JPS6050212A - Burner air controller for diesel exhaust emission control device - Google Patents

Burner air controller for diesel exhaust emission control device

Info

Publication number
JPS6050212A
JPS6050212A JP58158242A JP15824283A JPS6050212A JP S6050212 A JPS6050212 A JP S6050212A JP 58158242 A JP58158242 A JP 58158242A JP 15824283 A JP15824283 A JP 15824283A JP S6050212 A JPS6050212 A JP S6050212A
Authority
JP
Japan
Prior art keywords
pressure
air
control valve
valve
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58158242A
Other languages
Japanese (ja)
Other versions
JPH0550569B2 (en
Inventor
Satoshi Kume
粂 智
Michiyasu Yoshida
吉田 道保
Yoshihiro Konno
紺野 義博
Takeo Kume
久米 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP58158242A priority Critical patent/JPS6050212A/en
Publication of JPS6050212A publication Critical patent/JPS6050212A/en
Publication of JPH0550569B2 publication Critical patent/JPH0550569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives

Abstract

PURPOSE:To make a rate of weight flow of secondary air so as to keep it constant in an accurate manner, by installing an escape valve and a flow control valve being controlled in accordance with downstream pressure in the flow control valve, in an air flow passage ranging from an air pump to a regenerating burner. CONSTITUTION:An air flow passage 12 makes the air discharged out of an air pump 11 flow into a regenerating burner 4 of a Diesel particulate filter 5. An escape valve 23 makes a part of inflow air into the flow control valve 24 discharge into the atmosphere so as to cause pressure inside the air flow passage at the inflow side of the flow control valve 24 to become constant in terms of gauge pressure. The flow control valve 24 is controlled so as to increase or decrease its opening area according to variations in downstream pressure since pressure at the downstream side is led into a diaphragm chamber 34 via a pipe 35 and thereby constant pressure is led into a diaphragm chamber 36.

Description

【発明の詳細な説明】 この発明は、ディーゼル排出ガス中に含まれるパティキ
ュレートをフィルタにより捕集するクイズの浄化装置に
おいて、捕集されたパティキーレートをバーナにより再
燃焼させてフィルタの再生を図る際のバーナエア制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a quiz purifying device that collects particulates contained in diesel exhaust gas using a filter, and regenerates the filter by re-burning the collected particulates using a burner. The present invention relates to a burner air control device for controlling the burner air.

ディーゼルエンジンから排出されるパティキュレートは
、公害時【[−のために通常はセラミック製のディーゼ
ルパティキュレートフィルタにより排気中より取り除か
れ、所定時にフィルタ自体の再生を兼ねて再燃焼され、
無公害物質として排出される。このパティキュレートの
再燃焼には、適度の燃焼流度および適度の酸素量す々わ
ち所定の空気過剰率を保つエアが必要であり、加熱温度
が低いとパティキュレートは除去されず、逆に過度に加
熱するとフィルタ自体が溶損音生じるという不都合があ
る。
Particulates discharged from diesel engines are usually removed from the exhaust by a ceramic diesel particulate filter due to pollution, and are re-burned at specified times to regenerate the filter itself.
It is discharged as a non-polluting substance. This re-combustion of particulates requires air that maintains an appropriate combustion flow rate and appropriate amount of oxygen, that is, a predetermined air excess ratio.If the heating temperature is low, particulates will not be removed; There is an inconvenience that excessive heating causes the filter itself to melt and make noise.

ところで、フィルタの加熱源としてバーナが使用される
ことが多く、その中で高圧少流量の1次エアにより燃料
を霧化し、低圧穴流計の2次エアによシバティキュレー
トの燃焼を行なう霧吹式バーナが最も改良された技術で
ある。このバーナに供給される1次エアはほぼ燃料流量
と比例し1この燃料流量を一定とするため、通常は一部
エア量は一定に保たれる。これに対し、2次エアは低圧
だが大流黴を必要とされると共に、パティキュレートの
燃焼に必要となる所定重量流量値だけのエアが供給され
るように制御する必要がある。この2次エアは、通常、
容積型エアポンプを用いて供給するが、このエアポンプ
は同転数のみを一定にすれば体積流量が一定となるが、
大気圧、大気温度の変化に応じて重量流量の変化を受け
易い。このため、容積型エアポンプの利点である大吐出
量の確保という点を利用する一方、重量流量の変化を修
正する必要がある。たとえば第1図に示すように、大気
圧は高度の上昇と共に低下し、これに応じてエアポンプ
の前後の差圧、即ち大気圧と空気流路内圧との差圧△P
も同様に変化する。彦おりは排気路側圧損を示す。第2
図は容積型エアポンプの体積流量/吐出圧特性の一例で
あり、吐出側の流量をしぼることにより吐出圧が増加す
ることが分かる。更に、第3図には容積型エアポンプが
実線で示した低地にある場合と破線で示した高地にある
場合との重量流量/吐出圧特性の一例を示しており、同
一重量流量を得る場合、高地では吐出圧を下げる即ち低
地よりエア供給路のしぼりを拡げて吐出圧を下げる必要
があることが示されている。同じく第4図に示すように
、吐出圧は一定でもポンプ自体のばらつきや大気温度等
の変化により重量流量が変動することが示されている。
Incidentally, a burner is often used as a heating source for the filter, and in the burner, the fuel is atomized using high-pressure, small-flow primary air, and the secondary air of a low-pressure hole flow meter is used to perform sivaticulate combustion. Type burners are the most improved technology. The primary air supplied to the burner is approximately proportional to the fuel flow rate, and in order to keep this fuel flow rate constant, a portion of the air amount is normally kept constant. On the other hand, secondary air has a low pressure but requires a large flow of mold, and must be controlled so that only a predetermined weight flow rate of air necessary for combustion of particulates is supplied. This secondary air is usually
A positive displacement air pump is used to supply the air, but if only the rotational speed is kept constant, the volumetric flow rate will be constant.
The weight flow rate is susceptible to changes in response to changes in atmospheric pressure and temperature. For this reason, it is necessary to take advantage of the advantage of positive displacement air pumps, which is ensuring a large discharge amount, while also correcting changes in weight flow rate. For example, as shown in Figure 1, atmospheric pressure decreases as altitude increases, and accordingly, the differential pressure before and after the air pump, that is, the differential pressure between atmospheric pressure and air flow path internal pressure △P
changes in the same way. Hikoori indicates pressure loss on the exhaust side. Second
The figure shows an example of the volumetric flow rate/discharge pressure characteristics of a positive displacement air pump, and it can be seen that the discharge pressure increases by reducing the flow rate on the discharge side. Furthermore, Fig. 3 shows an example of the weight flow rate/discharge pressure characteristics when the positive displacement air pump is located at a low altitude, indicated by a solid line, and when it is located at a high altitude, indicated by a broken line.When obtaining the same weight flow rate, It has been shown that it is necessary to lower the discharge pressure at high altitudes, that is, to lower the discharge pressure by widening the restriction of the air supply path than at low altitudes. Similarly, as shown in FIG. 4, even if the discharge pressure is constant, the weight flow rate fluctuates due to variations in the pump itself, changes in atmospheric temperature, etc.

次に、このような容積型エアポンプを2次エアポンプと
して用いた従来のバーナエア制御装置の一例を第5図を
参照して説明する。ディーゼルエンジン1はターボチャ
ージャ2を備え、その排気路3の下流側にバーナ4とフ
ィルタ5とを備え、その下流側の図示しないマフラを介
し排気を放出する。排気路3の途中には、始端部に切換
弁6を備えたバイパス7が接続され、その終端部はフィ
ルタ5の下流側に接続されている。バーナ4はイグニシ
ョンコイル8を用いた発火装置を有し、1次エアポンプ
9からのエアで燃料ポンプ10からの燃料を霧化させ、
2次エアポンプ11からのエアで高温ガスの空気過剰率
を所定値に保つよう構成され、過剰酸素でパティキーレ
ートを燃焼させる。
Next, an example of a conventional burner air control device using such a positive displacement air pump as a secondary air pump will be described with reference to FIG. The diesel engine 1 includes a turbocharger 2, a burner 4 and a filter 5 on the downstream side of an exhaust path 3, and discharges exhaust gas through a muffler (not shown) on the downstream side. A bypass 7 having a switching valve 6 at its starting end is connected in the middle of the exhaust path 3, and its terminal end is connected to the downstream side of the filter 5. The burner 4 has an ignition device using an ignition coil 8, and atomizes the fuel from the fuel pump 10 with air from the primary air pump 9.
It is configured to maintain the excess air ratio of high-temperature gas at a predetermined value with air from the secondary air pump 11, and burns the particulate with excess oxygen.

2次エアの供給路12は流量制御弁13により流路面積
を増減され、この弁を開閉作動させる真空室は真空ポン
プ14と真空調整弁15およびソレノイド弁16ヲ介し
連結される。なお、符号19は燃料調整弁、符号20は
圧力調整弁、符号21.22はエアクリーナをそれぞれ
示している。
The flow area of the secondary air supply path 12 is increased or decreased by a flow rate control valve 13, and a vacuum chamber for opening and closing this valve is connected to a vacuum pump 14 via a vacuum adjustment valve 15 and a solenoid valve 16. In addition, the reference numeral 19 indicates a fuel regulating valve, the reference numeral 20 indicates a pressure regulating valve, and the reference numerals 21 and 22 indicate an air cleaner.

このようなエンジン1のフィルタ5がパティキュレー)
ff:過度に付着した場合、コントローラ17は、たと
え1にフィルタ5上流側排気路圧が設定値を上回ったこ
とを検出することにより、再燃焼を開始させる。この場
合、高地で大気圧が低いと大気圧センサ18の入力信号
により、コントローラ17はソレノイド弁16に出力し
、2次エアの流路面積を基準値より一定量増大させるよ
う制御する。これによ!ll空気密度の低下による重量
流量の低下を体積流量増により防ぐことができる。しか
し、単に大気圧変化を一定負圧を受けるダイアフラム式
の流量制御弁13で制御するこの方式では、2次エアポ
ンプll自体のばらつきも加わり2次エアの流MWI度
が悪めという欠点がある。また、フィルタ5を再生して
いる間は、エンジン1からの排出ガスがバーナ4におけ
る燃焼条件に悪影響を与えないように、切換弁6を作動
させて排出ガスをバイパス7に通すようにしているが、
エンジンの高負荷運転時には排出ガス圧力が高まって、
これがフィルタ5およびバーナ4に背圧として作用する
ので、これにより2次エアの流量が変化してしまう。
Filter 5 of engine 1 like this is particulate)
ff: If excessive adhesion occurs, the controller 17 starts re-combustion, even if it detects that the exhaust passage pressure on the upstream side of the filter 5 has exceeded the set value. In this case, if the atmospheric pressure is low at a high altitude, the controller 17 outputs an output to the solenoid valve 16 based on the input signal from the atmospheric pressure sensor 18, and controls the flow area of the secondary air to increase by a certain amount from the reference value. This is it! A decrease in the weight flow rate due to a decrease in air density can be prevented by increasing the volumetric flow rate. However, this system in which changes in atmospheric pressure are simply controlled by a diaphragm type flow control valve 13 that receives a constant negative pressure has the disadvantage that the degree of flow MWI of the secondary air is poor due to variations in the secondary air pump 11 itself. Furthermore, while the filter 5 is being regenerated, the switching valve 6 is operated to allow the exhaust gas to pass through the bypass 7 so that the exhaust gas from the engine 1 does not adversely affect the combustion conditions in the burner 4. but,
When the engine is operating under high load, the exhaust gas pressure increases.
Since this acts as a back pressure on the filter 5 and the burner 4, the flow rate of the secondary air changes.

勿論、このバイパス7に別のマフラを取り付けて系を独
立させればこのようなことはないが、マフラが余計に必
要になる。
Of course, if another muffler is attached to the bypass 7 to make the system independent, this problem will not occur, but an additional muffler will be required.

この発明の目的しま、したがってディーゼルパティキュ
レートフィルタを備えたディーゼル排出ガス浄化装置に
おいて、フィルタ再生用バーナに供給される2次エアの
重量流量を精度良く一定に保つことのできる改良された
バーナエア制御装置を提供することにある。
The object of the present invention is therefore to provide an improved burner air control device capable of accurately maintaining constant the weight flow rate of secondary air supplied to a filter regeneration burner in a diesel exhaust gas purification device equipped with a diesel particulate filter. Our goal is to provide the following.

この発明によるバーナエア制御装置は、容積型エアポン
プから吐出された空気をディーゼルパティキュレートフ
ィルタの再生用バーナに導く空気流路に逃がし弁および
流量制御弁を備えており、エアポンプにばらつきがあっ
てもバーナエア重量流量が一定になるように逃がし弁に
より流量制御弁の上流圧を絶対一定圧に制御するととも
に、流量制御弁の下流圧に応じて流量制御弁の弁開口面
積を増減、すなわち下流圧が低下したときには弁開口面
積を減少させ、下流圧が上昇したときには弁開口面積を
増加させるように制御する。
The burner air control device according to the present invention is equipped with a relief valve and a flow rate control valve in the air flow path that guides the air discharged from the positive displacement air pump to the regeneration burner of the diesel particulate filter. The upstream pressure of the flow control valve is controlled to an absolutely constant pressure using the relief valve so that the weight flow rate is constant, and the valve opening area of the flow control valve is increased or decreased according to the downstream pressure of the flow control valve, in other words, the downstream pressure decreases. When this occurs, the valve opening area is decreased, and when the downstream pressure increases, the valve opening area is controlled to increase.

この発明においては、流量制御弁の上流圧を絶対一定圧
に保つので、エアポンプの流量のばらつきを吸収できる
とともに、流量制御弁の下流圧に応じて流量制御弁のリ
フト量を制御するので、バーナの背圧や大気圧変化によ
る流量変動を補正することができる。
In this invention, since the upstream pressure of the flow control valve is maintained at an absolutely constant pressure, variations in the flow rate of the air pump can be absorbed, and the lift amount of the flow control valve is controlled according to the downstream pressure of the flow control valve, so the burner Fluctuations in flow rate due to back pressure and changes in atmospheric pressure can be corrected.

以下、この発明の一実施例を第6図を参照して説明する
。バーナ燃焼システムの基本構成は、第5図に示す従来
例と同様であるが、バーナ4へ2次エアを供給するため
の制御系が従来と異なっている。エアクリーナ22から
2次エアポンプ11ヲ経てバーナ4に至る空気流路12
には、上流側から順に逃がし弁23および流量制御弁2
4が設けられている。逃がし弁23のダイヤフラム25
によって仕切られた下の部屋26は、導管27のような
上流圧取込手段によって逃がし弁23上流側の空気流路
12に接続され、上の部屋28は、絶対一定圧を発生さ
せる定圧弁CPvやアネロイドベローズのような定圧保
持手段に接続されている。上の部屋28には、ダイヤフ
ラム25に接続された弁体29を常時弁開口30を閉じ
る向きに押圧するための圧縮コイルスプリング31が設
けられている。スプリング31の強さは、この逃がし弁
23の作動圧と均衡しており、空気流路12内の空気の
一部は、逃がし路32を通じて大気に放出される。一方
、この逃がし弁23の下流側の流量制御弁24は、その
ダイヤフラム33によって仕切られた下の部屋3475
に、導管35のような下流圧取込手段によりその下流側
の空気流路12に通じておジ、上の部屋36は定圧弁C
PVやアネロイドベローズのような定圧保持手段に通じ
ている。
An embodiment of the present invention will be described below with reference to FIG. The basic configuration of the burner combustion system is the same as the conventional example shown in FIG. 5, but the control system for supplying secondary air to the burner 4 is different from the conventional example. Air passage 12 from air cleaner 22 to burner 4 via secondary air pump 11
The relief valve 23 and the flow control valve 2 are installed in order from the upstream side.
4 are provided. Diaphragm 25 of relief valve 23
The lower chamber 26 is connected to the air flow path 12 upstream of the relief valve 23 by an upstream pressure intake means such as a conduit 27, and the upper chamber 28 is connected to the air flow path 12 upstream of the relief valve 23 by a constant pressure valve CPv which generates an absolutely constant pressure. or an aneroid bellows. A compression coil spring 31 is provided in the upper chamber 28 for constantly pressing the valve body 29 connected to the diaphragm 25 in a direction to close the valve opening 30. The strength of the spring 31 is balanced with the operating pressure of this relief valve 23, and a portion of the air in the air flow path 12 is released to the atmosphere through the relief path 32. On the other hand, the flow control valve 24 on the downstream side of the relief valve 23 has a lower chamber 3475 partitioned off by the diaphragm 33.
The upper chamber 36 is connected to the air passage 12 on the downstream side by a downstream pressure intake means such as a conduit 35, and the upper chamber 36 is connected to a constant pressure valve C.
This leads to constant pressure holding means such as PV and aneroid bellows.

上の部屋36には、ダイヤフラム33に接続された弁体
37を常時弁開口38を閉じる向きに押圧するだめの圧
縮コイルスプリング39が設けられている。
A compression coil spring 39 is provided in the upper chamber 36 to constantly press the valve body 37 connected to the diaphragm 33 in a direction to close the valve opening 38.

次にこのエア制御装置の作動について説明する。Next, the operation of this air control device will be explained.

逃がし弁23の下の部屋26には、この逃がし弁23の
上流圧が加えられ、上の部屋28にはCPvから絶対一
定圧が加えられているので、逃がし弁23の作動圧を例
えば800yuHgとすると、その上流圧がこれよりも
高くなると上流圧室26がダイヤフラム25を押し上げ
るので、弁体29が上昇して上流側の空気の一部が大気
に放出され、上流圧が低下する。
The upstream pressure of the relief valve 23 is applied to the chamber 26 below the relief valve 23, and the absolute constant pressure from CPv is applied to the upper chamber 28, so the operating pressure of the relief valve 23 is set to, for example, 800 yuHg. Then, when the upstream pressure becomes higher than this, the upstream pressure chamber 26 pushes up the diaphragm 25, so the valve body 29 rises and a part of the air on the upstream side is released to the atmosphere, and the upstream pressure decreases.

逆に上流圧が8001+1Hgよりも低くなると定圧室
28がダイヤフラム25ヲ押し下げるので、弁体29が
下降して空気の放出を抑制し、上流圧が上昇する。
Conversely, when the upstream pressure becomes lower than 8001+1Hg, the constant pressure chamber 28 pushes down the diaphragm 25, so the valve body 29 descends to suppress the release of air, and the upstream pressure increases.

このようにして流量制御弁24の上流圧が絶対一定圧に
保たれる。このように上流圧が絶対一定圧に保たれると
、エアポンプ11の性能にばらつきがあってもこれを吸
収し、バーナ4に供給する2次エアの重量流量制御を一
定に保つことができる。しかしながら、流量制御弁24
の上流圧全800闘Hgに一定に保つと、大気圧が76
0111Hgの低地条件ではエアポンプ11の吐出圧は
401!llHgになり、大気圧が60011Hgの高
地条件ではポンプ11の吐出圧は200ffilllH
g必要になって、高地条件の場合は大流量の2次エアが
供給されることになる。この発明においては、このよう
な大気圧の変動による流量変動を、流量制御弁24の上
の部屋36に一定圧を、下の部屋34にその下流圧を加
えることによシ自己補正して因る。すなわち、流量制御
弁24の下流圧が高地条件になってその作動圧よりも低
くなると、上の部屋36がダイヤフラム33ヲ押し下げ
て弁体37が弁開口38を絞るので、2次エアの重量流
量が節減される。一方、下流圧が低地条件になって作動
圧よりも高くなると、逆に下の部屋34がダイヤフラム
33を押し上げて弁体37が弁開口38を広げるので、
2次エアの重量流量が増える。マフラが一つの場合、バ
ーナ運転中にエンジンが高負荷になると、バイパス7を
通る排出ガスが背圧となって流量制御弁24の下流圧を
押し上げるので、このときも弁体37が上昇して2次エ
アが増量される。
In this way, the upstream pressure of the flow control valve 24 is maintained at an absolutely constant pressure. When the upstream pressure is maintained at an absolutely constant pressure in this way, even if there is a variation in the performance of the air pump 11, this can be absorbed and the weight flow rate control of the secondary air supplied to the burner 4 can be kept constant. However, the flow control valve 24
If the total upstream pressure of
At low altitude conditions of 0111Hg, the discharge pressure of the air pump 11 is 401! 11Hg, and under high altitude conditions where the atmospheric pressure is 60011Hg, the discharge pressure of the pump 11 is 200ffillllHg.
g, and in the case of high altitude conditions, a large flow of secondary air will be supplied. In the present invention, such fluctuations in flow rate caused by fluctuations in atmospheric pressure are self-corrected by applying a constant pressure to the upper chamber 36 of the flow control valve 24 and the downstream pressure to the lower chamber 34. Ru. That is, when the downstream pressure of the flow rate control valve 24 becomes lower than its operating pressure due to high altitude conditions, the upper chamber 36 pushes down the diaphragm 33 and the valve body 37 narrows the valve opening 38, thereby reducing the weight flow rate of the secondary air. is saved. On the other hand, when the downstream pressure becomes higher than the operating pressure due to low altitude conditions, the lower chamber 34 pushes up the diaphragm 33 and the valve body 37 widens the valve opening 38.
The weight flow rate of secondary air increases. If there is only one muffler, when the engine is under high load during burner operation, the exhaust gas passing through the bypass 7 becomes back pressure and pushes up the downstream pressure of the flow control valve 24, so the valve body 37 rises at this time as well. The amount of secondary air is increased.

第7図に示すこの発明の別の実施例においては、逃がし
弁23の作動は、これに関連して設けられた真空調整弁
40によってより精密に制御される。逃がし弁23の上
の部屋28には、真空ポンプからの負圧が絞り41を介
して加えられ、下の部屋26には大気圧が加えられてい
る。一方の真空調整弁40のダイヤフラム42で仕切ら
れた左の部屋43には、導管44を通じて流量制御弁2
4の上流圧が加えられ、右の部屋45には、定圧弁CP
Vやアネロイドベローズのような定圧保持手段から一定
圧が加えられている。このダイヤフラム42の圧縮コイ
ルスプリング46ヲ有する右の部屋45側の面には、逃
がし弁23の上の部屋28に通じる導管47の端部が対
向している。
In an alternative embodiment of the invention shown in FIG. 7, the operation of the relief valve 23 is more precisely controlled by an associated vacuum regulating valve 40. Negative pressure from a vacuum pump is applied to the chamber 28 above the relief valve 23 via a restriction 41, and atmospheric pressure is applied to the chamber 26 below. A left chamber 43 partitioned by a diaphragm 42 of one vacuum regulating valve 40 is connected to a flow control valve 2 through a conduit 44.
4 upstream pressure is applied, and a constant pressure valve CP is applied to the right chamber 45.
A constant pressure is applied from a constant pressure holding means such as a V or an aneroid bellows. The end of a conduit 47 leading to the chamber 28 above the relief valve 23 is opposed to the surface of the diaphragm 42 facing the right chamber 45 having the compression coil spring 46 .

流量制御弁24の上流圧が上昇すると、真空調整弁40
のダイヤフラム42が押し下げられて導管47の端部を
塞ぐ。これにより真空ポンプからの全負圧が逃がし弁2
3の上の部屋28にかかるので、ダイヤフラム25が吸
引されて弁体29が持ち上げられ、流路内の空気の一部
を大気中に放出し、流量制御弁24の上流圧を低下させ
る。このようにして上流圧が低下すると、真空調整弁4
0のダイヤフラム42が右の部屋45に設けられたばね
46の押圧力により押し戻され、導管47の端部が開か
れるので、右の部屋45の絶対圧の一部が導管47を通
って逃げ、絞り41の作用により逃がし弁23の上の部
屋28に入ってダイヤフラム25ヲ押し下げるので、弁
体29が弁開口30を絞って流量制御弁24の上流圧を
絶対一定圧に保つ。
When the upstream pressure of the flow control valve 24 increases, the vacuum adjustment valve 40
diaphragm 42 is pushed down to block the end of conduit 47. This releases all the negative pressure from the vacuum pump to the relief valve 2.
3, the diaphragm 25 is sucked and the valve body 29 is lifted, releasing some of the air in the flow path to the atmosphere and reducing the upstream pressure of the flow control valve 24. When the upstream pressure decreases in this way, the vacuum regulating valve 4
0 diaphragm 42 is pushed back by the pressing force of the spring 46 provided in the right chamber 45, and the end of the conduit 47 is opened, so that a portion of the absolute pressure in the right chamber 45 escapes through the conduit 47, causing a restriction. 41 enters the chamber 28 above the relief valve 23 and pushes down the diaphragm 25, so the valve body 29 throttles the valve opening 30 to maintain the upstream pressure of the flow control valve 24 at an absolutely constant pressure.

以上のように、この発明のバーナエア制御装置によれば
、流量制御弁の上流圧を絶対一定正に保つので、エアポ
ンプの流量がばらついてもバーナの安定的な燃焼には必
要な一定の空気重量流量が得られ、また流量制御弁の制
御をその下流圧および絶対一定圧により行々うので、大
気圧の変動や背圧の変動に追随することができ、さらに
このような背圧の変動があっても、その上流圧が絶対一
定圧に保たれているので、エアポンプにかかる負荷が一
定になり、ポンプの耐久性が向上する。
As described above, according to the burner air control device of the present invention, the upstream pressure of the flow rate control valve is kept absolutely constant and positive, so even if the air pump flow rate varies, the constant air weight necessary for stable combustion in the burner can be maintained. Since the flow rate is obtained and the flow rate control valve is controlled using the downstream pressure and an absolutely constant pressure, it is possible to follow fluctuations in atmospheric pressure and back pressure, and furthermore, it is possible to follow fluctuations in atmospheric pressure and back pressure. Even if there is, the upstream pressure is kept at an absolutely constant pressure, so the load on the air pump becomes constant, improving the durability of the pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高度変化と気圧との関係を示すグラフ、第2
図は、容積型ポンプの異なる駆動電圧における吐出圧/
体積流量特性を示すグラフ、第3図は、高地および低地
における吐出圧/重量流量特性を示す図、第4図は、エ
アポンプ自体の流量のばらつきを説明するための吐出圧
/重量流量特性を示すグラフ、第5図は、従来のバーナ
エア制御装置の一例を示す制御回路図、第6図および第
7図は、この発明におけるバーナエア制御装置の例を示
す制御回路図である。 1・・・エンジン、3・・・排気路、4・・・バー1−
.5・・・フィルタ、6・・・切換弁、7・・・バイパ
ス、11・・・2次エアポンプ、12・・・空気流路、
22・・・エアクリーナ、23・・・逃がし弁、24・
・・流量制御弁、 40・・・真空調整弁。
Figure 1 is a graph showing the relationship between altitude changes and atmospheric pressure.
The figure shows the discharge pressure/discharge pressure at different drive voltages of a positive displacement pump.
A graph showing the volumetric flow rate characteristics, Figure 3 is a graph showing the discharge pressure/weight flow rate characteristics at high and low altitudes, and Figure 4 shows the discharge pressure/weight flow rate characteristics to explain the variation in the flow rate of the air pump itself. The graph and FIG. 5 are control circuit diagrams showing an example of a conventional burner air control device, and FIGS. 6 and 7 are control circuit diagrams showing examples of a burner air control device in the present invention. 1...Engine, 3...Exhaust path, 4...Bar 1-
.. 5...Filter, 6...Switching valve, 7...Bypass, 11...Secondary air pump, 12...Air flow path,
22... Air cleaner, 23... Relief valve, 24...
...Flow control valve, 40...Vacuum adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 容積型エアポンプから吐出された空気をディーゼルパテ
ィキュレートフィルタの再生用バーナに導く空気流路に
上流から順に逃がし弁および流量制御弁を備えたディー
ゼル排出ガス浄化装置のバーナエア制御装置であって、
前記逃がし弁は、前記流量制御弁の上流圧を取シ込んで
これを絶対一定圧に保つようにその圧力の一部を放出さ
せる手段を備え、前記流量制御弁は、その下流圧または
大気圧が低下したときにその弁開口面積を減少させるよ
うに一方にその下流圧を取り込む手段と他方にこれに対
抗して一定圧を取り込む手段とを備えたバーナエア制御
装置。
A burner air control device for a diesel exhaust gas purification device, comprising a relief valve and a flow control valve sequentially from upstream in an air flow path that guides air discharged from a positive displacement air pump to a regeneration burner of a diesel particulate filter,
The relief valve includes means for taking in the pressure upstream of the flow control valve and releasing a portion of that pressure so as to maintain it at an absolutely constant pressure, and the flow control valve has means for taking in the pressure upstream of the flow control valve and releasing a portion of the pressure so as to maintain it at an absolutely constant pressure. A burner air control device comprising means for taking in downstream pressure on one side so as to reduce the valve opening area when the pressure decreases, and means on the other side for taking in a constant pressure in opposition thereto.
JP58158242A 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device Granted JPS6050212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158242A JPS6050212A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158242A JPS6050212A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Publications (2)

Publication Number Publication Date
JPS6050212A true JPS6050212A (en) 1985-03-19
JPH0550569B2 JPH0550569B2 (en) 1993-07-29

Family

ID=15667362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158242A Granted JPS6050212A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Country Status (1)

Country Link
JP (1) JPS6050212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111413A (en) * 1984-06-26 1986-01-18 Mitsubishi Motors Corp Regenerating device of diesel particulate filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111413A (en) * 1984-06-26 1986-01-18 Mitsubishi Motors Corp Regenerating device of diesel particulate filter
JPH0429849B2 (en) * 1984-06-26 1992-05-20

Also Published As

Publication number Publication date
JPH0550569B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
US4031871A (en) Exhaust gas recirculation system of a motor vehicle
US4271672A (en) Internal combustion engine with an exhaust gas turbocharger
JPS5845593B2 (en) Additional fluid control device for internal combustion engines
US4183212A (en) Secondary air control in vehicle exhaust purification system
JPH01216022A (en) Internal combustion engine with mechanical supercharger
JPS6050212A (en) Burner air controller for diesel exhaust emission control device
JPS6145051B2 (en)
JPS6022015A (en) Burner air control system in diesel exhaust gas cleaning device
JPH0550570B2 (en)
US4548038A (en) System for controlling the supercharging pressure of a turbocharged internal combustion engine
US4206731A (en) Exhaust gas recirculation for an internal combustion engine
JPS5846648B2 (en) Secondary air control device
JPS6050211A (en) Burner air controller for diesel exhaust emission control device
US4617891A (en) Secondary air supply for internal combustion engine
US4328668A (en) Secondary air supply system for internal combustion engines
JPS6246817Y2 (en)
CA1079142A (en) Time delay apparatus for an exhaust gas recirculation controller
JPS6022013A (en) Burner air control of diesel particulate filter
EP0465240B1 (en) Exhaust gas recirculation
JPH0343463B2 (en)
JP2909862B2 (en) Air-fuel ratio control method for gasoline engine
JPS6246819Y2 (en)
JPS5937226A (en) Surge avoiding device of internal combustion engine equipped with supercharger
JPS59226219A (en) Burner air controlling system of diesel particulate filter
JPS6340266B2 (en)