JPS61112386A - Semiconductor light receiving element - Google Patents

Semiconductor light receiving element

Info

Publication number
JPS61112386A
JPS61112386A JP59233160A JP23316084A JPS61112386A JP S61112386 A JPS61112386 A JP S61112386A JP 59233160 A JP59233160 A JP 59233160A JP 23316084 A JP23316084 A JP 23316084A JP S61112386 A JPS61112386 A JP S61112386A
Authority
JP
Japan
Prior art keywords
layer
type
receiving element
light receiving
type inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59233160A
Other languages
Japanese (ja)
Other versions
JPH0758800B2 (en
Inventor
Ichiro Fujiwara
一郎 藤原
Hiroshi Matsuda
広志 松田
Kazuhiro Ito
和弘 伊藤
Hirobumi Ouchi
博文 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59233160A priority Critical patent/JPH0758800B2/en
Publication of JPS61112386A publication Critical patent/JPS61112386A/en
Publication of JPH0758800B2 publication Critical patent/JPH0758800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a highly reliable semiconductor light receiving element, which sufficiently withstands a high temperature again test, by adopting a three-layer structure of SiNx, PSG and SiO2 as a passivation film of the light receiving element. CONSTITUTION:On an N type InP substrate 1, an N type InP layer 2, an N type InGaAsP layer 3, an N type InP layer 4 and N type InGaAsP layer 5 are grown as crystals. Then, Zn is diffused in the N type InP layer 3. After a P type InP layer 6 is formed, passivation is performed. Then, an N type electrode 9 comprising AuGeNi/Pd/Au and a P type electrode 8 comprising Ti/Pt/Au are formed. A passivation film 7 has a three-layer structure as follows: the first layer is silicon nitride 11 using plasma CVD; the second layer is PSG12 by thermal CVD; and the third layer is SiO2 13 by thermal CVD.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、受光素子の表面安定化に係り、特に暗電流低
減に好適なパッシベーション方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to surface stabilization of a light receiving element, and particularly to a passivation method suitable for reducing dark current.

〔発明の背景〕[Background of the invention]

従来の長波受光素子のパッシベーションには、昭和59
年応用物理学会春期年会予稿集31P−L−1や31P
−L−2にみられるようにSiNxのみが用いられてい
た。しかし、SiNxと半導体との熱膨張係数が異なる
ため、S i N x単独では高温エージング時に膜は
がれやクラックが生じ易いこと、薄い場合にはピンホー
ルが発生すること等のため、暗電流が増加してしまう欠
点があった。
The passivation of conventional long-wave photodetectors was developed in 1982.
Proceedings of the Japan Society of Applied Physics Spring Annual Meeting 31P-L-1 and 31P
As seen in -L-2, only SiNx was used. However, because the thermal expansion coefficients of SiNx and semiconductors are different, SiNx alone tends to peel or crack during high temperature aging, and if it is thin, pinholes may occur, resulting in an increase in dark current. There was a drawback to it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題を解決し、受光素子に
対して良好な表面不活性化効果を示すパッシベーション
膜を提案し、信頼性の高い半導体受光素子を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned conventional problems, to propose a passivation film that exhibits a good surface passivation effect on a photodetector, and to provide a highly reliable semiconductor photodetector.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明では受光素子のパッシ
ベーション膜としてSiNx、PSG(リン含有ガラス
)+ S i02 の三層構造を採用したことを特徴と
する。
In order to achieve the above object, the present invention is characterized in that a three-layer structure of SiNx, PSG (phosphorus-containing glass) + Si02 is adopted as a passivation film of a light receiving element.

それにより、高温エージング試験を実施しても、暗電流
が増加したり1時間とともに変化する現像を抑えること
が可能となり、信頼性の高い受光素子を得ることができ
る。
Thereby, even if a high-temperature aging test is performed, it is possible to suppress an increase in dark current or a change in development over an hour, and a highly reliable light-receiving element can be obtained.

なお、一般にはS i Nx (1,33≦x≦2)お
よびP含有率5モルパーセントのPSGを多用する。
In general, Si Nx (1,33≦x≦2) and PSG with a P content of 5 mol percent are frequently used.

パッシベーション膜の各層は下記の厚さとなすが好適で
ある。薄過ぎることにより生じるピンホール及び厚過ぎ
ることにより生じるクラックを抑えるために、S i 
N x 1000〜4000人、PSG2000〜60
00人、 S i 0.2000〜6000人を通常用
いる。
It is preferable that each layer of the passivation film has the following thickness. In order to suppress pinholes caused by being too thin and cracks caused by being too thick, Si
N x 1000-4000 people, PSG 2000-60
00 people and S i 0.2000 to 6000 people are usually used.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を参照にして詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 第1図を用いて本発明を説明する。Example The present invention will be explained using FIG.

第1図(a)はプレーナ型ホトダイオードを示す。n型
InP基板1の上にn型InP層2.n層InGaAs
P層3.n層InP層4.n型InGaAsP層5を結
晶成長させる。次にn型InP層3にZn拡散を行ない
p型InP層6を形成した後パッシベーション7を行な
う。次に、n型電極AuGeNi/ P d / A 
u 9 r P型電極T i / P t /A u 
8を形成する。パッシベーション膜7は詳細には第1図
(b)に示すように三層構造をとる。
FIG. 1(a) shows a planar photodiode. An n-type InP layer 2. is formed on the n-type InP substrate 1. n-layer InGaAs
P layer 3. n-layer InP layer 4. The n-type InGaAsP layer 5 is crystal-grown. Next, Zn is diffused into the n-type InP layer 3 to form a p-type InP layer 6, and then passivation 7 is performed. Next, the n-type electrode AuGeNi/Pd/A
u 9 r P-type electrode T i /P t /A u
form 8. Specifically, the passivation film 7 has a three-layer structure as shown in FIG. 1(b).

第一層はプラズマCVDを用いたシリコン・ナイI−ラ
イド(SiNx)11を1000人被着する6第二層は
熱CV D (Chemical Vapour De
position)によってPSG (リン含有5in
2)12を2000人被着する。第三層は熱CVDによ
ってSi○213を2000人被着する。
The first layer is silicon nitride (SiNx) 11 coated with 1000 layers using plasma CVD.6 The second layer is a thermal CVD (Chemical Vapor De
PSG (phosphorus containing 5in
2) Cover 2,000 people with 12. The third layer is formed by depositing 2000 Si213 layers by thermal CVD.

上記のように作製したホトダイオードの高温エージング
試験(125℃、30vバイアス)を行なうと、100
0時間以上でも暗電流の劣化は生じなかった。
A high temperature aging test (125°C, 30V bias) of the photodiode fabricated as described above revealed that 100%
No deterioration of dark current occurred even after 0 hours or more.

従来のパッシベーション法(SiNx単独、あるいはS
in、等)で作成した素子の上記試験では、100時間
を経過すると暗電流特性に劣化が見られるのに対し、本
発明により安定化できた。     、lx第1図を用
いて実施例を述べたが、第1図で3のInGaAsP層
をInGaAsにした場合、5のInGaAsP層がな
く直接4,6層上にパッシベーション膜を形成した場合
においても1本発明の本質をそこなうものではない。
Traditional passivation methods (SiNx alone or S
In the above test of the device fabricated using 100 hours, the dark current characteristics deteriorated after 100 hours, but the present invention stabilized the dark current characteristics. , lx An example has been described using FIG. 1, but even if the InGaAsP layer 3 is made of InGaAs in FIG. 1. This does not impair the essence of the present invention.

また、第2図に示すようなホモジャンクション素子、第
3図に示すようなG a A sを利用した素子の場合
、あるいは他の化合物半遵体材料素子においても本発明
が適用できることは明らかである。
Furthermore, it is clear that the present invention can be applied to homojunction devices as shown in FIG. 2, devices using GaAs as shown in FIG. 3, or other compound semiconducting material devices. be.

第2図はホモ接合ホトダイオードを示す。FIG. 2 shows a homojunction photodiode.

n型InP基板21の上にn−−InP層22゜n −
−InGaAs層23を結晶成長させる。
An n--InP layer 22°n- is formed on the n-type InP substrate 21.
- The InGaAs layer 23 is grown as a crystal.

次に、InGaAs層23にZn拡散を行ない、p−I
nGaAs層24を形成した後、プラズマCVDSiN
x、熱CVD PSG、熱CVD Sin。
Next, Zn is diffused into the InGaAs layer 23, and p-I
After forming the nGaAs layer 24, plasma CVDSiN
x, thermal CVD PSG, thermal CVD Sin.

三層構造を持つパッシベーション25を行なう。Passivation 25 having a three-layer structure is performed.

次に、p型電極Ti/Pt/Au26.n電極AuGe
Ni/ P d / A u 27を形成する。
Next, a p-type electrode Ti/Pt/Au26. n-electrode AuGe
Form Ni/Pd/Au27.

第3図はGaAs基板上に作製したホトダイオードを示
す。
FIG. 3 shows a photodiode fabricated on a GaAs substrate.

GaAs基板31上にn−GaAs層(32)。An n-GaAs layer (32) on the GaAs substrate 31.

n−−GaAs層(33)、n−GaAQAs層(34
)。
n--GaAs layer (33), n-GaAQAs layer (34)
).

n −−G a A s層(36)を結晶成長させる。The n--G a As layer (36) is crystal-grown.

次に、n −−GaA Q As窓層にZn拡散を行な
い、p−GaAQAs層(35)を形成する。ひき続き
プラズマCVD  SiNx/PSG/SiO,三層構
造のパッシベーション膜(37)を形成する。最後にp
型電極としてT i / P t / A u (38
)、n型電極としてAuGeNi/ Cr / A u
を形成する。
Next, Zn is diffused into the n--GaAQAs window layer to form a p-GaAQAs layer (35). Subsequently, a passivation film (37) having a three-layer structure of SiNx/PSG/SiO is formed by plasma CVD. Finally p
T i / P t / A u (38
), AuGeNi/Cr/Au as n-type electrode
form.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温エージング試験に十分耐え得る信
頼性の高い半導体受光素子が得られる。
According to the present invention, a highly reliable semiconductor light receiving element that can sufficiently withstand high temperature aging tests can be obtained.

素子の信頼性の向上に伴ない、歩留りも改善され、その
経済的利益は大きい。
As the reliability of devices improves, yields also improve, and the economic benefits are significant.

受光素子の高速動作を実現するには寄生容量、特にパッ
ド容量を低減することが必要である。p型電極8に対応
するパッド容量はパッシベーション膜の厚さに逆比例す
る。従来用いられてきた方法ではクラックが発生するた
めにS i N xの厚さの上限は約0.5  μmで
あった。本発明の三層構造を用いるとパッシベーション
膜厚を1.5 μmにすることが可能であり、パッド容
量を1/3に低減することができる。
In order to realize high-speed operation of a light receiving element, it is necessary to reduce parasitic capacitance, especially pad capacitance. The pad capacitance corresponding to the p-type electrode 8 is inversely proportional to the thickness of the passivation film. In conventional methods, the upper limit of the thickness of S i N x was about 0.5 μm because cracks would occur. By using the three-layer structure of the present invention, the passivation film thickness can be reduced to 1.5 μm, and the pad capacitance can be reduced to ⅓.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はInP系PINホトダイオードの断面図
、第1図(b)は第1部7のパッシベーション膜部の断
面図である。第2図はGa、In、−ヨAs(X二0.
47)ホモ接合PINホトダイオードを示す断面図、第
3図はGaAQAs /G a A sヘテロ接合PI
Nホトダイオードを示す断面図である。 1−n”−InP基板、2−n−InP (1,5μm
) 、 3−n −InGaAsP  (1,5pm)
 、 4・−n −1n P (2μm) 、 5=・
n −InGaAsP (0,3am1.6・=p−I
nP、7−8iO,/PSG/SiNx (0,6μm
)、8−p電極(Ti/P t / A u ) 、 
9 ・・・n電極(AuGeAu/ P d / A 
u )、11、−8iNx (0,15、lZm)、 
12−PSG(0,25μm)、13−8in2 (0
,2μm)、2]−n”−InP基板、22−n−−I
nP(1,5μm) 、 23・”n−−Ina、5a
Gao、4tAS(1,571m) 、 24・=p−
Inn、5iGao、4t^S、25 ・・・S iO
x / P S G / S x N x (0、6t
t rn )、26− p電極(T i / P t 
/ A u ) 、 27− n電極(AuGaNi/
 P d / A u )、31−n”−GaAs基板
、 32−n−−G a A s (2μm) −33
−・n−−GaAs  (2μm)  、 34−n−
GaAQAs         。 (1,5μm)、  35・=p   GaAl2As
、 36 ・・・n−−G a As  (0,5μm
)、  37=S i O。 /PSG/5iNx(0,6μrn)、38・−p電極
(Ti/Pt/Au)、39−n電極(AuGeAu 
/第1図(久)  ′ 冨 Z 図 13 図
FIG. 1(a) is a cross-sectional view of an InP-based PIN photodiode, and FIG. 1(b) is a cross-sectional view of the passivation film portion of the first portion 7. As shown in FIG. Figure 2 shows Ga, In, -yoAs (X20.
47) Cross-sectional view showing a homojunction PIN photodiode, Figure 3 shows a GaAQAs/GaAs heterojunction PI
FIG. 3 is a cross-sectional view showing an N photodiode. 1-n”-InP substrate, 2-n-InP (1.5 μm
), 3-n-InGaAsP (1,5pm)
, 4・-n −1n P (2μm) , 5=・
n-InGaAsP (0,3am1.6・=p-I
nP,7-8iO,/PSG/SiNx (0.6μm
), 8-p electrode (Ti/Pt/Au),
9...n electrode (AuGeAu/Pd/A
u ), 11, -8iNx (0,15, lZm),
12-PSG (0,25μm), 13-8in2 (0
, 2 μm), 2]-n''-InP substrate, 22-n--I
nP (1,5 μm), 23・”n--Ina, 5a
Gao, 4tAS (1,571m), 24・=p-
Inn, 5iGao, 4t^S, 25...S iO
x / P S G / S x N x (0,6t
trn), 26-p electrode (Ti/Pt
/Au), 27-n electrode (AuGaNi/
Pd/Au), 31-n''-GaAs substrate, 32-n--GaAs (2 μm) -33
-・n--GaAs (2μm), 34-n-
GaAQAs. (1.5 μm), 35・=p GaAl2As
, 36...n--G a As (0.5 μm
), 37=S i O. /PSG/5iNx (0,6μrn), 38-p electrode (Ti/Pt/Au), 39-n electrode (AuGeAu
/Figure 1 (Ku) ′ Tomi Z Figure 13 Figure

Claims (1)

【特許請求の範囲】 1、パッシベーション膜にSiO_2/PSG/SiN
xの三層構造を有することを特徴とする半導体受光素子
。 2、上記受光素子は少なくともIn_xGa_1_−_
xAs_yP_1_−_y(0≦x≦1、0≦y≦1)
を受光用活性領域に用いたことを特徴とする特許請求の
範囲第1項記載の半導体受光素子。 3、上記三層構造の厚さを各々SiNx1000〜40
00ÅPSG2000〜6000Å、SiO_2200
0〜6000Åとした特許請求の範囲第1項又は第2項
記載の半導体受光素子。
[Claims] 1. SiO_2/PSG/SiN in passivation film
A semiconductor light-receiving element characterized by having a three-layer structure of x. 2. The light receiving element is at least In_xGa_1_-_
xAs_yP_1_-_y (0≦x≦1, 0≦y≦1)
2. A semiconductor light-receiving device according to claim 1, characterized in that a light-receiving active region is made of: 3. The thickness of the above three-layer structure is SiNx1000~40
00ÅPSG2000~6000Å, SiO_2200
A semiconductor light-receiving element according to claim 1 or 2, wherein the thickness is 0 to 6000 Å.
JP59233160A 1984-11-07 1984-11-07 Semiconductor light receiving element Expired - Lifetime JPH0758800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233160A JPH0758800B2 (en) 1984-11-07 1984-11-07 Semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233160A JPH0758800B2 (en) 1984-11-07 1984-11-07 Semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPS61112386A true JPS61112386A (en) 1986-05-30
JPH0758800B2 JPH0758800B2 (en) 1995-06-21

Family

ID=16950657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233160A Expired - Lifetime JPH0758800B2 (en) 1984-11-07 1984-11-07 Semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JPH0758800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131000A1 (en) * 2010-04-20 2011-10-27 常州天合光能有限公司 Method for achieving graded lamination passivation thin film on backplane of solar battery
CN110911499A (en) * 2019-09-27 2020-03-24 北京时代民芯科技有限公司 Glass-sealed voltage regulating diode, tube core and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588337A (en) * 1978-12-27 1980-07-04 Nippon Denso Co Ltd Manufacture of semiconductor device
JPS5617025A (en) * 1979-07-20 1981-02-18 Mitsubishi Electric Corp Semiconductor device
JPS57139930A (en) * 1981-02-24 1982-08-30 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588337A (en) * 1978-12-27 1980-07-04 Nippon Denso Co Ltd Manufacture of semiconductor device
JPS5617025A (en) * 1979-07-20 1981-02-18 Mitsubishi Electric Corp Semiconductor device
JPS57139930A (en) * 1981-02-24 1982-08-30 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131000A1 (en) * 2010-04-20 2011-10-27 常州天合光能有限公司 Method for achieving graded lamination passivation thin film on backplane of solar battery
CN110911499A (en) * 2019-09-27 2020-03-24 北京时代民芯科技有限公司 Glass-sealed voltage regulating diode, tube core and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0758800B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US4289920A (en) Multiple bandgap solar cell on transparent substrate
JPH02218174A (en) Photoelectric converting semiconductor device
JPS61172381A (en) Inp group compound semiconductor device
JPH08204224A (en) Compound semiconductor light receiving element and fabrication thereof
USRE43159E1 (en) Semiconductor light emitting device
US5131956A (en) Photovoltaic semiconductor device
US6864514B2 (en) Light emitting diode
US5923052A (en) Light emitting diode
JPH02260667A (en) Compound semiconductor solar cell on silicon substrate and manufacture thereof
JPS61112386A (en) Semiconductor light receiving element
JP2001177143A (en) Semiconductor photodetector and method of manufacturing the same
CN113948596B (en) Infrared detector chip and preparation method and application thereof
JPH05291605A (en) Semiconductor photodetector
JP2776228B2 (en) Manufacturing method of semiconductor light receiving element
CN114497244B (en) Infrared detector chip and manufacturing method and application thereof
JPS6284522A (en) Surface protective film structure of iii-v compound semiconductor
US11476375B2 (en) Light detection device
US20230215963A1 (en) Solar cell device and method for producing the same
JP2528877B2 (en) Semiconductor laser
JPH0320090A (en) Manufacture of compound semiconductor element
JPH0474487A (en) Semiconductor laser
JPH0322705B2 (en)
JPH05304315A (en) Light emitting element
JPH08148705A (en) Infrared detector
KR100287204B1 (en) Semiconductor laser diode of selective buried ridge type and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term