JPS61110567A - Ion flow controlling electrode - Google Patents

Ion flow controlling electrode

Info

Publication number
JPS61110567A
JPS61110567A JP23248084A JP23248084A JPS61110567A JP S61110567 A JPS61110567 A JP S61110567A JP 23248084 A JP23248084 A JP 23248084A JP 23248084 A JP23248084 A JP 23248084A JP S61110567 A JPS61110567 A JP S61110567A
Authority
JP
Japan
Prior art keywords
ion flow
opening
electrode
opening parts
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23248084A
Other languages
Japanese (ja)
Inventor
Makoto Mentani
信 面谷
Hiroyuki Hoshino
星野 坦之
Tomoaki Tanaka
知明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23248084A priority Critical patent/JPS61110567A/en
Publication of JPS61110567A publication Critical patent/JPS61110567A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
    • B41J2/415Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit

Abstract

PURPOSE:To obviate generation of flashes at upper and lower electrodes and prevent control characteristics from being degraded, by setting the diameter of an opening part of at least one of upper and lower electrodes to be larger than the diameter of an opening part for passing an ion flow which is provided in an insulating substrate. CONSTITUTION:The upper and lower electrodes 1, 3 are previously provided with the opening parts 4A, 4C accurately by etching or the like. Thereafter, the insulating substrate 2 is provided with an opening part 4B by drilling, laser machining or the like. By this, no flash is generated at the electrodes 1, 3. When misregister occurs between the position of the opening parts 4A(4C) of the electrodes 1, 3 and the position of the opening parts 4B of the substrate 2, the ion flow passes with the center line connecting the centers of the opening parts of the electrodes 1, 3 as a substantial center of he flow. Accordingly, when the opening parts 4A(4C) are set to be larger than the opening parts 4B and positional accuracy of the opening parts 4A(4C) is set to be high, the opening parts 4B may be formed with a low positional accuracy. Accordingly, control characteristics can be prevented from being degraded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ハードコピー装置であるイオン流書込みに
よる静電記録装置におけるイオン流制御電極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion flow control electrode in an electrostatic recording device using ion flow writing, which is a hard copy device.

〔従来の技術〕[Conventional technology]

第6図〜第8図は従来のこの袖のイオン流制御電極の構
成Plを示し、舘9図はその使用例であり。
6 to 8 show the configuration P1 of the conventional sleeve ion flow control electrode, and FIG. 9 shows an example of its use.

第6図は第9図のイオン流制御電極をコロナ発生用ワイ
ヤ側から見た平面図、第7図は同じく四篭体記録媒体側
から見た平面図、第8図は第6図のA’−A’1liK
よる断面図を表す。
FIG. 6 is a plan view of the ion flow control electrode shown in FIG. 9, seen from the corona generation wire side, FIG. 7 is a plan view of the ion flow control electrode shown in FIG. '-A'1liK
represents a cross-sectional view.

こ4らの図において、1は上部電極、2は絶縁体基板、
3は下部電極、4はイオン流通過用の開口部であり、こ
れらでイオン流制御電極5が構成される。6は誘電体記
録媒体、Tは導電性基板。
In these four figures, 1 is the upper electrode, 2 is the insulator substrate,
3 is a lower electrode, 4 is an opening for ion flow passage, and these constitute an ion flow control electrode 5. 6 is a dielectric recording medium, and T is a conductive substrate.

8はコロトロンシールドケース、9はコロナ発生用ワイ
ヤ、10はイオン流制御パルス、11.12は電源であ
る。
8 is a corotron shield case, 9 is a wire for corona generation, 10 is an ion flow control pulse, and 11.12 is a power source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

まず、イオン流を用いた静電潜像記録の方法を第9図に
よって説明する。
First, a method of recording an electrostatic latent image using an ion stream will be explained with reference to FIG.

第9図に示すようにコpナイオン発生用ワイヤ9とコロ
トロンシールドケース8の関に数KVの高電圧を電源1
1から印加することによりコーナイオン光生用ワイヤ9
から発生したイオンは、コーナイオン光生用ワイヤ9と
対向する導電性基板Tが形成する電界によって、イオン
流制御電極5にあけられた一ロflt14′lk:通過
するが、その通過tは一ヒ部電極1および下部電極3が
形成する電界によって制御される。すなわち、上S電極
1と下部電極3が形成する電界をコロナイオン発生用ワ
イヤ9と4iIt性基板Tで形成する電界と同方向に設
定すれば、イオンは開口部4を通過(1,誘電体記録媒
体6上に静電111偉を形成する。また、下部電極1と
下部電極3が形成する電界を逆にすると、イオンは上部
電極Bcg&収さね静電潜像は形成されない。電界の制
御は電源12およびイオン流制御パルス10により行わ
れる。
As shown in FIG.
Corner ion photogenerating wire 9 by applying from 1
The ions generated from the corner ion photogenerating wire 9 and the electrically conductive substrate T facing each other pass through the hole formed in the ion flow control electrode 5, but the passage t is only one hole. It is controlled by the electric field formed by the lower electrode 1 and the lower electrode 3. That is, if the electric field formed by the upper S electrode 1 and the lower electrode 3 is set in the same direction as the electric field formed by the corona ion generating wire 9 and the 4iIt substrate T, ions pass through the opening 4 (1, dielectric An electrostatic latent image is formed on the recording medium 6.If the electric fields formed by the lower electrode 1 and the lower electrode 3 are reversed, the ions will not be collected by the upper electrode Bcg and no electrostatic latent image will be formed.Control of the electric field. is performed by the power supply 12 and the ion flow control pulse 10.

第6図〜第9図に見られるようK、従来のこの檀イオン
流制御!1111kL極5は上部、下部電極1.3と絶
縁体基板2とが、同じ径の貫通穴を設けて開口部4とし
、ここにイオン流を通す構造となっているため、イオン
流制御電極5の製作の除、開口部4の製作時の穴位置の
ずれ、つまり、ピッチの寸法が斌1Lすると、これがそ
のまま記録時のドツト付置ずれの原因となるという欠点
があり、また。
As shown in Figures 6 to 9, this is the conventional ion flow control! The 1111kL electrode 5 has a structure in which the upper and lower electrodes 1.3 and the insulator substrate 2 are provided with through holes of the same diameter to form an opening 4 through which ion flow is passed. In addition, there is a drawback that if there is a deviation in the hole position during the manufacturing of the aperture 4, that is, if the pitch dimension is 1L, this will directly cause misalignment of dots during recording.

この開口部4をドリル加工等により形成する際K。K when forming this opening 4 by drilling or the like.

上部、下部電極1,3からパリが発生し易く、このため
、電界が乱されて制#特性を著(、<劣化させるという
問題点があった。
Particles tend to occur from the upper and lower electrodes 1 and 3, which causes a problem in that the electric field is disturbed and the control characteristics are significantly deteriorated.

この発明は、上記問題点を解決するためになされたもの
で、製作時の開口部の位置ずれが記録の位置ずれとなら
ず、かつ、開口部のパリにより制御特性が劣化しないイ
オン流制御電極を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and is an ion flow control electrode in which positional deviation of the aperture during manufacturing does not result in positional deviation of recording, and control characteristics are not deteriorated due to paris in the aperture. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

この発明Kかかるイオン流制御電極は、絶縁体基板に設
けたイオン流通過用の開口部の径よりも、上部、下部電
極に設けたイオン流通過用の開口部の少な(とも一方の
径を大きく形成したものである。
The ion flow control electrode according to the present invention has a diameter of the openings for passing ion flows provided in the upper and lower electrodes that are smaller than the diameter of the openings for passing the ions provided in the insulating substrate. It was formed in a large size.

〔作用〕[Effect]

イオン流は上部電極と下flllX&とで形成される電
界の向きと大きさに応じて開口部1通過したり、あるい
は通過を阻止されたりし、vj鬼体記録媒体上に必要な
記録を行う。
The ion flow passes through the opening 1 or is blocked from passing depending on the direction and magnitude of the electric field formed between the upper electrode and the lower fllllX&, and necessary recording is performed on the vj body recording medium.

〔実施例〕〔Example〕

第1図〜第3図はこの発明の一実施f3’Jを示したも
ので、m1図は表面図、第2図は裏面図、第3図は第1
図のA−A線による断面図である。
Figures 1 to 3 show one embodiment of this invention f3'J, where Figure m1 is a front view, Figure 2 is a back view, and Figure 3 is a
It is a sectional view taken along the line AA in the figure.

これらの図で、1〜3は第61〜第9図に示したものと
同じであり、4A、4Cは前記上部、下部[&1,31
C設けた開口部、4Bは前記誘電体基板2に設け1こ開
口部である、 なお、各開口部4八〜4C)k総称する
ときは単に4を用いる。
In these figures, 1 to 3 are the same as those shown in Figures 61 to 9, and 4A and 4C are the upper and lower parts [&1, 31
4B is an opening provided in the dielectric substrate 2. Note that when each opening 48 to 4C)k is collectively referred to, 4 is simply used.

このような構造罠なっているから、例えは上部。This is a structural trap, so the example is the upper part.

下部電m1.3については、あらかじめエツチング等の
方法により開口部4A、4CY正確に形成1、ておき、
その後、絶縁体基板2にドリリングやレーザ加工等圧よ
り開口部4Bをあけるという工IKよれば、上部、下部
側1,3からのパリの発生の可能性をなくすことができ
る。
Regarding the lower electrode m1.3, the openings 4A and 4CY are formed in advance by a method such as etching.
According to the process IK in which the opening 4B is then formed in the insulating substrate 2 by drilling or isopressure laser processing, the possibility of generation of paris from the upper and lower sides 1 and 3 can be eliminated.

第4図は絶縁体基板2の開口部4Bが、上部。In FIG. 4, the opening 4B of the insulator substrate 2 is at the top.

下R1111Km1.3の中央からずれて形成されたイ
オン流制御電極5をコロナイオン発生用ワイヤ側か「)
見た半面図、第5図は第4図のイオン流制御電極5をイ
オン流が通過するときの断面図である。
Place the ion flow control electrode 5 formed offset from the center of the lower R1111Km1.3 on the corona ion generation wire side.
The half-view of FIG. 5 is a cross-sectional view when the ion flow passes through the ion flow control electrode 5 of FIG. 4.

第4図のようK、上部、下部電極1.3の開口部4A(
4C)と絶縁体基板2の開口部4Bの位置がずれた場合
、イオン流は上部、下部電極1゜3の開口部4A(4C
)の中心をほぼ中心とした流れとして通過する。これは
、絶縁体基板2の比誘電率が極端に大きくなく、比誘電
率が5以下楊度であれば十分成立する。したがって、制
御条件を適切に設定し、イオン流制御電極5の開口部4
に流入するイオン流の流束径を絶縁体基板2の開口部4
Bの径よりも小さい状態にしておけば、第4図、第5図
に示(、たよ54m、上部、下部11゜3の開口部4A
、4Cの中心に対して絶縁体基板2の開口部4Bの中心
がずれた場合でも、イオン流の通過位置は影響を受けK
<くなる。
As shown in Fig. 4, the openings 4A (
4C) and the opening 4B of the insulator substrate 2 are misaligned, the ion flow will be caused by the opening 4A (4C) of the upper and lower electrodes 1°3.
) passes through as a flow approximately centered on the center. This is sufficiently true if the dielectric constant of the insulating substrate 2 is not extremely large and the dielectric constant is 5 or less. Therefore, by setting the control conditions appropriately, the opening 4 of the ion flow control electrode 5 is
The flux diameter of the ion flow flowing into the opening 4 of the insulator substrate 2
If it is made smaller than the diameter of B, as shown in Figures 4 and 5
, 4C, even if the center of the opening 4B of the insulating substrate 2 deviates from the center of the opening 4C, the passing position of the ion flow will be affected.
<It becomes.

次にイオン流制御電極5の製作方法について説明する。Next, a method of manufacturing the ion flow control electrode 5 will be explained.

(11上ft11. 下MiKm1. 3ONnf)l
14A、4Cの位置精度を高<」、ておけば、絶縁体基
板2の開口部4Bの位fi1精度は低くても良い利点が
ある。
(11 upper ft11. lower MiKm1. 3ONnf) l
If the positional accuracy of 14A and 4C is kept high, there is an advantage that the fi1 accuracy of the opening 4B of the insulating substrate 2 may be low.

この場合の上部、下部電極1.3の開口部4A、4Cの
形成はマスクを使用し、エツチング等によって行えば容
易に精度を上げることができる。絶縁体基板2の開口部
4Bの穴あけ方法としてはドリリングが代表的であるが
、高い位置精度を得ることは困難であり、この位lit
精度が低くて良いことは大きな利点となる、 (11)上記の実施例は、上部、下部11.3の開[1
部4A、4Cの径がいずれも絶縁体基板2の開口部4B
の径よりも大きくかつ精度よく製作り。
In this case, the openings 4A and 4C of the upper and lower electrodes 1.3 can be formed with ease by etching or the like using a mask, thereby increasing the precision. Drilling is a typical method for making holes in the opening 4B of the insulator substrate 2, but it is difficult to obtain high positional accuracy.
(11) In the above embodiment, the upper and lower parts 11.3 are open [1].
The diameters of portions 4A and 4C are both the same as opening 4B of insulator substrate 2.
It is larger than the diameter of and manufactured with high precision.

た場合について説明し、だが、上部、下部電極1゜3の
いずれかの開口部4A、4Cの径のみ絶縁体基板2の開
口部4Bの径よりも大きくしておいた場合でも、上記説
明内容に近い効果をもたせることかで羨る。具体的には
、製作法としては上部。
However, even if only the diameter of the openings 4A and 4C of either the upper or lower electrode 1°3 is made larger than the diameter of the opening 4B of the insulator substrate 2, the above explanation will still apply. I'm jealous of the fact that it has an effect similar to that of . Specifically, the manufacturing method is the upper part.

下S磁極1.3のいずれか片方に絶縁体基板2の開LJ
部4Bよりも大きい穴をエツチング等で正確に形成して
おき、反対側のwL極面には穴は形成しないでおき、次
にドリル等で、既に穴の形成されている側の反対側の1
に他面から貫通穴をあける工@を用いれば、ドリルの突
入側の面にはもともとパリが出に(いので、全体として
パリのないイオ7151E Ill #電極5を得るこ
とができる。
Open LJ of insulator substrate 2 on either side of lower S magnetic pole 1.3
Precisely form a hole larger than part 4B by etching, etc., leave no hole on the wL pole surface on the opposite side, and then use a drill etc. to drill the hole on the opposite side to the side where the hole has already been formed. 1
If a through-hole is drilled from the other side of the electrode, the surface on the entry side of the drill will originally have burrs, so it is possible to obtain an electrode 5 with no burrs as a whole.

また、イオン流の通過位置に関しては、穴径の大きい方
の電極の開口部の位置tエツチング等により精度高く実
現し、ておけば、もう片面の電極および絶縁体基板20
貫通穴位置のずれKよる通過イオン流の位置ずれはかな
り排除される。
In addition, regarding the passage position of the ion flow, the position of the opening of the electrode with the larger hole diameter can be achieved with high precision by etching, etc., and then the electrode and insulator substrate 20 on the other side
The positional deviation of the passing ion flow due to the positional deviation K of the through hole is largely eliminated.

なお、以上の実施例は、イオン流制御電極5の開口部4
が一直線上に配列されている場合を説明したが、開口部
4が平面的に配列されている場合でも同様に実施可能で
あり、さらK、上記実施例では、上部、下部電極1,3
のうち片方が個別制御(個別電極)、他面が共通制御(
共通ベタ電極)の構成罠なっている場合であるが、他の
構成、151えは開口部4が平面配列になっており、し
かも、上、下面とも2〜16ケの開口部4について共通
電極として上部、下部1[1極1,3vマトリクス方式
で制御する場合の構成でも実施可能である。また、第1
図〜第3図において、イオ7 fltL tll制御電
他5の上9下面を入れ替えた構造でも実施可能である。
Note that in the above embodiment, the opening 4 of the ion flow control electrode 5
Although the case where the openings 4 are arranged in a straight line has been described, it can be implemented in the same way even when the openings 4 are arranged in a plane.
One side has individual control (individual electrodes), and the other side has common control (
However, in other configurations, the apertures 4 are arranged in a plane, and the common electrode is used for 2 to 16 apertures 4 on both the upper and lower surfaces. It is also possible to implement a configuration in which the upper and lower parts are controlled using a 1-pole 1.3-volt matrix method. Also, the first
In FIGS. 3 to 3, it is also possible to implement a structure in which the upper and lower surfaces of the io7, fltL, tll, etc. 5 are replaced.

さらK、絶縁体基板2の開口部4Bの周囲に、ある輪を
持った絶縁体領域が上、下面に露出することによるイオ
ン流制御特性の変化は、絶縁体基板2の開口部4Bの径
と上部、下部電極1,3の開口#4A、4Cの穴径との
比が1:3以下程度であれは実用上問題にならない。
Furthermore, the change in ion flow control characteristics due to the exposure of an insulator region with a certain ring around the opening 4B of the insulator substrate 2 on the upper and lower surfaces is due to the diameter of the opening 4B of the insulator substrate 2. If the ratio between the diameter of the openings #4A and 4C of the upper and lower electrodes 1 and 3 is about 1:3 or less, there is no problem in practical use.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、イオン流制御電極にお
ける絶縁体基板の開口部の径よりも上部。
As described above, the present invention is applied to the ion flow control electrode which is located above the diameter of the opening of the insulator substrate.

下部1[他の少なくとも一方の開口部の径を太き(1、
だので、上s5下部1JL極からのパリの分生がな(製
作可能であり、また、上部、下部電極の開口部の少なく
とも一方の位gjt精度を高くしておけは、絶縁体基板
の開口部と他方の電極の開口部の位置精度が低くても、
記録の際のドツト位置すれを小さくすることができる利
点がある。
Lower part 1 [At least one other opening has a larger diameter (1,
Therefore, it is possible to produce a Paris conduit from the upper s5 lower 1JL pole. Even if the positional accuracy of the opening of the electrode and the other electrode is low,
This has the advantage that the dot position deviation during recording can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のイオン流制御電極の一実施例の平面
図、第2図は同じく裏面図、第3図は同じく第1図のA
−A線による断面図、第4図は動作説明のための平面図
、あ5図は同じく動作説明のための断面図、第6図は従
来のイオン波節[御電極の平面図、第7図は同じく裏面
図、第8図は同じく第6図のA′−八′mKよる断面図
、第9図は従来のイオン流制御電極を用いた記録yA理
図である。 図中、1は下部電極、2は絶縁体基板、3は下部電極、
4A〜4Cは開口部、5はイオン流制御電極である。 第4図 第6図 第7図 第8図 J4.lj、j
FIG. 1 is a plan view of an embodiment of the ion flow control electrode of the present invention, FIG. 2 is a back view, and FIG.
- A sectional view taken along line A, Fig. 4 is a plan view for explaining the operation, Fig. 8 is a sectional view taken along A'-8'mK of FIG. 6, and FIG. 9 is a recording yA diagram using a conventional ion flow control electrode. In the figure, 1 is a lower electrode, 2 is an insulator substrate, 3 is a lower electrode,
4A to 4C are openings, and 5 is an ion flow control electrode. Figure 4 Figure 6 Figure 7 Figure 8 J4. lj,j

Claims (1)

【特許請求の範囲】[Claims] 多数の開口部を形成した絶縁体基板の上面と下面にそれ
ぞれ上部電極と下部電極をそれぞれの開口部を前記絶縁
体基板の開口部に重ねて設け、前記上部電極と下部電極
に印加する電位を制御することによつてイオン流を制御
して静電潜像を形成するイオン流制御電極において、前
記絶縁体基板のイオン流通過用の開口部よりも前記上部
電極または下部電極の開口部の少なくとも一方を大きな
径としたことを特徴とするイオン流制御電極。
An upper electrode and a lower electrode are respectively provided on the upper and lower surfaces of an insulating substrate in which a large number of openings are formed, with the respective openings overlapping the openings of the insulating substrate, and a potential to be applied to the upper electrode and the lower electrode is set. In the ion flow control electrode that forms an electrostatic latent image by controlling the ion flow, at least the opening of the upper electrode or the lower electrode is larger than the opening of the insulator substrate for ion flow passage. An ion flow control electrode characterized in that one side has a large diameter.
JP23248084A 1984-11-06 1984-11-06 Ion flow controlling electrode Pending JPS61110567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23248084A JPS61110567A (en) 1984-11-06 1984-11-06 Ion flow controlling electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23248084A JPS61110567A (en) 1984-11-06 1984-11-06 Ion flow controlling electrode

Publications (1)

Publication Number Publication Date
JPS61110567A true JPS61110567A (en) 1986-05-28

Family

ID=16939964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23248084A Pending JPS61110567A (en) 1984-11-06 1984-11-06 Ion flow controlling electrode

Country Status (1)

Country Link
JP (1) JPS61110567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440942U (en) * 1990-08-06 1992-04-07
EP0812696A1 (en) * 1996-06-11 1997-12-17 Agfa-Gevaert N.V. A printhead structure with specific shield electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484276A (en) * 1977-12-16 1979-07-05 Hitachi Ltd Method of drilling printed circuit base board
JPS57151966A (en) * 1981-03-16 1982-09-20 Konishiroku Photo Ind Co Ltd Electrostatic recorder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484276A (en) * 1977-12-16 1979-07-05 Hitachi Ltd Method of drilling printed circuit base board
JPS57151966A (en) * 1981-03-16 1982-09-20 Konishiroku Photo Ind Co Ltd Electrostatic recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440942U (en) * 1990-08-06 1992-04-07
EP0812696A1 (en) * 1996-06-11 1997-12-17 Agfa-Gevaert N.V. A printhead structure with specific shield electrode

Similar Documents

Publication Publication Date Title
US6106687A (en) Process and diffusion baffle to modulate the cross sectional distribution of flow rate and deposition rate
US6125522A (en) Manufacturing method for electrostatic deflector
DE2727733C2 (en) Electron beam lithography arrangement
DE4202349C2 (en) Cathode sputtering device
DE2149344A1 (en) Method and arrangement for applying an electron beam of a specific shape to precisely arranged areas of an element
DE102015216682B4 (en) INSPECTION PROCEDURE FOR HIDDEN DEVICE FOR HIDING MULTIPLE LOADED PARTICLE RAYS
US4546258A (en) Charged particle beam apparatus
JPS61110567A (en) Ion flow controlling electrode
US3879613A (en) Methods of manufacturing semiconductor devices
DE2505631C3 (en) Electron gun system for a color display tube
US6483117B1 (en) Symmetric blanking for high stability in electron beam exposure systems
US4904873A (en) Method of producing and guiding intensive, large-area ion, electron and x-ray beams
DE2243979B2 (en) Magnetoresistive sensing arrangement with noise suppression
JPS60136141A (en) Charged particle radiation device
DE3010814A1 (en) Multiple path lens for electron beam writing device - has two perforated magnetic plates spaced and combined with focusing system
JPH05109608A (en) Deflecting apparatus of charged particle beam
JPS5911258A (en) Electrostatic latent image writing apparatus for electrostatic recording
JPS61224487A (en) Manufacture of head for ion flow recording
JP2690484B2 (en) Recording device
JPS61224490A (en) Manufacture of head for ion flow recording
JPH02235388A (en) Connection of circuit board
JPS581957Y2 (en) Denshijiyuu
JPS61107700A (en) High frequency multipole linear accelerator
JPS61224489A (en) Manufacture of head for ion flow recording
KR20020039621A (en) Technique for manufacturing an electrostatic element for steering a charged particle beam