JPS61113253A - Testing process of semiconductor - Google Patents

Testing process of semiconductor

Info

Publication number
JPS61113253A
JPS61113253A JP23642084A JP23642084A JPS61113253A JP S61113253 A JPS61113253 A JP S61113253A JP 23642084 A JP23642084 A JP 23642084A JP 23642084 A JP23642084 A JP 23642084A JP S61113253 A JPS61113253 A JP S61113253A
Authority
JP
Japan
Prior art keywords
voltage
integrated circuit
testing
node
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23642084A
Other languages
Japanese (ja)
Inventor
Hideyuki Ozaki
尾崎 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23642084A priority Critical patent/JPS61113253A/en
Publication of JPS61113253A publication Critical patent/JPS61113253A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Abstract

PURPOSE:To speed up the testing time eliminating any stand-by time by a method wherein the surface of integrated circuit element is irradiated with light for specified period of time during the successive tests for different voltage to be impressed. CONSTITUTION:When a test for march pattern at an impressed voltage Vcc=7V is performed in e.g. a testing process 8, the potential of node 8 will be 9.5V. As programed in the next irradiation process 9, a light source 6 is lighted for e.g. 10msec to irradiate an integrated circuit element to be tested with light 7. The voltage on node B may be lowered by the irradiation as shown in the solid lines. As soon as the voltage on node B is sufficiently lowered, start the testing process 10 to test for a checker board pattern e.g. Vcc=4V. Resultantly the circuit may work normally in the testing process eliminating any stand-by time for the process 10.

Description

【発明の詳細な説明】 [産業上の利用分野j この発明は複数の半導体回路素子がウェハー状に構成さ
れた半導体ウェハーから集積回路素子の良品、不良品を
選別するための半導体の試験方法にかかり、特に異なっ
た電圧印加の許での試験が相続いて行なわれる半導体の
試験方法の改良に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a semiconductor testing method for selecting good and defective integrated circuit devices from a semiconductor wafer in which a plurality of semiconductor circuit devices are configured in the form of a wafer. The present invention relates in particular to improvements in semiconductor testing methods in which tests are successively carried out under different applied voltages.

C従来の技術] 一般に半導体集積回路は半導体ウェハー上に複数個のチ
ップが同時に形成され、その中に良品と不良品が混在し
ているためチップをパッケージ内に封入する前にウェハ
ー状態でまず試験を行ない、良品のみを選別するテスト
を行なっている。この際の試験はチップの電気特性マー
ジンをもチェックするため、通常規定の電源電圧に対し
かなり大きな範囲の電圧印加の許で行なわれている。例
えば、64に、256にダイナミックRAMの電源電圧
の規格値は5v±0.5vであるのに対し、試験では約
3.5vから8v程度の範囲の電源電圧が印加される。
C. Prior Art] In general, in semiconductor integrated circuits, multiple chips are formed on a semiconductor wafer at the same time, and since good and defective chips coexist among them, the chips must first be tested in the wafer state before being encapsulated in a package. We carry out tests to select only good products. In this test, in order to also check the chip's electrical characteristic margin, it is usually performed by applying a voltage within a fairly wide range relative to the specified power supply voltage. For example, while the standard value of the power supply voltage of the dynamic RAM 64 and 256 is 5v±0.5v, in the test, a power supply voltage in the range of approximately 3.5v to 8v is applied.

従来の半導体試験装置を用いて種々の電源電圧(Vcc
)で試験を行なう場合に、注意しなければならない点は
試験電圧のシーケンスである。例えばVcc=7Vのマ
ーチ・パターンで試験し、直ちにVcc=4Vのチェッ
カーボードパターンで試験するというように、Vccが
あまり時間的な間隔なしに3vも変化するというような
電圧シーケンスは避けなければならない。この理由は、
このように大きな印加電圧変化の許で試験した時にチッ
プが本来良品であるのに誤動作を生じたり、必要以上の
信号伝達時間の遅延を生じたりするからである。
Various power supply voltages (Vcc
), the important thing to keep in mind when testing is the sequence of test voltages. Voltage sequences in which Vcc changes by as much as 3V without too much time interval must be avoided, such as testing with a march pattern of Vcc = 7V and immediately testing with a checkerboard pattern of Vcc = 4V. . The reason for this is
This is because when tested under such large changes in applied voltage, the chip may malfunction even though it is originally a good product, or the signal transmission time may be delayed more than necessary.

次にこの誤動作の機構について1回路の一例をもって説
明する。第4図はダイナミックRAMなどに多用される
ブートストラップ回路を示す回路図である。この回路動
作の説明を第5図を用いて説明する。第4図のノードB
は期間T1でブートストラップが働いた場合にはVcc
−V丁子α(V)の電圧にある。ここで、αは通常、約
Vcc/2〜VCCの値で、VTはこの回路を構成する
MOS)−ランジスタのしきい値電圧である。今、αの
値がVcc/2.VT=IVとするとVcc= 7 V
 (7)時8点のノードは9.5vになる。この期間は
ノードAの電圧はOvなのでQlは非導通状態であり、
Qlのみ導通状態なのでノートCの電圧は7vになる。
Next, the mechanism of this malfunction will be explained using an example of one circuit. FIG. 4 is a circuit diagram showing a bootstrap circuit often used in dynamic RAM and the like. The operation of this circuit will be explained using FIG. Node B in Figure 4
is Vcc if the bootstrap works in period T1.
-V clove α (V). Here, α is usually a value of about Vcc/2 to VCC, and VT is the threshold voltage of the MOS transistor making up this circuit. Now, the value of α is Vcc/2. If VT=IV, Vcc=7V
(7) At 8 points, the node becomes 9.5V. During this period, the voltage at node A is Ov, so Ql is in a non-conducting state,
Since only Ql is in a conductive state, the voltage of note C becomes 7V.

次に期間T2でノードAの電圧がOvからVcc(=7
V)に変化したものとする。この時Q2が導通し、Ql
、Qlとも導通状態になる。この時のQl及びQlのゲ
ート電圧は、それぞれVcc−VT及びVccである。
Next, in period T2, the voltage at node A changes from Ov to Vcc (=7
V). At this time, Q2 conducts and Ql
, Ql are both in a conductive state. The gate voltages of Ql and Ql at this time are Vcc-VT and Vcc, respectively.

一方、QlとQlのトランジスタ・サイズは通常1:5
程度に設計されているのでQlとQlのgm比は約1:
5になるため、ノードCの電圧は約Ovになる。
On the other hand, the transistor size of Ql and Ql is usually 1:5
The gm ratio of Ql and Ql is approximately 1:
5, so the voltage at node C becomes approximately Ov.

以上の説明はブートストラップ回路が正常に働いた場合
であるが、以下、前述したようにVcc=7vで試験し
た後、Vcc=4Vで試験した場合について説明する。
The above explanation is based on the case where the bootstrap circuit works normally, but below, the case where the test is performed with Vcc=7V and then with Vcc=4V as described above will be explained.

この場合ノードBの電圧は、Vcc=7Vで試験した場
合は期間T1で9.5vになっている。次にVcc=4
Vになった時の正規のノードBの電圧は5.Ovである
が、一旦、ノードBが9.5vになったのち、Vccが
4vに変化しても、Q3が非導通状態になってしまうた
め、この電圧(9,5V)がノードBに保持されてしま
う。従って1期間T2の最初の時点では、Ql及びQl
のゲート電圧は9.5vと4vになる。従って、トラン
ジスタサイズを。lと。2とで1:5にとっていても、
Qlのゲート電圧が。2のそれに比して高くなるため、
実効的なgm比が小さくなる。従って、ノードCの電圧
変化が波形すのように遅延したり、最悪の場合は波形C
で示したように中間電圧となり、回路が誤動作をするよ
うなことも起こりうる。
In this case, the voltage at node B is 9.5V in period T1 when tested at Vcc=7V. Next, Vcc=4
The normal node B voltage when it reaches V is 5. Ov, but once node B becomes 9.5V, even if Vcc changes to 4V, Q3 becomes non-conductive, so this voltage (9.5V) is held at node B. It will be done. Therefore, at the beginning of one period T2, Ql and Ql
The gate voltages of will be 9.5v and 4v. Therefore, the transistor size. l and. Even if the ratio is 1:5 with 2,
The gate voltage of Ql. Because it is higher than that of 2,
The effective gm ratio becomes smaller. Therefore, the voltage change at node C may be delayed as shown in waveform C, or in the worst case, waveform C
As shown in , it is possible that the voltage will be intermediate, causing the circuit to malfunction.

[発明が解決しようとする問題点3 以上のように従来の半導体の試験方法では高い電源電圧
(Vcc)印加の許での試験のあと、低いVcc電圧印
加の許での試験を行なう場合、第4図のノードBの電圧
が降下する迄待つ必要があり、特に常温での試験ではこ
の時間が非常に長くなり、試験に長い時間を要するとい
う欠点があった。
[Problem to be Solved by the Invention 3 As described above, in the conventional semiconductor testing method, when performing a test with a high power supply voltage (Vcc) applied, and then a test with a low Vcc voltage applied, It is necessary to wait until the voltage at node B in FIG. 4 drops, and this time is extremely long, especially in tests at room temperature, resulting in a drawback that the test takes a long time.

この発明は以上の欠点を除去するためになされたもので
、異なった電圧の許での試験の間に待時間を必要とせず
に試験が非常に速く行なえる半導体の試験方法を提供す
ることを目的としている。
The present invention has been made to eliminate the above-mentioned drawbacks and aims to provide a method for testing semiconductors that allows testing to be performed very quickly without requiring any waiting time between tests at different voltages. The purpose is

[問題点を解決するための手段] この発明にかかる半導体の試験方法は、相続く異なった
電圧印加の許での試験の間に集積回路素子表面に所定時
間の間光を照射する工程を挿入したものである。
[Means for Solving the Problems] The semiconductor testing method according to the present invention includes a step of irradiating the surface of an integrated circuit element with light for a predetermined period of time between tests under successive applications of different voltages. This is what I did.

[作 用] 集積回路素子表面に光を照射することによって生ずる電
子がノードBを形成する訂領域にドリフトすることによ
って、前の高電圧印加試験によってそこに保持されてい
た電圧を短時間で降下させ、次の低電圧印加による試験
を可能としている。
[Function] Electrons generated by irradiating the surface of the integrated circuit element with light drift into the revised region forming node B, thereby quickly dropping the voltage held there by the previous high voltage application test. This makes it possible to perform the next test by applying low voltage.

[実施例] 以下、この発明の一実施例を図について説明する。第1
図はこの発明の試験方法を行なうための試験装置の一例
を示す概略構成図、第2図は、この発明の一実施例を示
す工程図である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a schematic configuration diagram showing an example of a test apparatus for carrying out the test method of the present invention, and FIG. 2 is a process diagram showing an embodiment of the present invention.

図において(1)はプローブカード、(2)はこのプロ
ーブカード(1)に取り付けられた針状電極で集積回路
素子表面上に設けられたパッドの上に当たるようになさ
れている、(3)は集積回路素子が複数個形成された半
導体ウェハ、(4)はチャックトップで、半導体ウェハ
(3)を吸着することによって支持している。(5)は
各集積回路素子と針状電極(2)との位置合わせに用い
られる顕微鏡、(6)はこの顕微鏡(5)に設けられた
プログラムにより点滅される集積回路素子表面照射用光
源、(7)はそれの照射光である。
In the figure, (1) is a probe card, (2) is a needle-like electrode attached to this probe card (1), which is made to contact the pad provided on the surface of the integrated circuit element, and (3) is a needle-shaped electrode attached to the probe card (1). A semiconductor wafer (4) on which a plurality of integrated circuit elements are formed is a chuck top that supports the semiconductor wafer (3) by adsorbing it. (5) is a microscope used for positioning each integrated circuit element and the needle-like electrode (2); (6) is a light source for illuminating the surface of the integrated circuit element that is blinked by a program installed in the microscope (5); (7) is its irradiation light.

次にこの実施例による第2図に示す試験工程を、第4図
の回路例について第3図によって説明する。
Next, the test process shown in FIG. 2 according to this embodiment will be explained with reference to FIG. 3 for the circuit example shown in FIG. 4.

第3図は、この実施例の各工程における第4図の回路の
ノードA、B、Cの電圧変化を示したタイムチャートで
実線は光照射を行なった場合、破線は光照射を行なわな
い場合を示している。
FIG. 3 is a time chart showing voltage changes at nodes A, B, and C of the circuit shown in FIG. 4 in each step of this embodiment. The solid line is when light irradiation is performed, and the broken line is when light irradiation is not performed. It shows.

まず、第2図の工程(8)において、印加電圧Vcc=
7Vでマーチパターンによる試験を行ない、それが終っ
た時点で、第4図のノードBの電位は9.5vになって
いる。次の工程(9)でプログラムされたように10m
5ecの間光源(6)を点灯して光(7)を被試験集積
回路素子上に照射する。この光の照射によって集積回路
素子表面上に形成されたp −n接合で電子−正孔対が
生成され、この電子がノードBを形成するn+領領域ド
リフトすることにより熱平衡状態に近づいていく。従っ
てこの10m5ecの光照射時間の間にノードBの電圧
が第3@実線で示すように降下する。このノードBの電
圧が充分降下した時点で工程(10)に入りVcc=4
Vでのチェッカーボードパターンによる試験を開始する
。従ってこの試験工程(10)においては回路は正常に
動作する。
First, in step (8) of FIG. 2, the applied voltage Vcc=
A march pattern test was performed at 7V, and at the end of the test, the potential at node B in FIG. 4 was 9.5V. 10m as programmed in the next step (9)
The light source (6) is turned on for 5 ec and the light (7) is irradiated onto the integrated circuit element under test. By this light irradiation, electron-hole pairs are generated at the p-n junction formed on the surface of the integrated circuit element, and as the electrons drift into the n+ region forming node B, they approach a thermal equilibrium state. Therefore, during this 10 m5 ec light irradiation time, the voltage at node B drops as shown by the third solid line. When the voltage at node B has dropped sufficiently, step (10) is entered and Vcc=4
Begin testing with a checkerboard pattern at V. Therefore, the circuit operates normally in this test step (10).

なお以上の実施例では光照射用の光源として顕微鏡を利
用する場合を示したが別光源を設けてもよい。また、こ
の別光源として発光ダイオードを使用すれば、より制御
性のよい短時間の光照射を行なうことができる。
In the above embodiments, a microscope is used as a light source for light irradiation, but a separate light source may be provided. Moreover, if a light emitting diode is used as this separate light source, light irradiation can be performed for a short time with better controllability.

[発明の効果] この発明は以上のように行なわれるので、半導体ウェハ
ーでの試験時に、大きな電源電圧の変化の許での試験が
容易となり、より厳しい試験が可能となると共に、試験
時間も短縮できる効果がある。
[Effects of the Invention] Since the present invention is carried out as described above, when testing a semiconductor wafer, it becomes easy to perform tests under large power supply voltage changes, making it possible to perform more severe tests and shortening the test time. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の試験方法を行なうための試験装置の
一例を示す概略構成図、第2図はこの発明の一実施例を
示す工程図、第3図はこの実施例の各工程における集積
回路素子各部の電圧変化を示すフローチャート、第4図
は、この発明によって試験される集積回路の一例を示す
回路図、第5図は第4図の回路の動作説明図である。 図において(3)は半導体ウェハー、(6)は光照射用
光源、(8) (10)はそれぞれ異なった電圧印加で
行なわれる試験工程、(9)は光を照射する工程である
。 図中同一符号は同−或は相当部分を示す。
Fig. 1 is a schematic configuration diagram showing an example of a test device for carrying out the test method of the present invention, Fig. 2 is a process diagram showing an embodiment of the invention, and Fig. 3 is an integration diagram in each step of this embodiment. FIG. 4 is a flowchart showing voltage changes at various parts of the circuit elements, FIG. 4 is a circuit diagram showing an example of an integrated circuit to be tested according to the present invention, and FIG. 5 is an explanatory diagram of the operation of the circuit shown in FIG. 4. In the figure, (3) is a semiconductor wafer, (6) is a light source for light irradiation, (8) and (10) are test steps performed by applying different voltages, and (9) is a light irradiation step. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の集積回路素子からなる半導体ウェハーの各
集積回路素子に順次異なった電圧印加の許での試験を続
けて行ない、それら集積回路素子の良品、不良品を選別
する半導体の試験方法において、上記相続く異なった電
圧印加の許での試験の間に上記各集積回路素子表面に所
定時間の間光を照射する工程を補入したことを特徴とす
る半導体の試験方法。
(1) In a semiconductor testing method that sequentially tests each integrated circuit element of a semiconductor wafer consisting of a plurality of integrated circuit elements while sequentially applying different voltages, and selects good and defective integrated circuit elements. . A method for testing a semiconductor, comprising the step of irradiating the surface of each integrated circuit element with light for a predetermined period of time between the tests under the successive application of different voltages.
(2)上記光を照射するのに、集積回路素子位置合わせ
用顕微鏡の光源を利用するようにした特許請求の範囲第
1項記載の半導体の試験方法。
(2) The method for testing a semiconductor according to claim 1, wherein a light source of a microscope for aligning integrated circuit elements is used to irradiate the light.
(3)上記光を照射するための光源として発光ダイオー
ドを使用した特許請求の範囲第1項記載の半導体の試験
方法。
(3) The method for testing a semiconductor according to claim 1, wherein a light emitting diode is used as a light source for irradiating the light.
JP23642084A 1984-11-07 1984-11-07 Testing process of semiconductor Pending JPS61113253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23642084A JPS61113253A (en) 1984-11-07 1984-11-07 Testing process of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23642084A JPS61113253A (en) 1984-11-07 1984-11-07 Testing process of semiconductor

Publications (1)

Publication Number Publication Date
JPS61113253A true JPS61113253A (en) 1986-05-31

Family

ID=17000487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23642084A Pending JPS61113253A (en) 1984-11-07 1984-11-07 Testing process of semiconductor

Country Status (1)

Country Link
JP (1) JPS61113253A (en)

Similar Documents

Publication Publication Date Title
US20040085084A1 (en) Method and apparatus for stress testing integrated circuits using an adjustable AC hot carrier injection source
CA2455818C (en) Testing vias and contacts in integrated circuit fabrication
KR940006577B1 (en) Burn-in method of semiconductor device
DE3069893D1 (en) Method involving testing an electrically alterable microelectronic memory circuit
US5519193A (en) Method and apparatus for stressing, burning in and reducing leakage current of electronic devices using microwave radiation
KR100223077B1 (en) Apparatus for testing integrated circuit
US5127008A (en) Integrated circuit driver inhibit control test method
US7415649B2 (en) Semi-conductor component test device with shift register, and semi-conductor component test procedure
JPH0285772A (en) Method and device for inspecting semiconductor element
JPS61113253A (en) Testing process of semiconductor
US6352868B1 (en) Method and apparatus for wafer level burn-in
JPH0689932A (en) Burn-in device for power mosfet
US3736506A (en) Method of testing integrated circuits
US7141995B2 (en) Semiconductor manufacturing device and semiconductor manufacturing method
JPH10178073A (en) Inspection method and production of semiconductor device
JP3012242B2 (en) Manufacturing method of semiconductor integrated circuit
JP2002196036A (en) Semiconductor device and its inspection method
JP2003043099A (en) Method and apparatus for semiconductor test
KR100455731B1 (en) Wafer burn-in test apparatus to simultaneously burn-in every die in one wafer by one probing process
JPH04243098A (en) Semiconductor memory device
JP2900847B2 (en) Integrated circuit test equipment
CN100392838C (en) Crystal circle grade seamless link for memory semiconductor circuit
JPS62287637A (en) Semiconductor integrated circuit device
JPH0582614A (en) Method for testing semiconductor device
KR19980028731A (en) Wafer burn-in test method of semiconductor device