JPH0476754B2 - - Google Patents

Info

Publication number
JPH0476754B2
JPH0476754B2 JP23298684A JP23298684A JPH0476754B2 JP H0476754 B2 JPH0476754 B2 JP H0476754B2 JP 23298684 A JP23298684 A JP 23298684A JP 23298684 A JP23298684 A JP 23298684A JP H0476754 B2 JPH0476754 B2 JP H0476754B2
Authority
JP
Japan
Prior art keywords
methane
reaction tower
wastewater
flint
methane gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23298684A
Other languages
Japanese (ja)
Other versions
JPS61111197A (en
Inventor
Seiji Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP59232986A priority Critical patent/JPS61111197A/en
Publication of JPS61111197A publication Critical patent/JPS61111197A/en
Publication of JPH0476754B2 publication Critical patent/JPH0476754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は都市の生活廃水や工場廃水などを原
料とし、嫌気菌による発酵(メタン発酵)によつ
てメタンガスを製造する方法および装置に関する
ものである。
[Detailed Description of the Invention] "Field of Industrial Application" This invention relates to a method and apparatus for producing methane gas by fermentation (methane fermentation) using anaerobic bacteria using urban wastewater, industrial wastewater, etc. as raw materials. be.

「従来の技術」 従来の発酵によるメタンの製造方法は、廃水を
処理するための単なる一手段として行なわれてい
たもので、第7図に示すような装置により行なつ
ていた。
``Prior Art'' The conventional method for producing methane by fermentation was carried out as a mere means for treating wastewater, and was carried out using an apparatus as shown in FIG.

まずポンプ1により送られてきた原料廃水を返
送汚泥と混合して熱交換器2に送り加熱する。加
熱した廃水は発酵槽3中に入れる。この発酵槽3
は撹拌装置3aを持ち、これによつて汚泥と原料
廃水とを混合する。この発酵槽3からの廃水はそ
の一部をポンプ4を経て前記原料廃水に混合させ
る以外、脱水機5により汚泥を分離したのち処理
廃水として放流する。この脱水機5で分離、濃縮
された汚泥の一部は、ポンプ6により原料廃水と
混合し、熱交換器2を経て前記発酵槽3へ戻す。
また、前記発酵槽3で生じたメタンガスは、ブー
スター7を経てガスホルダー8に貯留され、貯留
ガスの一部は前記熱交換器2に供給される加熱蒸
気または湯をつくるために使用する。なお、上記
構成において、脱水機5のかわりに沈澱分離槽等
を用いることもある。
First, raw wastewater sent by the pump 1 is mixed with return sludge and sent to the heat exchanger 2 where it is heated. The heated wastewater is placed in fermenter 3. This fermenter 3
has a stirring device 3a, which mixes the sludge and raw wastewater. A part of the wastewater from the fermenter 3 is mixed with the raw material wastewater through a pump 4, and after separating sludge with a dehydrator 5, it is discharged as treated wastewater. A part of the sludge separated and concentrated by this dehydrator 5 is mixed with raw material wastewater by a pump 6 and returned to the fermentation tank 3 via a heat exchanger 2.
Further, methane gas generated in the fermenter 3 passes through a booster 7 and is stored in a gas holder 8, and a part of the stored gas is used to generate heated steam or hot water to be supplied to the heat exchanger 2. In addition, in the said structure, a sedimentation separation tank etc. may be used instead of the dehydrator 5.

「発明が解決しようとする問題点」 従来のメタン製造方法および装置は、上記した
ように廃水処理の一手段として用いられたもの
で、発酵槽3中で高い懸濁固形物SS濃度に保ち、
この高いSS濃度の汚泥と廃水とを良く混合する
ために強い撹拌装置3aを保有していた。また、
発酵槽3から取りだした排出水は高いSS濃度で
あるためと、汚泥を種菌として発酵槽3へ返送す
るために大きな沈澱分離槽や脱水機5などの分離
装置を設けていた。このように、従来の方法およ
び装置では、発酵槽3の撹拌、汚泥種菌の分離、
返送、さらに廃水の加熱などの動力費やそれに伴
なう設備費が大きくなつてしまうという問題があ
つた。
"Problems to be Solved by the Invention" The conventional methane production method and apparatus were used as a means of wastewater treatment as described above, and the method and apparatus for producing methane were to maintain a high concentration of suspended solids SS in the fermenter 3,
A strong stirring device 3a was provided in order to thoroughly mix this high SS concentration sludge and wastewater. Also,
Separation devices such as a large settling tank and a dehydrator 5 were installed because the discharged water taken out from the fermenter 3 had a high SS concentration and because the sludge was returned to the fermenter 3 as a starter. As described above, in the conventional method and apparatus, stirring of the fermenter 3, separation of sludge starter bacteria,
There was a problem in that the power costs for returning the wastewater, heating the wastewater, and the associated equipment costs increased.

この発明は上記事情に鑑みてなされたもので、
エネルギー利用を目的としたメタンガスを経済的
に生産し、かつ産業廃水や生活廃水などの水処理
も合わせて行なうことのできる発酵によるメタン
の製造方法および装置を提供することを目的とす
るものである。
This invention was made in view of the above circumstances,
The purpose of the present invention is to provide a method and apparatus for producing methane by fermentation, which can economically produce methane gas for energy use and can also treat water such as industrial wastewater and domestic wastewater. .

「問題点を解決するための手段」 上記従来の問題点を解決するためにはランニン
グコストの大きい発酵槽の撹拌をやめる、メタン
発酵菌を含むSS汚泥の発酵槽への返送をやめる、
などの抜本的な解決が必要となる。また、従来、
メタン発酵は反応速度が遅いために大きな発酵槽
が必要であり、そのために多量の廃水を装置内に
滞留していたが、この反応速度を高めるために
は、即ち設備を小さくするためには、発酵槽中の
メタン発酵菌の濃度を高くする解決策が必要とな
る。そのためには、発酵槽内のメタン発酵菌の濃
度を高く維持し、処理した廃水と共に発酵槽から
流れでないようにすることが要求される。これを
実施するためには最近、特に医薬品やフアインケ
ミカル、アミノ酸の生産などで応用され始めたバ
イオリアクターの概念、即ち特殊な担体中に反応
にあずかる微生物またはその酵素を包含するよう
な方法を応用することが考えられる。従来、この
ような担体としてアミノ酸などの生産に実際に使
用されている担体(アルギン酸塩、寒天、κ−カ
ナギーランゲルなど)があるが、これらは高価な
もので、とても廃水処理や廃水からのメタン発酵
を目的とするような施設への適応は考えられな
い。一方、発酵槽の容積が大きいことから機械
的、物理的強度のあるセラミツクス、プラスチツ
クス成形物、熱焼成した天然加工物(やきもの)
などの使用が検討されている。しかし、これらの
ものは加工費がかかる点から経済的に使用できな
い。
"Means to solve the problems" In order to solve the above conventional problems, it is necessary to stop stirring the fermenter, which has high running costs, and stop returning SS sludge containing methane-fermenting bacteria to the fermenter.
A drastic solution is required. Also, conventionally,
Methane fermentation requires a large fermenter due to its slow reaction rate, and as a result, a large amount of wastewater remains in the equipment.In order to increase this reaction rate, that is, to reduce the size of the equipment, A solution is needed to increase the concentration of methane-fermenting bacteria in the fermenter. To this end, it is required to maintain a high concentration of methane-fermenting bacteria in the fermenter and to prevent them from flowing out of the fermenter along with the treated wastewater. In order to carry out this, the concept of a bioreactor, which has recently begun to be applied especially in the production of pharmaceuticals, fine chemicals, and amino acids, is used, in which the microorganisms or their enzymes participating in the reaction are contained in a special carrier. It is possible to apply this method. Conventionally, there are carriers (alginate, agar, κ-kanagylan gel, etc.) that have been actually used in the production of amino acids, etc., but these are expensive and very difficult to treat and remove from wastewater. Adaptation to facilities for the purpose of methane fermentation is unthinkable. On the other hand, due to the large volume of the fermentation tank, ceramics, plastic molded products, and heat-fired natural products (ceramics) have mechanical and physical strength.
The use of , etc. is being considered. However, these materials cannot be used economically due to high processing costs.

これに対し、本発明者らは、メタン発酵にバイ
オリアクターを適応し、これを工業的、経済的に
成立させることを目標として、天然物そのまま、
または安価な廃材などの中からメタン発酵に適応
しうる担体がないものか鋭意調査、検討を重ねた
ところ、石の中に持つ孔が比較的大きく微生物が
付着、共棲するには適当と思われず、また嵩比重
が小さくて発酵槽中で浮いてしまい固定化できな
いのではないかと考えられていた抗火石がメタン
発酵バイオリアクターの担体として有効であるこ
とを見いだした。
In contrast, the present inventors applied a bioreactor to methane fermentation, aiming to make it industrially and economically viable.
After extensive investigation and consideration into whether there was a carrier suitable for methane fermentation among inexpensive waste materials, we found that the pores in the stone were relatively large and did not seem to be suitable for microorganisms to attach to and coexist with. We also found that anti-flame rock, which had a low bulk specific gravity and was thought to float in the fermenter and could not be immobilized, is effective as a carrier for methane fermentation bioreactors.

すなわち、抗火石は天然の発泡体であるためエ
ネルギーのいる加熱処理は不要であり、また、食
品加工廃液処理や畜産廃棄物の処理に用いていた
メタン発酵菌を抗火石中に共棲、増殖させること
により模擬廃液からメタンを発生させることがで
きるとともに、これらの液を連続的に抗火石から
なるバイオリアクター中に流しても増殖が非常に
遅いと言われているメタン発酵菌のウオツシユ・
アウト現象も起きず、充分にメタン発酵菌が抗火
石中に共棲し、模擬廃液中の炭素源をメタンガス
等に変換していることが明らかとなつた。
In other words, since anti-flame stone is a natural foam, it does not require energy-intensive heat treatment, and methane-fermenting bacteria, which were used to treat food processing waste liquids and livestock waste, can coexist and multiply in anti-flame stone. This not only makes it possible to generate methane from simulated waste fluids, but also to stimulate the growth of methane-fermenting bacteria, which are said to grow very slowly even when these fluids are continuously poured into a bioreactor made of anti-flint rock.
No out-of-water phenomenon occurred, and it became clear that methane-fermenting bacteria coexisted in the anti-flinder rock and converted the carbon source in the simulated waste liquid into methane gas, etc.

つまり、本発明に係る発酵によるメタンガス製
造装置は、メタン発酵菌を所定粒径の抗火石中に
共棲、増殖させ、これをメタン発酵バイオリアク
ターとし、これら抗火石層中に廃水を流すことに
よつてメタンガスを生産するものである。このメ
タンガス製造装置は、第1図に示すように所定寸
法(8mm〜50mmの一辺を持つ径)の抗火石9を反
応塔10の中に充填し、この抗火石9中にメタン
発酵菌を共棲、増殖させ、この反応塔10の下端
入口10aから内部に廃水をポンプ11により流
入させるとともに上端の排出口10bから排出さ
せ、発生したメタンガスを反応塔10上端のガス
排出口10cより取りだすように構成されたもの
である。なお、第1図において、符号12は反応
塔10を加熱するための湯を供給する恒温槽を示
すものである。
In other words, the apparatus for producing methane gas by fermentation according to the present invention allows methane-fermenting bacteria to coexist and grow in flint-resistant layers of a predetermined particle size, which is used as a methane-fermenting bioreactor, and wastewater is poured into these flint-resistant layers. This produces methane gas. As shown in Fig. 1, this methane gas production device is constructed by filling a reaction tower 10 with anti-flinder stones 9 of a predetermined size (diameter with one side of 8 mm to 50 mm), and allowing methane-fermenting bacteria to coexist in the anti-flame stones 9. , the reaction tower 10 is configured to allow waste water to flow into the interior from the lower end inlet 10a of the reaction tower 10 using a pump 11 and to be discharged from the upper end outlet 10b, and to take out the generated methane gas from the gas exhaust port 10c at the upper end of the reaction tower 10. It is what was done. In FIG. 1, reference numeral 12 indicates a constant temperature bath that supplies hot water for heating the reaction tower 10.

また、上記装置において良好なる効果を得るた
めには、上記反応塔は次に述べるような構造とす
ることが大切である。すなわち、第2図に示すよ
うに、反応塔10を高さLと直径2Rとの比
(L/2R)が1〜20(望ましくは5〜10)の円筒
状となるように設定し、同反応塔10の下端入口
10a近傍内部に下面が砕石に入つてこないよう
な金網等の多孔板13aからなる円錘状のインレ
ツト・カバー13を設け、このインレツト・カバ
ー13の下面多孔板13aの半径rを前記反応塔
10の半径Rに対しπr2/πR2=0.2〜0.4となるよ
うに設定する必要がある。なお、図中符号10d
は担体(抗火石)補給口を示すものであり、13
bはインレツト・カバー13内のヒータを示すも
のであり、14は、充填された抗火石層15の上
端を押えるための金網等の多孔板を示すものであ
り、16は抗火石層15の上端外縁部から処理廃
液が漏出せず、上記多孔板14から流出し、排出
口10bから外部に取り出すようにするダウン・
カマーを示すものである。また、この反応塔10
において、その下部は内壁面の垂直面に対する角
度θを45°とした円錘状とすることが望ましいが、
通常の容器に用いられる鏡板でもよい。
Furthermore, in order to obtain good effects in the above-mentioned apparatus, it is important that the above-mentioned reaction tower has a structure as described below. That is, as shown in FIG. 2, the reaction tower 10 is set to have a cylindrical shape with a ratio of height L to diameter 2R (L/2R) of 1 to 20 (preferably 5 to 10). A conical inlet cover 13 made of a perforated plate 13a such as a wire mesh is provided in the vicinity of the lower end inlet 10a of the reaction tower 10 to prevent the lower surface from entering the crushed stones. It is necessary to set r to the radius R of the reaction tower 10 so that πr 2 /πR 2 =0.2 to 0.4. In addition, the reference numeral 10d in the figure
indicates the carrier (anti-flinder) supply port, and 13
b indicates a heater in the inlet cover 13; 14 indicates a perforated plate such as a wire mesh for pressing the upper end of the filled anti-flinder layer 15; and 16 indicates the upper end of the anti-flinder layer 15. A down-container is provided in which the treated waste liquid does not leak from the outer edge, flows out from the perforated plate 14, and is taken out from the discharge port 10b.
It shows the cummer. In addition, this reaction tower 10
In this case, it is desirable that the lower part is conical with an angle θ of 45° with respect to the vertical plane of the inner wall surface.
An end plate used for ordinary containers may be used.

また、前記抗火石にメタン発酵菌を付着させる
際には、メタン発酵廃液などのメタン発酵菌を含
有する液中に、抗火石を浸した状態で、減圧処理
し、抗火石の細孔中の空気とメタン発酵菌を含有
する液を置換させ、抗火石の細孔中の空気を脱気
すると共に、細孔中にメタン発酵菌を流入させ
る。
In addition, when attaching methane-fermenting bacteria to the flint-proofing stone, the flint-proofing stone is immersed in a liquid containing methane-fermenting bacteria, such as methane fermentation waste liquid, and then treated under reduced pressure to remove the pores in the flint-proofing stone. The air and the liquid containing the methane-fermenting bacteria are replaced, the air in the pores of the anti-flinder stone is degassed, and the methane-fermenting bacteria are allowed to flow into the pores.

上記構成において、抗火石9の粉砕寸法を1辺
が8mm〜50mmとなるように設定したのは、メタン
ガスの発酵自体には8mm以下の砕石を用いても問
題はないが、8mm以下の砕石を使用すると反応塔
10中の空隙率が減少しすぎるため発生したガス
の通過が困難になつて支障を生ずるからであり、
逆に一辺が50mm以上の砕石を使用すると廃液の均
一な流通が困難になるからである。
In the above configuration, the crushing dimensions of the firestone 9 are set to be 8 mm to 50 mm on one side. Although there is no problem in using crushed stones of 8 mm or less for the fermentation of methane gas itself, crushed stones of 8 mm or less are used. This is because if used, the porosity in the reaction tower 10 will decrease too much, making it difficult for the generated gas to pass through and causing problems.
On the other hand, if crushed stone with a side of 50 mm or more is used, it will be difficult to distribute the waste liquid uniformly.

また、反応塔10の形状、寸法を高さLと直径
2Rとの比(L/2R)が1〜20としたのは、
(L/2R)を1以下とすると直径方向に分布す
る上向きの廃水流の線速度を均一に維持すること
がむづかしくなり、(L/2R)が20以上となる
と上記線速度の均一な維持は容易となるが必要と
する揚水エネルギーが大きくなり、揚水コスト、
反応塔の強度上対応がむづかしくなるからであ
る。
In addition, the shape and dimensions of the reaction tower 10 are set so that the ratio of height L to diameter 2R (L/2R) is 1 to 20.
If (L/2R) is less than 1, it will be difficult to maintain a uniform linear velocity of the upward wastewater flow distributed in the diametrical direction, and if (L/2R) is greater than 20, it will be difficult to maintain a uniform linear velocity of the upward wastewater flow distributed in the diametrical direction. Maintenance is easier, but the pumping energy required increases, pumping costs,
This is because the strength of the reaction tower makes it difficult to deal with it.

また、インレツト・カバー13の下面多孔板1
3aのメツシユを4〜10としたのは、前記寸法の
抗火石9がインレツト・カバー13内に入り込ま
ないようにするためであり、10メツシユ以下にす
ると廃水の流れがスムースに行なわれなくなるた
めである。
In addition, the lower perforated plate 1 of the inlet cover 13
The reason why the number of meshes in 3a is set to 4 to 10 is to prevent the anti-flame rock 9 of the above dimensions from entering the inlet cover 13, and if it is set to less than 10 meshes, the waste water will not flow smoothly. be.

さらに、インレツト・カバー13の下面多孔板
13aの半径rと反応塔10の半径Rとの関係を
πr2/πR2=0.2〜0.4としたのは、この範囲外に設
定すると、インレツト・カバー13から反応塔1
0内に流入された廃水の流れが均一にならないた
めである。
Furthermore, the reason why the relationship between the radius r of the lower perforated plate 13a of the inlet cover 13 and the radius R of the reaction tower 10 is set to πr 2 /πR 2 =0.2 to 0.4 is because if it is set outside this range, the inlet cover 13 From reaction tower 1
This is because the flow of wastewater flowing into the tank is not uniform.

なお、上記反応塔10の使用にあたつて重要な
ことは、反応塔10の中での溶解有機物と担体抗
火石9との接触を良くするために、反応塔10へ
の原料廃水の導入は反応塔10断面での平均線速
度として100mm/hr以上望ましくは300mm/hr以上
が必要である。この場合の流量は、例えば直径
2mの反応塔であれば、線速度300mm/hrの時、1
m2/hrであり、きわめて小さな動力で運転できる
ことがわかる。
It is important to note that when using the reaction tower 10, in order to improve the contact between the dissolved organic matter and the carrier anti-flinder 9 in the reaction tower 10, the introduction of raw waste water into the reaction tower 10 is The average linear velocity in the cross section of the reaction tower 10 is required to be 100 mm/hr or more, preferably 300 mm/hr or more. The flow rate in this case is, for example, the diameter
For a 2m reaction tower, at a linear velocity of 300mm/hr, 1
m 2 /hr, indicating that it can be operated with extremely small power.

「作用」 本発明を構成する抗火石9は、周知のように、
その内部に無数の多孔を持ち、水中における水素
イオン濃度もほぼ中性であり、比較的強固で、大
きな衝撃を加えることがなければ壊れない。ま
た、この抗火石9の破砕面は無定形で凹凸があ
り、無数の多孔と共に微生物の付着、生成には好
ましい環境である。また、メタン発酵菌を抗火石
9の細孔の中に固着した抗火石担体は、有機物系
のゲルのように消耗することもなく、長期、安定
に使用できる。このような抗火石9の担体を用い
ることにより反応塔10内のメタン発酵関連菌の
菌体濃度を増加させ、菌体の流出(ウオツシユ・
アウト)を防止し、有機物のメタン化の単位容積
当りの反応速度を高め効果的、経済的にメタンを
生産することができる。
"Function" As is well known, the anti-flame stone 9 constituting the present invention has the following features:
It has countless pores inside, the hydrogen ion concentration in the water is almost neutral, and it is relatively strong and will not break unless a large impact is applied to it. Further, the crushed surface of the anti-fire stone 9 is amorphous and uneven, and together with numerous pores, it is a favorable environment for the attachment and production of microorganisms. In addition, the anti-flame carrier in which methane-fermenting bacteria are fixed in the pores of the anti-flame stone 9 does not wear out like organic gels and can be used stably for a long period of time. By using such a carrier of anti-flame rock 9, the concentration of bacteria related to methane fermentation in the reaction tower 10 is increased, and the outflow of bacteria (wash, water, etc.) is increased.
This makes it possible to effectively and economically produce methane by increasing the reaction rate per unit volume of methanation of organic matter.

次に、この発明を実施例によりさらに詳しく説
明する。
Next, the present invention will be explained in more detail with reference to Examples.

「実施例 1」 まず、一辺が8〜12mmの抗火石砕石1を高さ
25cm、内容積4のガラス製耐圧容器へ入れた。
一方、1のメスシリンダー中に食品加工廃液処
理に使用していた高温メタン発酵廃液を1注入
し、これを30分間放置してSSを沈降させて高温
メタン菌を含む発酵廃液の上清み700ml得た。こ
の700mlの高温メタン発酵廃液の上清みを上記ガ
ラス製耐圧容器に注ぎ入れ、密栓した後、内部を
ゲージ圧で700Torrまで減圧して抗火石内部にあ
る空気を放出するとともに、高温メタン廃液を内
部に定着させる操作を2回繰返した。この操作に
よつて、最初1.15であつたガラス製耐圧容器の
内容積は、1.0となつた。
"Example 1" First, the crushed firestone 1 with a side of 8 to 12 mm was placed at a height of
It was placed in a 25 cm glass pressure container with an internal volume of 4.
On the other hand, pour 1 batch of high-temperature methane fermentation waste liquid used for food processing waste liquid treatment into graduated cylinder 1, and leave it for 30 minutes to allow the SS to settle. Obtained. Pour 700ml of the supernatant of this high-temperature methane fermentation waste into the glass pressure-resistant container and seal it tightly, then reduce the pressure inside to 700Torr using gauge pressure to release the air inside the anti-flame stone, and remove the high-temperature methane waste. The operation of fixing it inside was repeated twice. Through this operation, the internal volume of the glass pressure container, which was initially 1.15, became 1.0.

このようにして高温メタン廃液に浸した砕石を
ふるいにかけることにより廃液と砕石を分離し、
分離した砕石をよく水切りした。その後、この砕
石をK2HPO4;0.4g,KH2PO4;0.1gを含む水溶
液(緩衝液)1中に入れ、良く洗浄し、その後
ふるいにかけて緩衝液と分離するという操作を2
回繰返した。
In this way, the crushed stone soaked in the high-temperature methane waste liquid is sieved to separate the waste liquid and crushed stone.
The separated crushed stone was thoroughly drained. After that, this crushed stone was placed in an aqueous solution (buffer solution) 1 containing 0.4 g of K 2 HPO 4 and 0.1 g of KH 2 PO 4 , washed well, and then sieved to separate it from the buffer solution.
Repeated several times.

これに対し、第3図のような実施装置を構成し
た。この装置は第2図の装置に培地(原料廃水)
タンク17、ポンプ18、PH調整槽19、アルカ
リ槽20、ポンプ21、ガスシール槽22、ガス
メータ23を次のように動作するように取りつけ
たものである。すなわち、上記PH調整槽19は撹
拌子を内蔵し、PHおよびORP(酸化還元電位)の
センサーを具えたもので、配管24を通じて反応
塔10から液が流入するようにしている。また、
PHセンサーからの信号によりポンプ21はアルカ
リ槽20からアルカリ液を槽19へ供給し、反応
塔10へ戻す液のPHをコントロールする。反応塔
10で発生したガスはガス管25を通り、ガスシ
ール槽22を経てガスメータ23でその発生量を
測定する。一方、PHをコントロールした液は、液
循環ポンプ11で反応塔10へ戻す。ポンプ18
は培地を連続供給し、培地中に含まれる有機物か
らメタンガスを連続的に発生させる運転の場合に
培地タンク17から反応塔10へ培地を供給する
とともに、反応の終了した廃液をポンプ18で系
外へ排出する。なお、この実施装置の反応塔10
はアクリル製で高さ750mm、直径(内径)50mmと
した。
In contrast, an implementation apparatus as shown in FIG. 3 was constructed. This device uses the device shown in Figure 2 as a medium (raw material wastewater).
A tank 17, a pump 18, a PH adjustment tank 19, an alkali tank 20, a pump 21, a gas seal tank 22, and a gas meter 23 are installed so as to operate as follows. That is, the PH adjustment tank 19 has a built-in stirrer and is equipped with PH and ORP (oxidation-reduction potential) sensors, and allows liquid to flow in from the reaction tower 10 through a pipe 24. Also,
Based on the signal from the PH sensor, the pump 21 supplies the alkaline solution from the alkaline tank 20 to the tank 19 and controls the pH of the solution returned to the reaction tower 10. The gas generated in the reaction tower 10 passes through a gas pipe 25, passes through a gas seal tank 22, and the amount of gas generated is measured with a gas meter 23. On the other hand, the pH-controlled liquid is returned to the reaction tower 10 by the liquid circulation pump 11. pump 18
In the case of operation in which a culture medium is continuously supplied and methane gas is continuously generated from organic matter contained in the culture medium, the culture medium is supplied from the culture medium tank 17 to the reaction tower 10, and the waste liquid after the reaction is removed from the system by the pump 18. discharge to. In addition, the reaction tower 10 of this implementation apparatus
is made of acrylic and has a height of 750 mm and a diameter (inner diameter) of 50 mm.

この反応塔10内に予め800mlの培地を入れ、
上記洗浄した砕石を充填し、さらにPH調整槽19
や各配管内などの装置内に500mlの培地を加えた。
800 ml of culture medium was placed in advance in this reaction tower 10,
Filled with the washed crushed stone, and further PH adjustment tank 19
500 ml of culture medium was added to the equipment, such as inside each tube.

この培地組成はブドウ糖;10g,硫安;2.0g,
MgSO4・7H2O;0.5g,FeSO47H2O;0.1g,K2
HPO4;0.8g,KH2PO4;0.2gおよび酵母エキ
ス;0.1gを1の水道中に溶かしたものを用い
た。
The composition of this medium is glucose: 10g, ammonium sulfate: 2.0g,
MgSO 4 7H 2 O; 0.5g, FeSO 4 7H 2 O; 0.1g, K 2
0.8 g of HPO 4 , 0.2 g of KH 2 PO 4 and 0.1 g of yeast extract were dissolved in tap water.

最後に1NのNaOHを用いてPHを7.4に調節し、
温度53℃で2週間運転(循環)した。
Finally, adjust the pH to 7.4 using 1N NaOH,
It was operated (circulated) for two weeks at a temperature of 53°C.

この実施例の結果をガス発生量として第4図に
示した。14日間の総ガス発生量は9.08であり、
また、発生したガス中のメタンガスの濃度は48.5
〜53.0%であつた。運転期間中の酸化還元電位は
運転開始1〜2日目が−200mV以上であつたが、
そののち3日目から−400〜−450mVを示した。
総ガス発生量を周知のBuswellの公式で炭素源を
グルコースとして計算するとガス収率は97.6%で
あつた。
The results of this example are shown in FIG. 4 as the amount of gas generated. The total gas generation amount for 14 days was 9.08,
In addition, the concentration of methane gas in the generated gas was 48.5
It was ~53.0%. The oxidation-reduction potential during the operation period was -200 mV or more on the first to second day of operation, but
After that, it showed -400 to -450mV from the third day.
When the total amount of gas generated was calculated using the well-known Buswell formula using glucose as the carbon source, the gas yield was 97.6%.

「実施例 2」 前記「実施例1」と全く同じ操作を用いて畜産
廃棄物の処理に使用の中温メタン発酵(37℃)廃
液の上清み700mlを8〜12mmの抗火石砕石に浸透
させ、リン酸緩衝液で持込みの有機物や固形物を
洗浄して除き、前記同様の装置の反応塔10へ培
地とともに充填して反応塔10の外筒へ37℃の温
湯を連続的に供給することによりPHを7.4に調整
して15日間連続運転を行つた。この培地は「実施
例1」と同様で全量で1250mιであつた。PHの調
整は1N−NaOHで行なつた。
"Example 2" Using exactly the same procedure as in "Example 1" above, 700 ml of the supernatant of medium-temperature methane fermentation (37°C) waste liquid used for processing livestock waste was infiltrated into 8 to 12 mm anti-firestone crushed stone. , Wash and remove brought-in organic matter and solid matter with a phosphate buffer solution, fill it together with a culture medium into the reaction tower 10 of the same device as described above, and continuously supply hot water at 37°C to the outer cylinder of the reaction tower 10. The pH was adjusted to 7.4 and continuous operation was performed for 15 days. This medium was the same as in "Example 1" and had a total volume of 1250 mι. PH was adjusted with 1N-NaOH.

この運転期間中に発生したガスの発生状況は第
5図に示したがその発生総量は9.05であり、そ
のガス組成はメタンガスが45.5〜54.0%であつ
た。また、酸化還元電位は運転開始1〜2日目は
−200mV以上であつたが、3日目からは−400〜
−450mVを示した。また、総ガス発生量を周知
のBuswellの公式に従つてグルコースを炭素源と
してガスの収率を計算すると97.3%の収率であつ
た。
The state of gas generation during this operation period is shown in FIG. 5, and the total amount of gas generated was 9.05%, and the gas composition was 45.5% to 54.0% methane gas. In addition, the oxidation-reduction potential was -200 mV or more on the first or second day of operation, but from the third day onwards it was -400 mV or more.
It showed -450mV. In addition, when the total gas yield was calculated using glucose as a carbon source according to the well-known Buswell formula, the yield was 97.3%.

「実施例 3」 前記「実施例1」で使用した装置の反応塔10
をそのまま次の日から使用し、抗火石を担体とし
た固定床を用いるメタンガス発酵の連続運転を行
なつた。培地は水道水1中へブドウ糖;5g,
硫安;1g,K2HPO4;0.8g,KH2PO4;0.2g,
MgSO4・7H2O;0.5g,FeSO4・7H2O;0.1gお
よび酵母エキス;0.1gを加え、1N−NaOHで培
地のPHを7.4に調整したのち、120℃、10分間減菌
処理したものを用いた。反応塔10内の総液量は
960ml、砕石も含めた総容積は120ml±50mlとなる
ように液面を調節して運転した。なお、液循環ポ
ンプ11による液の循環量は8ml/min(480ml/
hr)±1.5ml/minの条件に調節した。原料廃水の
反応塔10への供給速度および廃液の排出速度は
20ml/hr±2ml/hrに調節して行なつた。
“Example 3” Reaction tower 10 of the device used in “Example 1” above
was used as it was from the next day, and continuous operation of methane gas fermentation using a fixed bed using anti-flame rock as a carrier was carried out. Culture medium: glucose; 5g in tap water;
Ammonium sulfate; 1g, K 2 HPO 4 ; 0.8g, KH 2 PO 4 ; 0.2g,
Add MgSO 4 7H 2 O; 0.5 g, FeSO 4 7H 2 O; 0.1 g, and yeast extract; 0.1 g, adjust the pH of the medium to 7.4 with 1N-NaOH, and then sterilize at 120°C for 10 minutes. I used the one I made. The total amount of liquid in the reaction tower 10 is
The liquid level was adjusted so that the total volume including crushed stone was 960ml and 120ml±50ml during operation. The amount of liquid circulated by the liquid circulation pump 11 is 8 ml/min (480 ml/min).
hr) ±1.5 ml/min. The feed rate of raw material wastewater to the reaction tower 10 and the discharge rate of waste liquid are
The rate was adjusted to 20 ml/hr±2 ml/hr.

この実施例のガス発生のタイムコースを第6図
に示したが、運転開始4日目までは低いガスの発
生量であつたが、6日目からはほぼ1.6/日の
ガス発生があり、これは一般的なグルコースのガ
ス発生の約90%を連続して安定に発生しているこ
とを示すものであつた。
The time course of gas generation in this example is shown in Figure 6.The amount of gas generated was low until the fourth day of operation, but from the sixth day onwards, gas generation was approximately 1.6/day. This indicates that about 90% of the typical glucose gas generation is occurring continuously and stably.

「発明の効果」 以上説明したように、本発明によれば以下のよ
うな優れた効果を奏することができる。
"Effects of the Invention" As explained above, according to the present invention, the following excellent effects can be achieved.

a 抗火石の大きさを、8mm〜50mmの一辺を持つ
径寸法としたこと、すなわち、破砕された抗火
石の一辺が8mm以上のものを用いることによ
り、反応塔に抗火石を充填した際に、メタン発
酵によつて発生したメタンガスが反応塔の上部
に容易に上昇することができる空隙を確保する
ことができ、また、破砕された抗火石の一辺を
50mm以下とすることにより、抗火石により廃水
の均一な流通が乱されるのを防止することがで
きる。
a By setting the size of the flint rock to a diameter dimension with one side of 8 mm to 50 mm, that is, by using crushed flint rock with a side of 8 mm or more, when filling the reaction tower with the flint rock, , it is possible to secure a void where the methane gas generated by methane fermentation can easily rise to the top of the reaction tower, and one side of the crushed anti-firestone can be secured.
By setting the diameter to 50 mm or less, it is possible to prevent the uniform flow of wastewater from being disturbed by the anti-firestone.

b 抗火石の細孔にメタン発酵菌を付着させるに
際して、抗火石をメタン発酵菌を含有する液中
で減圧処理することにより、抗火石の細孔にお
いて、細孔中の空気とメタン発酵菌を含有する
液とを置換することができる。
b When attaching methane-fermenting bacteria to the pores of the anti-flinder stone, the air in the pores and the methane-fermenting bacteria are removed from the pores of the anti-flinder stone by subjecting the flint stone to a reduced pressure treatment in a liquid containing methane-fermenting bacteria. It is possible to replace the liquid contained therein.

従つて、抗火石の細孔中に効率良くメタン発
酵菌を付着させることができると共に、抗火石
の細孔から効率良く脱気することができる。
Therefore, the methane-fermenting bacteria can be efficiently attached to the pores of the flint rock, and the pores of the flint rock can be efficiently degassed.

すなわち、メタンガス製造装置の最初の運転
開始時に、抗火石をメタン発酵菌の培養液もし
くは廃水等の液中に浸積して、抗火石の表面及
び細孔内にメタン発酵菌を付着させようとした
場合に、細孔内に残留した空気によりメタン発
酵菌の付着が邪魔されるのを防止すると共に、
減圧処理により細孔内の空気とメタン発酵菌を
含有する液とが置換されることで、メタン発酵
菌を細孔内に導いて、極めて短時間の間に増殖
が遅いメタン発酵菌を抗火石に大量に付着させ
ることができる。
That is, when the methane gas production equipment first starts operating, the anti-flinder stone is immersed in a culture solution of methane-fermenting bacteria or a liquid such as waste water in order to cause the methane-fermenting bacteria to adhere to the surface and inside the pores of the anti-flinder stone. In this case, the air remaining in the pores prevents the attachment of methane-fermenting bacteria from being obstructed, and
By replacing the air in the pores with the liquid containing methane-fermenting bacteria through depressurization treatment, the methane-fermenting bacteria are introduced into the pores, and the methane-fermenting bacteria, which grow slowly, can be destroyed in an extremely short period of time. can be attached in large quantities.

また、抗火石を反応塔に充填する際に、抗火
石が空気を含むことにより浮遊してしまうのを
防止して、容易に抗火石を反応塔に充填するこ
とができる。
Moreover, when filling the reaction tower with the flint-proofing stones, the flint-proofing stones can be easily filled into the reaction tower by preventing the flint-proofing stones from floating due to the inclusion of air.

また、嫌気性菌であるメタン発酵菌のメタン
ガスの生産の阻害要因となる酸素を抗火石の細
孔から追い出すことにより、メタンガスの安定
した生産を行なうことができる。
In addition, stable production of methane gas can be achieved by expelling oxygen, which is a factor that inhibits the production of methane gas by anaerobic methane-fermenting bacteria, from the pores of the anti-flinder stone.

c また、反応塔の形状において、高さと直径と
の比を1〜20としたこと、すなわち、前記比を
1以上とすることにより、直径方向に分布する
上向きの廃水流の線速度を均一に維持すること
ができ、また、前記比を20以下とすることによ
り、廃水を上昇させるための揚水エネルギーが
大きくなり過ぎるのを防止し、廃水処理におけ
る揚水コストを許容範囲内にすることができ
る。
c In addition, in the shape of the reaction tower, by setting the height to diameter ratio to be 1 to 20, that is, by setting the ratio to 1 or more, the linear velocity of the upward wastewater flow distributed in the diametrical direction can be made uniform. In addition, by setting the ratio to 20 or less, it is possible to prevent the pumping energy for raising the wastewater from becoming too large, and to keep the pumping cost in wastewater treatment within an allowable range.

d インレツト・カバーの下面多孔板のメツシユ
を4〜10とすること、すなわちメツシユを4以
上とすることにより、前述のようにメタンガス
の容易な流通と廃水の均一な流通を確保するた
めに一辺が8mm〜50mmの大きさにされた抗火石
が下面多孔板に目詰まりするのを防止すること
ができ、また、メツシユを10以下とすることに
よりインレツト・カバーからの廃水の流れをス
ムースに行なうことができる。
d By setting the mesh size of the perforated plate on the lower surface of the inlet cover to 4 to 10, that is, by setting the mesh size to 4 or more, one side of the inlet cover is designed to ensure easy flow of methane gas and uniform flow of waste water. It is possible to prevent the anti-firestones with a size of 8 mm to 50 mm from clogging the bottom perforated plate, and by setting the mesh size to 10 or less, the flow of waste water from the inlet cover is made smooth. I can do it.

すなわち、抗火石の大きさを一辺が8mm〜50
mmのものとすると共に、インレツト・カバーの
下面多孔板のメツシユを4〜10とすることによ
り、初めて、メタンガスと廃水のスムースかつ
均一な流通を確保できる。
In other words, the size of the firestone is 8 mm to 50 mm on one side.
By using a mesh of 4 to 10 mm and a perforated plate on the lower surface of the inlet cover, smooth and uniform distribution of methane gas and wastewater can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明装置の概略構成図、第2図は
同装置の要部構成図、第3図は同装置の一実施例
を示す構成図、第4図はこの発明方法の第1の実
施例におけるガス発生のタイムコースを示すグラ
フ、第5図は同第2の実施例におけるガス発生の
タイムコースを示すグラフ、第6図は同第3の実
施例におけるガス発生のタイムコースを示すグラ
フ、第7図は従来のメタンガス発酵装置の構成図
である。 9……抗火石、10……反応塔、10a……反
応塔の下端入口、10b……反応塔の上端排出
口、13……インレツト・カバー、13a……イ
ンレツト・カバーの下面多孔板、L……反応塔の
高さ、R……反応塔の半径、r……インレツト・
カバーの下面多孔板の半径。
FIG. 1 is a schematic configuration diagram of the device of this invention, FIG. 2 is a configuration diagram of the main parts of the device, FIG. 3 is a configuration diagram showing one embodiment of the device, and FIG. 4 is a first diagram of the method of the invention. A graph showing the time course of gas generation in the example, FIG. 5 is a graph showing the time course of gas generation in the second example, and FIG. 6 is a graph showing the time course of gas generation in the third example. The graph in FIG. 7 is a block diagram of a conventional methane gas fermentation device. 9... Anti-flame stone, 10... Reaction tower, 10a... Lower end inlet of the reaction tower, 10b... Upper end outlet of the reaction tower, 13... Inlet cover, 13a... Lower perforated plate of inlet cover, L ... Height of the reaction tower, R ... Radius of the reaction tower, r ... Inlet...
Radius of the bottom perforated plate of the cover.

Claims (1)

【特許請求の範囲】 1 メタン発酵菌を所定粒径の抗火石中に共棲、
増殖させ、該抗火石を反応塔に充填することによ
りメタン発酵バイオリアクターとしての抗火石層
を形成し、この抗火石層中に廃水を流すことによ
つてメタンガスを生産するメタンガス製造装置で
あつて、 前記反応塔の下端に廃水を流入するための廃水
入口を設けると共に該反応塔の上端に廃水出口を
設け、かつ、該反応塔の高さLと直径2Rとの比
(L/2R)を1〜20に設定し、該反応塔の廃水
入口に下面が4〜10メツシユの多孔板からなる円
錘状のインレツト・カバーを設け、該反応塔に8
mm〜50mmの一辺を持つ径寸法の抗火石を充填し、 該抗火石にメタン発酵菌を共棲させるに際し
て、抗火石がメタン発酵菌を含有する液中に浸さ
れた状態で減圧処理することを特徴とする発酵に
よるメタンガス製造装置。 2 前記反応塔が円筒形である特許請求の範囲第
1項記載の発酵によるメタンガス製造装置。 3 前記インレツト・カバーの下面多孔板の半径
rを前記反応塔の半径Rに対してπr2/πR2=0.2
〜0.4となるように設定したことを特徴とする特
許請求の範囲第1項または第2項記載の発酵によ
るメタンガス製造装置。
[Claims] 1. Methane-fermenting bacteria coexist in anti-flinder stones of a predetermined particle size,
A methane gas production device that produces methane gas by growing and filling a reaction tower with the flint-proofing stone to form a flint-proofing layer as a methane fermentation bioreactor, and flowing wastewater into the flint-proofing layer. , A wastewater inlet for flowing wastewater is provided at the lower end of the reaction tower, and a wastewater outlet is provided at the upper end of the reaction tower, and the ratio (L/2R) of the height L and diameter 2R of the reaction tower is set. A conical inlet cover consisting of a perforated plate with 4 to 10 meshes on the bottom surface is installed at the waste water inlet of the reaction tower, and the reaction tower is set to 8.
When filling anti-flint stones with a diameter of one side of mm to 50 mm and allowing methane-fermenting bacteria to coexist in the anti-flint stones, it is recommended that the anti-flinder stones be subjected to reduced pressure treatment while immersed in a liquid containing methane-fermenting bacteria. A methane gas production device using fermentation. 2. The apparatus for producing methane gas by fermentation according to claim 1, wherein the reaction tower is cylindrical. 3 The radius r of the lower perforated plate of the inlet cover is πr 2 /πR 2 = 0.2 with respect to the radius R of the reaction tower.
The apparatus for producing methane gas by fermentation according to claim 1 or 2, wherein the methane gas production apparatus is set to 0.4.
JP59232986A 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation Granted JPS61111197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232986A JPS61111197A (en) 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232986A JPS61111197A (en) 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation

Publications (2)

Publication Number Publication Date
JPS61111197A JPS61111197A (en) 1986-05-29
JPH0476754B2 true JPH0476754B2 (en) 1992-12-04

Family

ID=16948001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232986A Granted JPS61111197A (en) 1984-11-05 1984-11-05 Method and device for producing gaseous methane by fermentation

Country Status (1)

Country Link
JP (1) JPS61111197A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ226453A (en) * 1987-10-08 1990-04-26 Gist Brocades Nv Anaerobic purification of waste water using granular sludge in fluidised bed process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319668A (en) * 1976-08-04 1978-02-23 Masato Hara Treating of excrement of cattle and pig by using water sprinkled filtering bed comprising ceramic stones
JPS5416263B2 (en) * 1972-11-11 1979-06-21
JPS562888A (en) * 1979-06-18 1981-01-13 Hiroshi Shimizu Contact oxidation type purification apparatus using chaff smoked charcoal or the like
JPS5759690A (en) * 1980-09-30 1982-04-10 Takenaka Komuten Co Ltd Catalytic filter for purification of waste water by catalytic oxidation
JPS59173197A (en) * 1983-03-24 1984-10-01 Chiyoda Chem Eng & Constr Co Ltd Fermentating method of organic waste liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57958Y2 (en) * 1977-07-04 1982-01-07
JPS58119897U (en) * 1982-02-12 1983-08-15 原 正登 Sewage purification device with immersed "filter" floor that doubles as drainage gutter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416263B2 (en) * 1972-11-11 1979-06-21
JPS5319668A (en) * 1976-08-04 1978-02-23 Masato Hara Treating of excrement of cattle and pig by using water sprinkled filtering bed comprising ceramic stones
JPS562888A (en) * 1979-06-18 1981-01-13 Hiroshi Shimizu Contact oxidation type purification apparatus using chaff smoked charcoal or the like
JPS5759690A (en) * 1980-09-30 1982-04-10 Takenaka Komuten Co Ltd Catalytic filter for purification of waste water by catalytic oxidation
JPS59173197A (en) * 1983-03-24 1984-10-01 Chiyoda Chem Eng & Constr Co Ltd Fermentating method of organic waste liquid

Also Published As

Publication number Publication date
JPS61111197A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
CN104649524B (en) A kind of livestock and poultry cultivation sewage water treatment method
CN102754613B (en) Integrated circulating water culture system
US20110100904A1 (en) Method and unit for the purification of wastewater with aerobic granular sludge
JPH02245297A (en) Two-stage treating method of waste water
CN201240972Y (en) Waste water advanced treatment apparatus combining ozone oxidation and downflow type aerating biological filter pool
KR101462033B1 (en) Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery
US4521310A (en) Apparatus and method for the treatment of organic wastes
CN104193074A (en) Device and method for treating high-concentration and degradation-resistant organic waste water
CA2105670A1 (en) Biological reaction processes
CN105948411A (en) Novel industrial wastewater treatment process
JPH0476754B2 (en)
CN106587508B (en) Municipal sewage system and method
CN105692800B (en) A kind of wastewater treatment equipment and method
US3546110A (en) Method and apparatus for treating sewage water by means of flocculation and aeration
KR100974307B1 (en) Sewage, waste water and heavy water treatment system using bioreactor system for microorganism
CN108328866A (en) A kind of biogas slurry treatment system and method
CN104150694A (en) Combined device and method for deeply treating breeding wastewater by adopting ecological method
CN109399859A (en) A kind of sewage disposal system using electrolysis method joint biological treatment
JPS61271090A (en) Treating device for waste water using immobilized microorganism
CN209352636U (en) A kind of central source hybrid mbr
JPH04326995A (en) Anaerobic water treatment apparatus
CN110862184B (en) Oxygen-deficient fluidized bed device for high-concentration nitrate-nitrogen wastewater treatment
JPH07265899A (en) Method of treating oil sludge and organic waste
CN202519084U (en) Porous steel slag filter material sink filter reactor
JPS6167474A (en) Filter-type bioreactor immobilized with anaerobic microorganism