JPS61111197A - Method and device for producing gaseous methane by fermentation - Google Patents

Method and device for producing gaseous methane by fermentation

Info

Publication number
JPS61111197A
JPS61111197A JP59232986A JP23298684A JPS61111197A JP S61111197 A JPS61111197 A JP S61111197A JP 59232986 A JP59232986 A JP 59232986A JP 23298684 A JP23298684 A JP 23298684A JP S61111197 A JPS61111197 A JP S61111197A
Authority
JP
Japan
Prior art keywords
methane
fermentation
kokaseki
reaction tower
methane gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59232986A
Other languages
Japanese (ja)
Other versions
JPH0476754B2 (en
Inventor
Seiji Minami
南 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP59232986A priority Critical patent/JPS61111197A/en
Publication of JPS61111197A publication Critical patent/JPS61111197A/en
Publication of JPH0476754B2 publication Critical patent/JPH0476754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To produce economically gaseous methane by allowing methane fermentation bacteria to co-inhabit and propagate in 'KOKASEKI' (pumice produced in Japan) having a prescribed grain size, using such 'KOKASEKI' as a methane fermentation bioreactor and passing waste water through the 'KOKASEKI' layer. CONSTITUTION:The gaseous methane is produced by packing the 'KOKASEKI' 9 into a reaction column 10, allowing the methane fermentation bacteria to co-inhabit and propagate in the 'KOKASEKI' 9, admitting the waste water into the column 10 through a waste water inlet 10a provided at the bottom end of the column 10 and discharging the treated water from a treated water discharge port 10b provided to the top end. More specifically the 'KOKASEKI' carrier constituted by sticking the methane fermentation bacteria into the pores of the 'KOKASEKI' is usable stably for a long period of time without being consumed like a gel of an org. material and therefore said carrier contributes to an increase in the concn. of the bacteria associated with the methane fermentation in the reaction vessel and prevents the outflow of the bacteria thus increasing the reaction rate per unit volume of the fermentation of the org. material to methane. The economical production of the gaseous methane is thus made possible.

Description

【発明の詳細な説明】 [唯礪上のflJ用分舒」 この発明は都市の生活廃水や工場廃水などを原料とし、
嫌気菌による発酵(メタン発酵)によってメタンガスを
製1竜する方法および装゛遣に・対するものである。
[Detailed Description of the Invention] [Distribution for flJ on the ground] This invention uses urban domestic wastewater, factory wastewater, etc. as raw materials,
This invention relates to a method and apparatus for producing methane gas by fermentation (methane fermentation) using anaerobic bacteria.

「tE来の技術」 従来の@酵によるメタンの製造方法は、廃水を処理する
九めの単なる一手段として行なわれていたもので、第7
図に示すような装置により行なっていた。
``Technology from tE'' The conventional method of producing methane by fermentation was carried out as just one means of treating wastewater, and the 7th
This was done using a device like the one shown in the figure.

まずポンプ1により送らnてきた原料廃水を返送汚泥と
混合して熱交幌42に送り加熱する。加熱した廃水は発
酵槽3中に人nる。この発酵槽3は攪拌装置3aを持ち
、これによって汚泥と1ボ科喝水とを混合する。この発
酵槽3からの廃水はその一部をポンプ4に’dて前記原
料廃水に混合させる以′4、脱水α5にエリ汚泥を分離
したのち処理4水として放流する。この脱水截5で分離
、濃縮された汚泥の一部)ま、ポンプ6により原料廃水
と混合し、熱!2.茂姦2を1蝋て前d己発酵槽3へ戻
す。
First, raw wastewater sent by the pump 1 is mixed with return sludge and sent to the heat exchanger hood 42 to be heated. The heated wastewater flows into the fermenter 3. This fermenter 3 has a stirring device 3a, which mixes the sludge and the fresh water. A portion of the waste water from the fermentation tank 3 is sent to a pump 4 and mixed with the raw material waste water, and after separating the sludge into a dewatering chamber α5, it is discharged as treated water. A part of the sludge separated and concentrated in this dewatering process 5) is mixed with the raw material wastewater by the pump 6, and heated! 2. Add 1 cup of Mokan 2 and return it to the fermenter 3.

また、前記発酵槽3で生じたメタンガスは、ブースター
7を僅でガスホルダー8に貯留され、貯留ガスの一部1
l−i前記熱交橘器2に供給される加熱蒸気または湯を
つくるために1吏用する。なお、上記I       
傳成において、脱水(支)5のかわりに沈澱分離槽等を
用いることもある。
In addition, the methane gas generated in the fermenter 3 is stored in the gas holder 8 while leaving the booster 7, and a portion of the stored gas is
l-i One pot is used to generate heated steam or hot water to be supplied to the heat exchanger 2. In addition, the above I
In development, a sedimentation separation tank or the like may be used instead of the dehydration (support) 5.

「発明が叫央しようとする間4点」 従来のメタン製造方法および!iILは、上記したよう
に廃水処理の一手段として用いら2’したもので、発酵
[3中で高い嫌1@固形物(33)濃度に保ち、この高
いssm度の汚泥と廃水と金良く混合するために強い攪
拌装!杖3aを保有していfc、、ま九、発酵[3から
取りだし九排出水は高いSSA[である九めと、汚泥を
イ(菌として発$43へ返送するために大きな沈澱5)
離着や脱水、U5などの分離装置を設けてい念。このよ
うに、従来の方法および・婆攬では、発酵f13の?1
拌、汚泥4園の分離、返送、さらに廃水の、グロ熱など
の勅力倚や七nに伴なう設備費が大きくなってしまうと
いう問題があつfc。
``Four points while the invention is about to take off'' Conventional methane production methods and! iIL is used as a means of wastewater treatment as described above, and is maintained at a high concentration of solids (33) during fermentation [3], and the sludge and wastewater with a high ssm degree are mixed with gold. Strong stirring device for mixing! Cane 3a has fc, 9, fermentation [3] The discharged water is high in SSA [9], and the sludge is returned to 43 as bacteria (large sediment 5)
Be sure to install separation equipment such as desorption, dehydration, and U5. Thus, in the conventional method and in the fermentation process, fermentation of f13 is difficult. 1
There is a problem that equipment costs increase due to agitation, separation of sludge, return, waste water, grothermal heating, etc., and 7N.

この発明は上記事情に鑑みてなさf′L九もので、エネ
ルギー祠用を目的としたメタンガスをj蓮済的に主項し
、かつ醸・暎廃水や生活廃水などの水処理も合わせて行
なうことのできる一A酵によるメタンの製造方法および
偵喧を提供することを目的とするものである。
This invention was made in view of the above circumstances, and mainly deals with methane gas for the purpose of energy shrines, and also treats water such as brewing/drinking wastewater and domestic wastewater. The purpose of the present invention is to provide a method for producing methane by 1A fermentation and its research.

「間4点を解決するための子役」 上記従来の問題点を解決するためにはランニングコスト
の大きい発酵槽の攪拌をやめる、メタン発酵菌を含むS
S汚【尼の発酵槽への返送をやめる、などの抜本的な屏
犬が必・慶となる。また、従来、メタン発酵は反応速成
が趙いtめに大きな発酵槽が8慢であり、そのために多
重の廃水を装置N内に滞留していtが、この反応1度を
高める念めには、ノ0ち設置@を小さくするためには、
発#楢中のメタン発酵菌の感度を醜くする解決歳が必要
となる。
"A child actor to solve the four points" In order to solve the above conventional problems, it is necessary to stop stirring the fermenter, which has a high running cost, and to stop stirring the fermenter, which has high running costs.
Drastic measures such as discontinuing the return of waste to the fermentation tank are necessary. In addition, in the past, methane fermentation required a large fermenter to slow down the reaction rate, and for this reason, multiple wastewaters were accumulated in the device, but in order to increase the reaction rate, it was necessary to , In order to reduce the installation @,
A solution is needed to reduce the sensitivity of methane-fermenting bacteria during production.

そのためには、発酵溝内のメタン発酵醒の濃度を傷く碓
持し、処理した廃水と共に発酵槽から流れでないように
することが要求さnる。これを実施するためには最近、
詩に医薬品や7アイ/ケミカル、アミノ突の主項などで
応用され始めたバイすりアクタ−の・a匁、叩ち持・朱
な担体中に反応にあずかる微生i勿またはその酵素を包
含するような方法を応用することが、4えらnる。従来
、このような担体としてアミン!モなどの生項に実際に
使用されている担体(アルギン唆塩、寒天、に−カナギ
ーランゲルなど)がめるが、これらは高価なもので、と
ても4水処理や補水からのメタン発dを目的とするよう
な施設への適応は考えられない。一方、発酵槽の容積が
大きいことがら成域的、物理的強度のめるセラミックス
、プラスチックス成形物、熱焼収した天然加工力(やき
もの)などの使用が検討さnている。しかし、これらの
ものは加工費がかかる点から経済的に使用できない。
To this end, it is necessary to maintain the concentration of methane fermentation product in the fermentation groove and prevent it from flowing out of the fermenter together with the treated wastewater. To do this, recently,
Microorganisms that participate in the reaction or their enzymes are included in the ・a momme, taitamochi, and vermilion carrier of the bisuri actor, which has begun to be applied in poetry as medicine, 7-I/chemicals, and the main term of amino acid. There are four options to apply such methods. Traditionally, amines have been used as such carriers! It contains carriers (alginic salts, agar, Ni-Kanagi Langer, etc.) that are actually used for raw materials such as moths, but these are expensive and are very useful for water treatment and methane generation from water replenishment. Adaptation to such facilities is unthinkable. On the other hand, since the volume of the fermenter is large, the use of ceramics, plastic moldings, heat-burned natural processing power (ceramics), etc., which increase physical strength, is being considered. However, these materials cannot be used economically due to high processing costs.

これに対し、本発明者らは、メタン発酵にバイオリアク
ターを過応し、これを工嫉的、経済的に成立させること
を目標として、天然吻そのまま、ま九は安価な廃材など
の中からメタン発酵に適応しうる蝿本がないものか脱型
1傭畳、検討を貫ねたところ、石の中に持つ孔が比較的
大きく微生物が付着、共噂するには適当と思われず、ま
友嵩比這が小さくて発酵槽中で浮いてしまい固定化でさ
な−いのではないかと考えられてい九抗火石がメタン@
酵バイオリアクターの円体として有効であることを艷い
たしto すなわち、抗火石は天然の発泡体である丸めエネルギー
のいる/Jll熱処理は不要で69、また、食品IJU
工・条液処理や着噴廃誦吻の処理に用いていたメタン発
酵1を抗火石中に共凄、1傭殖させることにより模擬廃
液からメタンを発生させることができるとともに、これ
らの故を連続的に抗火石からなるバイオリアクター中に
流しても増殖が非盾に一′里いと言われているメタン発
tjpc!4のウォッシュ・アウト現象も起さず、光す
にメタン発Iv菌が抗火石中に共凄し、模擬廃液中の炭
素源をメタンガス尋に・変換していることぶ明らかとな
つtoつまり、本発明に味る発酵によるメタンガス妻面
方法は、メタン発酵遣を所定粒径の抗火石中に共jJ、
L!憧させ、これをメタン発酵バイオリアクターとし、
こnら抗火石層中に廃水を流すことによってメタイガス
を主項するものである。この発明方法を実施するには、
−・役的な嫌気的な廃水処理装置板やメタン発酵に用い
らnる装置を用いてもよいが、本′i@明方法において
成も(4な抗火石のP       特性を生かすため
には、クリえば′47図に示すように所定寸1去<g−
〜SO喝の一辺を待つ径)の抗火石9を反応i10の中
にff1Jし、この抗火石9中にメタン発8!I河を共
噌、4埴させ、この反応塔1゜0の下端入口10&から
内部に廃水をポンプ11により流入させるとともに上端
の排出口10bから排出させ、発生しtメタンガスを反
応塔10上端のガス排出口10aより取りだすように構
成された装置によシ行なうようにすることが望ましい。
On the other hand, the present inventors aimed to make a bioreactor overly compatible with methane fermentation and to make it economically viable. After trying to remove the mold for a while to see if there were any flies that could be adapted to methane fermentation, we found that the pores in the stone were relatively large and that microorganisms could attach to it, so it did not seem suitable for joint rumors. It is thought that Tomoka Hihii is small and floats in the fermenter and is not immobilized.
In other words, anti-flinder stone is a natural foam that is effective as a round body in a fermentation bioreactor.
It is possible to generate methane from simulated waste liquid by co-cultivating methane fermentation 1, which was used for the treatment of waste water and waste water, into anti-flame stones, and to solve these problems. Methane-emitting tjpc, which is said to be unprotected and slow to grow even if it is continuously poured into a bioreactor made of anti-firestone! It became clear that the wash-out phenomenon described in 4 did not occur, and the methane-producing bacteria coexisted in the anti-flinder rock and converted the carbon source in the simulated waste liquid into methane gas. The method of methane gas by fermentation according to the present invention is to mix the methane fermentation agent into anti-flinder rock of a predetermined particle size,
L! We made this into a methane fermentation bioreactor,
This method mainly generates metal gas by flowing wastewater into the anti-flinder layer. To carry out the method of the invention,
- Although it is possible to use a practical anaerobic wastewater treatment equipment board or equipment used for methane fermentation, it is also possible to use a practical anaerobic wastewater treatment equipment board or equipment used for methane fermentation. , as shown in Figure '47, the predetermined distance 1<g-
- FF1J of the anti-flame stone 9 (waiting for one side of SO) into the reaction i10, and methane is emitted into this anti-flame stone 9! The I river is mixed with the water, and the waste water is flowed into the reaction tower 1゜ through the lower end inlet 10& by the pump 11 and discharged from the upper end outlet 10b, and the generated methane gas is discharged from the upper end of the reaction tower 10. It is preferable to use a device configured to take out the gas from the gas outlet 10a.

なお、第1図において、符号12は反応塔10全力ロ熱
する丸めの、dlを供給するtJi温桶を示すものであ
る。
In FIG. 1, the reference numeral 12 indicates a round-shaped hot tub which supplies dl to the reaction tower 10.

また、上記装量において良好なる幼−滌をイ勢るために
は、上記反応塔は仄に述べるようなr4造とすることが
大切である。すなわち、42図に示すように、反Lca
410を高さ(L)と直径(2R)との比(L/ 2 
R)が/〜=θ(囁ましくは5〜/θ)の円筒状となる
ように設定し、同文Z、苓10の下端入口10a近傍内
部に下回が砕石が人ってこないような金量等の多孔版1
3aからなる円錐状のインレット・カバー13を設け、
このインレット・カバー13の下面多孔版13aの半径
(r)を前記反応塔10の半径(R)に対し、rj/に
HL、Q、ユ〜θ≠となるように設定する必要がある。
In addition, in order to obtain good nucleation at the above-mentioned loading, it is important that the above-mentioned reaction column be of R4 construction as briefly described. That is, as shown in Figure 42, anti-Lca
410 is the ratio of height (L) to diameter (2R) (L/2
R) is set so that it has a cylindrical shape with / ~ = θ (preferably 5 ~ / θ), and the crushed stone below is set so that no one comes inside near the lower end entrance 10a of Ryo 10. Porous plate 1 for gold amount etc.
A conical inlet cover 13 consisting of 3a is provided,
It is necessary to set the radius (r) of the lower perforated plate 13a of the inlet cover 13 with respect to the radius (R) of the reaction column 10 so that rj/HL, Q, U~θ≠.

なお、図中符号10aは一4体(抗火石)補給口を示す
ものであり、13bはインレット・カバー13内のヒー
タを示すものであり、14は、完膚された抗火石層15
の上端を押えるだめの金欄等の多孔版を示すものであり
、16は抗火石層15の上端外碌部から処4廃液が禰出
せず、上記多孔版14から流出し、排出口10bから外
部に取り出すようにするダウン・カマ−を示すものであ
る。ま九、この反応塔10に2いて、その下部は内壁面
の垂直面に対する用度dを≠5°とじ之円錐伏とするこ
とが4ましいが、4常の44に用いらnる鏡板でもよい
In addition, the reference numeral 10a in the figure indicates the 14-body (anti-flinder) replenishment port, 13b indicates the heater inside the inlet cover 13, and 14 indicates the completed anti-flinder layer 15.
16 shows a perforated plate such as a metal column used to hold down the upper end of the sump, and 16 indicates that the waste liquid cannot be discharged from the outer part of the upper end of the anti-flinder layer 15, but flows out from the perforated plate 14 and from the outlet 10b. This shows a downcomer that can be taken out to the outside. 9. In this reaction column 10, it is preferable that the lower part of the reaction column 10 has a conical angle of ≠5° with respect to the vertical plane of the inner wall surface. But that's fine.

上記構成において、抗火石9の粉砕寸法を7辺がg層〜
SO−となるように設定し九のは、メタンガスの発酵自
体にはgjI11以下の砕石を用いても問題はないが、
g−以下の砕石を1吏用すると反応塔10中の空・凍率
が減少しすぎるため発生したガスの通過が内部になって
支障を生ずるからであり、便に一辺°が50J@μ上の
砕石全便用すると扁版の均一な流通が1堆になるからで
ある。
In the above configuration, the crushing dimension of the anti-flinder stone 9 is set to 7 sides of g layer ~
For SO- setting, there is no problem in using crushed stone of gjI11 or less for the fermentation of methane gas itself, but
This is because if 1 liter of crushed stone of less than 50 g is used, the air/freezing rate in the reaction tower 10 will decrease too much, causing an obstruction to the passage of the generated gas inside. This is because if all of the crushed stone is used, the flat plate will be uniformly distributed in one pile.

まt1反応塔10の形状、寸法を高さ(L)と直径(2
R)との比(L/2R)が1〜2oとしたのは、(L/
2R)、を1以下とすると直径方向に分布する上向さの
廃水流のS速度を均一に維持することがむづかしくなり
、(L/2R)が20以上となると上記線速度の均一な
維持は稈易となるが必要とする揚水エネルギーが大きく
なり、揚水コスト、反応塔の強度上対応がむづがしくな
るからである。
The shape and dimensions of the t1 reaction tower 10 are determined by the height (L) and diameter (2
The reason why the ratio (L/2R) with R) is set to 1 to 2o is because (L/2R)
2R) is less than 1, it becomes difficult to maintain a uniform S velocity of the upward wastewater flow distributed in the diametrical direction, and when (L/2R) is 20 or more, it becomes difficult to maintain a uniform linear velocity. This is because although it is easier to maintain, the pumping energy required increases, making it difficult to cope with pumping costs and the strength of the reaction tower.

まt1インVットeカバー13の下面多孔tm13aの
メツシュを4〜1oとしたのH,F!i前記1″法の抗
火石9がインレット・カバー13内に入り込まないよう
にするためであり、1oメツシュ以下にすると廃水の流
れがスムースに行なり′nなくなる九めである。
H,F when the mesh of the lower surface porous tm13a of the cover 13 is set to 4 to 1o! This is to prevent the anti-firestone 9 of the above 1'' method from entering the inlet cover 13, and if the mesh is less than 10 mesh, the flow of waste water will be smooth and there will be no problem.

さらに、インレット・カバー13の下面多孔版13aの
半FM(r)とrsi−+5塔1oの半1!(R)との
°41系をKrンπR′−0,2〜θグとしたのけ、こ
の範i用外に設定すると、インレット舎カバー13から
反応塔10内に流入されfc廃水の流れが均一にならな
いためである。
Furthermore, half FM(r) of the lower perforated plate 13a of the inlet cover 13 and half 1 of the rsi-+5 column 1o! If the °41 system with (R) is set to Kr'n πR'-0,2~θ and set outside this range, the flow of fc wastewater flows into the reaction tower 10 from the inlet housing cover 13. This is because the values are not uniform.

なお、上記反応塔10の使用にあたって1に要なことは
、反応塔工0のヤでの溶4イ哉物と担体抗火石9との羨
触を良くする定めに、反応塔10−>の蛎科廃水の導入
は反応塔10所面での平均線速度として/ 00 m/
 hr以上itしくは300鴫/hr以上が必媛で心る
。この揚台の流1大は、−jえば1ば値2島の反応塔で
あnば、線速度300ymyhrの時、/yrt/hr
でめり、きわめて小さな、助力で1伝できることがわか
る。
In addition, in using the reaction tower 10, it is necessary to make the reaction tower 10- The average linear velocity at the 10 points of the reaction tower for the introduction of the Eclipse wastewater is / 00 m/
It is essential to have more than 300 hours per hour or more than 300 hours per hour. If the flow rate of this platform is -j, then if it is a reaction tower with 1 value and 2 islands, then when the linear velocity is 300 ymyhr, /yrt/hr
It turns out that one mission can be achieved with a very small amount of help.

[1乍1+l] 本発明をず4成する抗火石9は、同角のように、その内
部に無数の多孔3待ら、水中における水承イオン1反も
ほぼ中性であり、比・咬的強固で、大きなイ新:&を刃
口えることがなけGば壊れない。ま念、この抗火石9の
破砕面は無定形で凹凸があり、無数の多孔と共に微生物
の付青、生成には好ましい貢」這で・わる。まt、メタ
ン発酵菌を抗火石9の細孔の中に回前した徒大石用本は
、有哉物糸のゲルのように消耗することもt’x <、
礎胡、安定にi使用できる。このような抗火石9の4体
を用いることにより反応塔10内のメタン沼酵悄連肩の
画体傾度を増加させ、画体の流出(ウォッシュ・アウト
)を防止し、・汀で4物のメタン化の単位尋f*当りの
反応速度を高め効果的、経済的にメタンを生蝦すること
ができる。
[1 to 1 + l] The anti-firestone 9 that constitutes the present invention has countless porous holes 3 inside it, as in the same angle, and the water-bearing ions in water are almost neutral, and the ratio A strong, big new feature: If you don't attack &, it won't break. The crushed surface of this anti-firestone 9 is amorphous and uneven, and along with countless pores, it is a favorable environment for microbial growth and formation. Also, the methane-fermenting bacteria that were introduced into the pores of the anti-fire stone 9 would be consumed like the gel of the yarn.
I can use it stably. By using four such anti-firestones 9, the slope of the methane swamp fermentation connection in the reaction tower 10 is increased, the washout of the methane bodies is prevented, and the four objects are It is possible to increase the reaction rate per unit fathom f* of methanation and to produce methane effectively and economically.

仄に、この発明を実施−jによりさらに詳しく説明する
The present invention will now be explained in more detail by way of Example-j.

「央織同/」 まず、−辺がg−/ J IIIの抗火石砕石/lを高
さお1、内各積りtのガラス製耐圧4<aへ入1t0一
方、/lのメスシリンダー中に食品Qll I f’f
Rγ夜処工里にf受用していfc高温メタン発酵廃液を
/を注入し、これを30分間放置してSSを沈降させて
高温メタン眉を含む発酵I!A液の上tKみり00−を
イ梧た。この700−Lの高温メタ、ノ発−嘩夜の上青
みを上記ガラス襲耐圧稈6に注ぎ入れ、眉役した陵、内
部をゲージ圧で700Torrまで減圧して抗火石内部
にある空気を放出するとともに、高温メタン廃液を内部
に定着させる操作を2回4返した。この操作によって、
Nkfl) i / ! tであつ念ガラス鱒耐圧各4
の内゛4漬は、10jとなつtoこのようにして尚温メ
タン廃液に浸した砕石をふるいにかけることにより廃液
と砕石を分離し、分道した砕石をよく氷切りしtoその
凌、この砕石tK* HPO−i 0.弘a 、 KH
IPO470,/ a ’に含’c)水@液(緩衝夜>
71中に人ル、良く洗浄し、その講ふるいにかけて樋、
宵礪と分離するという操作をコ;O1,榛返した。
``Oori Dodo/'' First, put anti-firestone crushed stone /l of - side g- / J III into a glass-made pressure-resistant cylinder of 4<a with a height of 1, and 1t0, and on the other hand, put it in a graduated cylinder of /l. Food Qll I f'f
Inject fc high-temperature methane fermentation waste liquid into Rγ Yadokoro Kuri and leave it for 30 minutes to sediment SS and fermentation containing high-temperature methane. I added the upper part of solution A to 00-. Pour this 700 L of high-temperature meth into the glass pressure-resistant culm 6, and reduce the pressure inside the pressure-resistant culm 6 to 700 Torr using a gauge pressure to release the air inside the flint-resistant stone. At the same time, the operation of fixing the high-temperature methane waste liquid inside was repeated 4 times twice. With this operation,
Nkfl) i/! Atsushi Glass Trout Pressure Resistance 4 each
Of these, the 4th pick is 10j and the crushed stones immersed in still warm methane waste liquid are sieved in this way to separate the waste liquid and crushed stones, and the separated crushed stones are thoroughly ice-cut. Crushed stone tK* HPO-i 0. Hiroa, K.H.
IPO470, / a 'included' c) Water @ liquid (buffer night>
During the 71st period, wash the water well, put it through a sieve, and
The operation of separating it from the evening meal was completed.

これに封し、第3図のような実施装置逝を4成しtoこ
の裟f&は42図の挽道に培地(原料廃水)タンク17
.ポンプ18.pHJ督漕19.アルカリ+1i20.
ポンプ21.ガスシール+122.ガスメータ23を次
のようにin作するように収りつけたものである。すf
it)ち、上コ己pH;I4脩4曹19I−i傭拌子を
同くし、p[Qよび0RP(変化屑元4位)のセンサー
金具えたもので、配−ft24を踵じて吠(6塔10か
ら孜が流入するようにしている。
Seal this and set up the implementation equipment as shown in Figure 3.
.. Pump 18. pHJ control 19. Alkali +1i20.
Pump 21. Gas seal +122. The gas meter 23 is installed in the following manner. Sf
It is the same as the above-mentioned pH; I4 Shu4so 19I-i merchandising element, equipped with sensor metal fittings of p (Kei is made to flow in from 6 towers 10.

また、p)(センサーからの″ぼ号によりポンプ21は
アルカリ漕20からアルカリ孜を横19へ供給し、反応
塔10へ唆す孜のp H衡コン°トロールする。反応塔
10で発生したガスはガス菅25を7)丘り、ガスシー
ル槽22を(看てガスメータ23でその発生tt測測定
る。一方、pH?コントクールし念液は、液循環ポンプ
11で反応塔10へ幌す。
Also, p) (by the signal from the sensor, the pump 21 supplies alkaline water from the alkaline tank 20 to the side 19, and controls the pH balance of the water fed to the reaction tower 10. The gas generated in the reaction tower 10 7) Turn the gas tube 25 into the gas seal tank 22 and measure the generated tt using the gas meter 23.Meanwhile, the pH control solution is sent to the reaction tower 10 by the liquid circulation pump 11. .

ポンプ18は培地を連続供給し、培地中に含ま几る有鑓
吻からメタンガスを連続的に発生させる14示の・請合
に培地夕/り17から反応塔10へ培地を共伶するとと
もに、反応の、終了し九廃夜をポンプ18で系外へ排出
する。なお、この実施廃I#、の反応塔10はアクリル
・埒で高さ7!;0喝、4僅f(内v)sowmとじ九
〇 この又6塔10内に予めgoo−tの培地を人1、上記
洗浄しfc砕石を充填し、さらにp H訓炎槽19や各
配管内などの喫竜内に500−の培地を加えこの培地組
成はブドウ瑚;10tt、硫安;ユ0廖。
The pump 18 continuously supplies the culture medium, and continuously generates methane gas from the aphrodisiac contained in the culture medium.In addition, the pump 18 transfers the culture medium from the culture medium tank 17 to the reaction tower 10, and After the reaction is completed, the waste water is discharged out of the system by a pump 18. In addition, the reaction tower 10 of this implementation waste I# is made of acrylic and has a height of 7! ; 0 brewing, 4 f (in v) sowm, 90 Konomata 6 In the tower 10, fill the Goo-T culture medium with 1 person, wash the above and fill with FC crushed stone, and then add the pH cooking tank 19 and each other. A 500-liter culture medium was added to the inside of the pipe, etc., and the composition of the medium was 10 liters of grape vine, 0 liters of ammonium sulfate.

ME SO4・7HxO; 0.5y + F e 5
017H*0;0./y、に嘗HPO,iθg # 、
 KH−P O4iθ2−および酵母エキス;θ10f
/lの水d中に容かしたものをr目いた。
ME SO4・7HxO; 0.5y + Fe 5
017H*0;0. /y, NiiHPO, iθg #,
KH-P O4iθ2- and yeast extract; θ10f
I found the rth solution in d/l of water.

&4’tにINのNa0Ht用いてpHを7≠に、:4
節し、1品1f:53°Cでユ・1間1(転(イ盾漿)
した。
&4't, use IN Na0Ht to adjust pH to 7≠: 4
Seed, 1 item 1f: 53°C
did.

この′漏、鵠列の桔昶をガス竜・上置として第弘図に・
云した。/4’−日1司の恋ガス拍生散はq、 o g
 tであり、ir、元宅しア’r−ガス中のメタンガス
の、・4度は≠と5〜53.0%でりつt0I框転期間
中の・役化薗た4立は連・砥開始/〜ス日目が一二〇〇
−V以上でめつtが、そののち3日目から一弘・00・
〜−tis。
This 'omission' is shown in the No.
He said. /4'-Hitsuji's love gas beat is q, o g
t, ir, former house, a'r- of the methane gas in the gas, 4 degrees is ≠ and 5 to 53.0%. When the start/~ day is 1200-V or higher, then from the 3rd day, Kazuhiro 00.
~-tis.

−V?示し7toもガス元生、走を1〜知のB us 
wellの公式で炭素椀ヲグルコースとして計疼すると
ガス収−$はゾ’16%で、りつ罠。
-V? Showing 7 to also Gas Motosho, running from 1 to Chi's Bus
Using Well's formula to measure glucose in a carbon bowl, the gas yield is 16%, which is a trap.

[、漬6施yl 2 J r111記[実権ml / Jと老く同じ操作を用いて
畜傾尚賃′吻の処畦にl+2川の中温メタン発酵(37
℃)l鵠孜の上・けみ700社金t〜/21@の抗火石
砕石に侵透さC,リン凌嵯衝液で持込みの有Iil物や
固7、杉→勿を1抑しC碌さ、−+fl r’i己1川
様の襞:纜のLえLちに≦10へ@他とともに充愼して
反応塔10の外筒へ37°CのIEA階金連禰的に共合
することによりp・Hを・2弘に凋哨してlS日聞連・
元連咄を行つtつこの培地ば「火!A列/」と同様で宅
(士で/ツj; Q aLであった。pHのA膿はlN
−NaOHで行なった。
[, Pickling 6 times yl 2 J r111 [Actual power ml/J] Using the same operation as the old one, I added l+2 river medium temperature methane fermentation (37
℃) l Kemi 700 company gold t ~ / 21 @ of anti-fire stone crushed stone penetrated C, Rin Lingke liquid brought in Iil and hard 7, cedar → Naru suppressed by 1 C Strength, -+ fl r'i Self 1 River-like folds: The pure L is immediately ≦ 10 @ Filled with others and transferred to the outer cylinder of the reaction tower 10 at 37 ° C IEA floor sequentially By joining together, P・H will be sent to 2 Hiro, and IS Nikmonren・
The culture medium that performs the original sequence is the same as ``Fire!
- Performed with NaOH.

この連i云期間中に発生したガスの発生状況は第51A
に示し力がその発生・志せはγ05tであり、そのガス
徂戎ハメタンガスが≠工3〜5≠θ%であつt0゛まだ
、硬化イ晟元仙立は、嚇伝浦始/〜二日目は一200T
%V以上であったが、3日目ゆらば一≠00〜−弘5O
−Vを示した。まt、るガス@を清をi+[’C(Jの
Buswellの公式VC17tってグルコースを炭素
娠としてガスの収率を計4すると973%の収率でめっ
た。
The situation of gas generation during this period is shown in 51A.
The force generated and expected is γ05t, and the gas pressure is ≠ 3 ~ 5 ≠ θ%, and t0゛ is still hardened. The first day was 1200T.
%V or more, but on the third day Yurabaichi≠00~-Hiro5O
-V was shown. The gas yield was 973% when the total gas yield was calculated as 4 using Buswell's formula VC17t.

「実施列3」 酌記「実施レリ/」でi妃用し九に魔の反応否10をそ
のまま矢の日から匣用し、抗火石金用体とした固定床を
用いるメタンガス発5メの連伏名転を行なつ之。培地は
水・バ水/を甲ヘブドウ糖;5t +を化&  i  
/  y   、  K*HPO4i  0.g  o
   、KH−PO4:0.2a。
``Implementation sequence 3'' In the cup chronicle ``Implementation Reli/'', I used the 9th devil's reaction 10 as it was from the arrow day, and created a 5 meter methane gas generator using a fixed bed as an anti-fire stone body. He has changed his name over and over again. The medium is water/bath water/glucose;
/y, K*HPO4i 0. go
, KH-PO4:0.2a.

Mg、SOa ・7tI*Oi 0.3 s 、Fe 
SO4’ 7’HmOiO,7gおよびr9母エキス;
0./IIを〕川j、IN−N a OHで培地のpH
を2≠に1簀したのち、/20”c、10分間戎菌処・
屯したものケ用い之。反応塔10内の痣、伐:1cは9
6amL 、砕石も含め几ら容積は720−±50m1
となるようにべ面を調節して4転じt、、なお、奴循虚
ポンプ11による夜の傭attitはg m/min 
(IAに□aL/hr)±13 aj/minの条件に
、4mlした。原料廃水の反応塔10への供冶逮反2よ
び1発液の排出11支は20m/hr士ニー/hrに鷹
面して行tつ化。
Mg, SOa ・7tI*Oi 0.3 s, Fe
SO4'7'HmOiO, 7g and r9 mother extract;
0. /II] Kawaj, IN-N a pH of the medium with OH
After keeping it in a tank for 2≠, /20"C, 10 minutes in the bacterium treatment.
I'll use what I got there. Bruises and cuts in reaction tower 10: 1c is 9
6amL, total volume including crushed stone is 720-±50m1
Adjust the base so that
4 ml was added under the conditions of (□aL/hr to IA) ±13 aj/min. The raw material wastewater discharge to the reaction tower 10 in 11 streams of reactor 2 and 1 liquid was 20 m/hr/hr.

この実弛1PIJのガス発生のタイムコースを第6図に
示し之が、運転i肩、・省弘日目1では低いガスの発生
破であつ九が、6日目からはほぼ1it1日のガス発生
があり、こnは一般的なグルコースのガス@王の約70
%を4読して安定に発生していることを示すものであっ
た。
Figure 6 shows the time course of gas generation for 1 PIJ of actual relaxation. Occurrence occurs, and this is common glucose gas @ King's approximately 70
% was 4, indicating that it was occurring stably.

「発明の効渋」 μ上祝明し友ように、この発明によnば、メタン元非爾
を抗火石の細孔中に1潰した抗火石担体は、M成’+勿
糸のゲルのようにγ−耗することもなく、醍胡、紀定し
て使用できるので、反応塔内のメタン兄酵関連(6のr
4不譲複を1着)川でせ、画体の流出を防止し、有・・
梵吻のメタン化の4L位d漬当りの反応速度を高め効襲
的、@済的にメタン會生職することができる。
``Efficacy of the Invention'' I would like to congratulate my friend on this invention.According to this invention, the anti-flinder carrier in which one methane element is crushed into the pores of the anti-flinder is a gel of M-sei'+Museito. Since it can be used without γ-depletion as in the case of methane fermentation in the reaction tower (6 r
4. 1st place for non-transferable copies) to prevent the leakage of the paintings by putting them in the river, and...
It is possible to increase the reaction rate per 4L of methanation of the Sanskrit proboscis, and to effectively and economically produce methane.

【図面の簡単な説明】[Brief explanation of drawings]

tg1図はこの棺明−シ仝虐の概略、41戊図、第二図
は同・硯、従の要部r簿成図、楓3図は+dl :曵C
火の一足1.屯が1を示す偶成図、gq図はこの元明方
去の第1の゛曵穐例におけるガス発生のタイムコースを
ボすグラフ、!g5図は同第ツの実施191jに2ける
ガス発生のタイムコースを示すグラフ、第6図は同第3
の実b* l+!Iにおけるガス発生のタイムコースを
示すグラフ、第71j4は従来のメタンガス発酵慢[イ
の・偉成図である。 9・・・・・・抗火石、10・・・・・・反応塔、10
a・・・・・・1i応塔の下端入口、10b・・・・・
・反応塔の上端排出口、13・・・・・・インレット・
カバー、  13 B・・・・・・イン・レッド・カバ
ーの下面多孔板、L・・・・・・反応塔の砧さ、R・・
・・・・反応塔の#−径、r・・・・・・インレット・
カバーの下面3孔版の半イセ。 第2図
Figure tg1 is an outline of this coffin-shi brutality, Figure 41, Figure 2 is the same inkstone, and the main part of the sub-registration map, Figure 3 of Kaede is +dl: 曵C
A foot of fire 1. The gq diagram, a conjunctive diagram in which the tun is 1, is a graph showing the time course of gas generation in the first example of the Yuanminggao era. Figure g5 is a graph showing the time course of gas generation in implementation 191j of the same Part 2, and Figure 6 is a graph showing the time course of gas generation in the same Part 3 implementation.
fruit b* l+! Graph 71j4 showing the time course of gas generation in I is a diagram of conventional methane gas fermentation. 9... Anti-firestone, 10... Reaction tower, 10
a...1i Lower end entrance of the tower, 10b...
・Top end outlet of the reaction tower, 13...Inlet・
Cover, 13 B... Bottom perforated plate of in-red cover, L... Thinness of reaction tower, R...
...#-diameter of reaction tower, r...Inlet
The lower part of the cover is a 3-stencil version. Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)メタン発酵菌を所定粒径の抗火石中に共棲、増殖
させ、これをメタン発酵バイオリアクターとし、これら
抗火石層中に廃水を流すことによつてメタンガスを生産
することを特徴とする発酵によるメタンガス製造方法。
(1) Methane-fermenting bacteria are allowed to coexist and proliferate in flint-resistant layers of a predetermined particle size, this is used as a methane-fermenting bioreactor, and methane gas is produced by flowing wastewater into these flint-resistant layers. A method for producing methane gas by fermentation.
(2)反応塔内部に抗火石を充填するとともに、これら
抗火石中にメタン発酵菌を共棲、増殖させ、この反応塔
の下端に設けた廃水入口から内部に廃水を流入するとと
もに上端に設けた処理水排出口から処理水を排出するこ
とによりメタンガスを得ることを特徴とする発酵による
メタンガス製造装置。
(2) The inside of the reaction tower was filled with anti-flinder stones, methane-fermenting bacteria coexisted and multiplied in these anti-flinder stones, and wastewater was allowed to flow into the reaction tower from the waste water inlet provided at the bottom end of the reaction tower, and at the top end. A methane gas production device by fermentation, characterized in that methane gas is obtained by discharging treated water from a treated water outlet.
(3)反応塔に充填する抗火石の大きさを8mm〜50
mmの一辺を持つ径寸法としたことを特徴とする特許請
求の範囲第2項記載の発酵によるメタンガス製造装置。
(3) The size of the anti-flame stones filled in the reaction tower is 8 mm to 50 mm.
The apparatus for producing methane gas by fermentation according to claim 2, characterized in that the diameter has a diameter with one side of mm.
(4)反応塔が円筒形である特許請求の範囲第2項また
は第3項のいずれかに記載の発酵によるメタンガス製造
装置。
(4) The apparatus for producing methane gas by fermentation according to claim 2 or 3, wherein the reaction tower is cylindrical.
(5)反応塔の高さ(L)と直径(2R)との比(L/
2R)を1〜20に設定し、同反応塔の下端入口近傍の
内部に下面が4〜10メッシュの多孔板からなる円錐状
のインレット・カバーを設け、このインレット・カバー
の下面多孔板の半径(r)を前記反応塔の半径(R)に
対してπ_r^2/x_R^2=0.2〜0.4となる
ように設定したことを特徴とする特許請求の範囲第4項
に記載の発酵によるメタンガス製造装置。
(5) Ratio (L/
2R) is set to 1 to 20, and a conical inlet cover consisting of a perforated plate with a lower surface of 4 to 10 mesh is provided inside the reaction column near the lower inlet, and the radius of the perforated plate on the lower surface of the inlet cover is (r) is set to be π_r^2/x_R^2=0.2 to 0.4 with respect to the radius (R) of the reaction tower, as set forth in claim 4. Methane gas production equipment by fermentation.
JP59232986A 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation Granted JPS61111197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232986A JPS61111197A (en) 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232986A JPS61111197A (en) 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation

Publications (2)

Publication Number Publication Date
JPS61111197A true JPS61111197A (en) 1986-05-29
JPH0476754B2 JPH0476754B2 (en) 1992-12-04

Family

ID=16948001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232986A Granted JPS61111197A (en) 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation

Country Status (1)

Country Link
JP (1) JPS61111197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169094A (en) * 1987-10-08 1990-06-29 Gist Brocades Nv Waste water-purifying treatment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319668A (en) * 1976-08-04 1978-02-23 Masato Hara Treating of excrement of cattle and pig by using water sprinkled filtering bed comprising ceramic stones
JPS5416263U (en) * 1977-07-04 1979-02-02
JPS562888A (en) * 1979-06-18 1981-01-13 Hiroshi Shimizu Contact oxidation type purification apparatus using chaff smoked charcoal or the like
JPS5759690A (en) * 1980-09-30 1982-04-10 Takenaka Komuten Co Ltd Catalytic filter for purification of waste water by catalytic oxidation
JPS58119897U (en) * 1982-02-12 1983-08-15 原 正登 Sewage purification device with immersed "filter" floor that doubles as drainage gutter
JPS59173197A (en) * 1983-03-24 1984-10-01 Chiyoda Chem Eng & Constr Co Ltd Fermentating method of organic waste liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416263B2 (en) * 1972-11-11 1979-06-21

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319668A (en) * 1976-08-04 1978-02-23 Masato Hara Treating of excrement of cattle and pig by using water sprinkled filtering bed comprising ceramic stones
JPS5416263U (en) * 1977-07-04 1979-02-02
JPS562888A (en) * 1979-06-18 1981-01-13 Hiroshi Shimizu Contact oxidation type purification apparatus using chaff smoked charcoal or the like
JPS5759690A (en) * 1980-09-30 1982-04-10 Takenaka Komuten Co Ltd Catalytic filter for purification of waste water by catalytic oxidation
JPS58119897U (en) * 1982-02-12 1983-08-15 原 正登 Sewage purification device with immersed "filter" floor that doubles as drainage gutter
JPS59173197A (en) * 1983-03-24 1984-10-01 Chiyoda Chem Eng & Constr Co Ltd Fermentating method of organic waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169094A (en) * 1987-10-08 1990-06-29 Gist Brocades Nv Waste water-purifying treatment

Also Published As

Publication number Publication date
JPH0476754B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
JP3302227B2 (en) Wastewater treatment device and wastewater treatment method
CN108975615B (en) Biogas slurry ecological treatment breeding system
WO2013132481A1 (en) Aquaculture system
CN104193074B (en) The process device of a kind of high concentration hard-degraded organic waste water and processing method
CN107232102A (en) A kind of method that Babylonia areolata (Lamarck) is raised together with hojothuria leucospilota, fragrant plant mentioned in ancient texts batch production
CN103159380A (en) Zero-energy-consumption sewage treatment system and method for constructed wetlands
CN106630026A (en) Experimental device and method for treating antibiotic wastewater through iron-carbon micro-electrolysis method
CN111039514A (en) Integrated domestic sewage ecological cycle application system device and treatment method thereof
CN103030247A (en) Method for treating sewage by organism-soil infiltration and device for realizing method
CN2825645Y (en) Combined tank type marsh gas and marsh liquid generator
CN100509659C (en) Zero-discharging treatment method of regenerated waste water for paper making
CN1821123A (en) Device and method for anaerobic treating waste water and method of propagating active granular bacteria strain at normal termperature
Russo et al. An anaerobic filter applied to the treatment of distillery wastewaters
CN104211262B (en) Sewage ecological treatment system
CN105906160A (en) Unpowered sewage treatment device
JPS61111197A (en) Method and device for producing gaseous methane by fermentation
CN206828316U (en) A kind of cleaning system of marine alga processing sewage
CN109287538A (en) A kind of crab cultivation water pollution control system and its application
CN208791434U (en) A kind of chicken farm sewage disposal device
CN209292181U (en) A kind of rural domestic sewage treating device
CN209412034U (en) A kind of landscape type Sewage from Ships Ecological Disposal integrated apparatus
CN106976972A (en) A kind of bioreactor
CN208166800U (en) A kind of ecological treatment system of marine animal breeding wastewater
CN205398374U (en) Factory sewage&#39;s processing system
CN100486902C (en) Process for treating internal and external circulation type drinking water