08-10 Emcon Technologies Llc Internal combustion engine exhaust system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184918A (en) * 1984-03-02 1985-09-20 Mitsubishi Motors Corp Device for protecting diesel particulates collection member
US7770385B2 (en) * 2003-11-25 2010-08-10 Emcon Technologies Llc Internal combustion engine exhaust system
US8209967B2 (en) 2003-11-25 2012-07-03 Emcon Technologies Llc Internal combustion engine exhaust system

Similar Documents

Publication Publication Date Title
JPS6141944Y2 (en)
JPS6299610A (en) Exhaust particle processing device for internal-combustion engine
US4662172A (en) Exhaust purification apparatus
US4506506A (en) Exhaust emission control device for diesel engine
JPS5874818A (en) Exhaust gas purifying device of diesel engine
JPS6042331B2 (en) Diesel engine exhaust purification device
JP2011252459A (en) Device for detection of failure in particulate filter
JPS628325Y2 (en)
JPH0137136Y2 (en)
JPS5925025A (en) Exhaust gas purging device of diesel engine
JPS6235849Y2 (en)
JPS5820919A (en) Exhaust gas cleaner for diesel engine
JPS59155525A (en) Exhaust purifying device of diesel engine
JPS6117209Y2 (en)
JPS5885315A (en) Exhaust purifier of diesel engine
JPH07317530A (en) Exhaust emission control device of diesel engine
JPS58220915A (en) Exhaust purifier for diesel-engine
JP2621032B2 (en) Fuel injection control device
JPH0550571B2 (en)
JPH0422019Y2 (en)
JPS6337471Y2 (en)
JP3919974B2 (en) Mixer air-fuel ratio control device
JPS6139055Y2 (en)
JPS6030408Y2 (en) Diesel engine exhaust purification device
JPS647204B2 (en)