JPS61110445A - Dielectric isolation silicon substrate and manufacture thereof - Google Patents

Dielectric isolation silicon substrate and manufacture thereof

Info

Publication number
JPS61110445A
JPS61110445A JP23180884A JP23180884A JPS61110445A JP S61110445 A JPS61110445 A JP S61110445A JP 23180884 A JP23180884 A JP 23180884A JP 23180884 A JP23180884 A JP 23180884A JP S61110445 A JPS61110445 A JP S61110445A
Authority
JP
Japan
Prior art keywords
silicon substrate
wafer
single crystal
crystal silicon
support layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23180884A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ueno
嘉之 上野
Isao Miyata
宮田 伊三雄
Toru Araki
徹 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23180884A priority Critical patent/JPS61110445A/en
Publication of JPS61110445A publication Critical patent/JPS61110445A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To inexpensively and rapidly manufacture by composing a substrate by sintering or fusing fine Si particles or of a sintered fused material. CONSTITUTION:After grooves 16 are formed on a single crystal Si wafer 1, the wafer 1 is washed with water to remove the resist surface on the upper surface, the wafer 1 is then filled in a furnace 20, steam is fed while heating to thermally oxidize the upper surfaces of the grooves 1b and the device forming portion 1a of the wafer 1, thereby forming an SiO2 layer 11. Ultrafine Si power particles are placed in the prescribed thickness on the surfaces 1a, 1b of the wafer 1. It is placed on a refractory plate 22 in this state, filled in a heating furnace 21, the temperature is raised to sinter the ultrafine Si particles accumu lated on the wafer 1, thereby manufacturing a preform 23 of a dielectric isola tion silicon substrate. With the bottom 12 of the wafer 1 of the preform 23 as a reference surface the upper surface 13 of the single crystal silicon substrate reinforcing support layer 3 is formed in parallel with the bottom of the wafer 1 by mirror-polishing.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高耐圧、耐放射線特性にすぐれたシリコンデ
バイス品複数個形成する誘電体分離シリコン基板および
その製造方法に関するつ〈従来の技術〉 tltl分体シリコン基板は、第2図に示すようにトラ
ンジスタ等の素子を作製する単結晶シリコン領域1が二
酸化シリコン膜等のMm体層2で側面と底、面が区切ら
れて周囲から電気的に分離されていわゆるシリコン島1
&を形成し、領域l内に高耐圧、耐放射線特性にすぐれ
た素子を集積できるように構成したものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a dielectrically isolated silicon substrate on which a plurality of silicon devices with high breakdown voltage and excellent radiation resistance characteristics are formed, and a method for manufacturing the same. As shown in FIG. 2, in the tltl split silicon substrate, a single crystal silicon region 1 on which elements such as transistors are fabricated is separated from the sides, bottom, and surface by an Mm body layer 2 such as a silicon dioxide film, and is electrically isolated from the surroundings. The so-called silicon island 1
&, and is configured so that elements with high breakdown voltage and excellent radiation resistance characteristics can be integrated within region l.

このような誘電体分離シリコン基板に求められる性質は
、 ■ 素子を集積するシリコン島1aは、通常厚さが50
μm以下になるので、誘電体膜を介して単結晶シリコン
層を補強支持する層3を有すること。
The properties required of such a dielectrically isolated silicon substrate are: (1) The silicon island 1a on which elements are integrated usually has a thickness of 50 mm.
Since the thickness is less than μm, a layer 3 that reinforces and supports the single crystal silicon layer via a dielectric film is provided.

■ この補強支持体層3が、デバイスを形成する工程で
単結晶シリコンを汚染させないこと(この補強支持体層
に洗滌等で除去できない付着物を有するような場合であ
っても不可である)。
(2) This reinforcing support layer 3 should not contaminate single crystal silicon in the process of forming a device (this is not allowed even if the reinforcing support layer 3 has deposits that cannot be removed by washing, etc.).

■ デバイス作製工程に訃いて、単結晶シリコン島1a
と補強支持体層3との間の熱膨張率の不均一さによって
著るしい反りが生じないものであること。
■ Single crystal silicon island 1a failed during the device manufacturing process.
No significant warping occurs due to non-uniformity in the coefficient of thermal expansion between the reinforcing support layer 3 and the reinforcing support layer 3.

■ 補強支持体層3は、デバイス作成時における昇温(
z、too℃程度)時に、変形、溶融、分解、拡散等を
生じることなく、熱的、化学的に安定である。
■ The reinforcing support layer 3 can withstand the temperature rise (
It is thermally and chemically stable without causing deformation, melting, decomposition, diffusion, etc. at temperatures (about 30° C.).

以上の条件を満足するものとして、モノシランガスを炉
内に導き、炉内で燃焼させると共に炉内に配置した単結
晶基板の防電分離膜上に多結晶シリコンを気相反応によ
り堆積するいわゆる気相成長法(Chmical Va
por Deposition。
As long as the above conditions are satisfied, monosilane gas is introduced into the furnace, burned in the furnace, and polycrystalline silicon is deposited by a gas phase reaction on the electrically-proof separation film of the single crystal substrate placed in the furnace. Growth method (Chemical Va.
por Deposition.

以下rCVD法」という)が行われている。The rCVD method (hereinafter referred to as "rCVD method") is being carried out.

〈発明が屏決しようとする問題点〉 上述の構造の誘導体分離シリコン基板1に製造するに当
って、CVD法では、加熱炉内に設置できる単結晶板の
板数は比較的少数であること、CVD法による多結晶シ
リコン(以下、rslJで表わす)の堆積速度が遅いこ
と(堆積による反pt小さくするため堆積速度のコント
ロールの必要もめる)のため、厚さ0.4鴎程度の堆積
を行うのに約10時間を要している。すなわち、上述し
た従来方法は、1回当りの処理量が少いこと、高価な装
置を長時間使用しなければならないこと、電力消費量が
大きいことのため、基板1枚当りの基板補強支持体層形
成費用が高いものにつく難点があった。また、単結晶シ
リコン基板の補強支持体層堆積側と反対側の単結晶シリ
コン基板面にも周辺盛り上りや点状付着物が、堆積中の
基板反りのため付着する難点があった。
<Problems to be solved by the invention> When manufacturing the dielectric-separated silicon substrate 1 having the above-described structure, the number of single crystal plates that can be installed in a heating furnace is relatively small in the CVD method. Since the deposition rate of polycrystalline silicon (hereinafter referred to as rslJ) by the CVD method is slow (it is also necessary to control the deposition rate to reduce the anti-pt due to deposition), the thickness of the polycrystalline silicon (hereinafter referred to as rslJ) is about 0.4 mm. It takes about 10 hours. In other words, the above-mentioned conventional method requires a small amount of processing per time, requires expensive equipment to be used for a long time, and consumes a large amount of power. The disadvantage was that the layer formation cost was high. Further, there is also a problem in that peripheral bulges and dot-like deposits adhere to the surface of the single crystal silicon substrate on the side opposite to the side on which the reinforcing support layer is deposited due to warpage of the substrate during deposition.

本発明は上述した従来の誘電体分離St基板の難点金除
去するためになされたものでろって。
The present invention has been made to eliminate the drawbacks of the conventional dielectrically isolated St substrates mentioned above.

迅速に単結晶81基板補強支持体を作製できる構成をも
つ誘電体分離3i基板およびその製造方法全提供しよう
とするものでめる。
This article attempts to provide a dielectric-separated 3i substrate having a structure that allows the rapid production of a single-crystal 81 substrate reinforcing support and a method for manufacturing the same.

く問題点全解決するための技術手段〉 上記目的を達成するための本発明の誘電体分離Si基板
は、単結晶シリコン基板と、単結晶シリコン基板上面側
に形成され、分離溝で仕切されたデバイス形成領域と、
単結晶シリコン基板上の上記デバイス形成領域と分離溝
面との間に形成された二酸化シリコン誘電体分離層と、
二酸化シリコン誘電体分離層上に形成した単結晶シリコ
ン基板補強支持体層とからなる誘電体分離シリコン基板
において、単結晶シリコン基板補強支持体層をシリコン
粒子の焼結体、溶融体およびこれら両のうちのいずれか
で構成したことを特徴とする。
Technical Means for Solving All Problems> To achieve the above object, the dielectrically isolated Si substrate of the present invention includes a single crystal silicon substrate and a single crystal silicon substrate formed on the upper surface side of the single crystal silicon substrate and partitioned by a separation groove. a device formation area;
a silicon dioxide dielectric isolation layer formed between the device formation region and the isolation trench surface on a single-crystal silicon substrate;
In a dielectric-separated silicon substrate consisting of a silicon dioxide dielectric separation layer and a single-crystal silicon substrate reinforcing support layer, the single-crystal silicon substrate reinforcing support layer is formed of a sintered body of silicon particles, a molten body, or both of these. It is characterized by being composed of one of these.

また、上記誘電体分離3i基板の製造方法は、単結晶シ
リコン基板のデバイス形成領域形成側表面を異方性エツ
チングにより各デバイス形成領域間に分離溝を形成する
第1の工程と、単結晶シリコン基板上の上記デバイス形
成領域および分離溝形成側上面に二酸化シリコン誘電体
膜を形成する第2の工程と、第2の工程終了後。
The method for manufacturing the dielectric isolation 3i substrate described above includes a first step of forming a separation groove between each device formation region by anisotropic etching on the device formation region formation side surface of the single crystal silicon substrate; A second step of forming a silicon dioxide dielectric film on the upper surface of the device formation region and isolation trench formation side on the substrate, and after the second step is completed.

二酸化シリコン誘電体膜上にシリコン粉末を焼結又は溶
融して単結晶シリコン基板補強支持体層上形成する第3
の工程と、上記単結晶シリコン基板補強支持体層上面と
単結晶シリコン基板のデバイス形成領域と反対側の面金
鏡面研磨して上記単結晶シリコン基板補強支持体層上に
互いに孤立したデバイス形成領域のシリコン島を形成す
る第4の工程とからなることを特徴とするものである。
The third step is to sinter or melt silicon powder on the silicon dioxide dielectric film and form it on the single-crystal silicon substrate reinforcing support layer.
The upper surface of the single-crystal silicon substrate reinforcing support layer and the surface of the single-crystal silicon substrate on the side opposite to the device-forming region are polished to a golden mirror finish to form mutually isolated device-forming regions on the single-crystal silicon substrate reinforcing support layer. and a fourth step of forming a silicon island.

く作 用〉 本発明の誘電体分離81基板は、その単結晶Sl基板補
強支持体層tsi微粒子の焼結体、溶融体又はこれら両
者で構成しているから、上述した誘電体分離基板の必要
条件、すなわち■単結晶81層の補°強・支持、■St
以外の異物による汚染のないこと、■単結晶St基板と
同−St材でおるため熱膨張率差による反りの発生がな
いこと、■熱的、化学的に安定であること(焼結終了後
は1100℃程度では全く安定である)を満足すること
は明らかである。
Function> Since the dielectric separation 81 substrate of the present invention is composed of a sintered body, a melted body, or both of the single-crystal Sl substrate reinforcing support layer TSI fine particles, the above-mentioned necessity of the dielectric separation substrate is satisfied. The conditions are: ■ Reinforcement and support of 81 layers of single crystal, ■ St
(1) There is no warping due to the difference in thermal expansion coefficient because it is made of the same St material as the single-crystal St substrate; (2) It is thermally and chemically stable (after sintering is completely stable at about 1100°C).

Sl粉末は、高価な単結晶Slではなく、これの原料と
なる比較的安価な多結晶S1を粉砕することにより0.
05μ慣程度のものを容易かつ安価に得ることができる
ので、容易にSi焼結体層を形成することができる。
Sl powder is produced by pulverizing relatively inexpensive polycrystalline S1, which is the raw material for this powder, rather than expensive single-crystalline Sl.
Since a Si sintered body layer having a diameter of approximately 0.05 μm can be obtained easily and inexpensively, a Si sintered body layer can be easily formed.

一般的に微粉末の特性として知られているように、微粉
末の融点(焼結温度)はバルクの融点より低いもので、
粒径0.05μm程度のSt粉末はバルクのSlが14
00℃の融点であるのに対し、1200℃で十分溶融す
る。また、この微粒子による溶融、焼結は1200℃の
保持時間1分径度でも焼結が可能である。
As is generally known as a characteristic of fine powder, the melting point (sintering temperature) of fine powder is lower than the melting point of the bulk.
The bulk Sl of the St powder with a particle size of about 0.05 μm is 14
Although its melting point is 00°C, it fully melts at 1200°C. Further, the melting and sintering using these fine particles can be performed even if the holding time is 1 minute at 1200°C.

この焼結に用いる炉は、真空または不活性雰囲気にでき
るものが必要でろるが、CVD炉が堆積の均一化などの
ため基板配置間隔を大きくとる必要があるのに対し、均
熱の条件だけが必要であるため、基板を大量に炉内に設
置することができる。
The furnace used for this sintering must be able to create a vacuum or inert atmosphere, but unlike CVD furnaces, which require large spacing between substrates to ensure uniform deposition, only uniform heating conditions are required. Since this requires a large number of substrates, a large number of substrates can be placed in the furnace.

焼結にあたっては、はぼ均一の粒径tもっSi超微子の
み使用する場合に加え、粒径の大幅に異る粗粒と超黴子
の混合使用、数種の粒径の混合使用も可能である。さら
に、これら混合使用の場合に厚さにわたって均一な混合
割合とする場合のほか1粒径の混合割合を層状に変える
ことも可能である。
For sintering, in addition to using only ultrafine silicon particles with a uniform particle size, it is also possible to use a mixture of coarse particles and ultrafine particles with significantly different particle sizes, or a mixture of several types of particle sizes. It is possible. Furthermore, in the case of using these mixtures, it is possible not only to maintain a uniform mixing ratio over the thickness, but also to change the mixing ratio of one particle size in a layered manner.

さらK、第1図に示したように、誘電体分離基板は支持
体層3を形成したままでは、第2図に示すようなデバイ
ス作製工程に投入できる形状にならない。すなわち、第
1図の状態のものの上下面金研削研磨して支持体側13
と単結晶12とt高精度の平行平面に仕上げかつSi島
1aの深さを数μmの程度に均一化する必要がある。こ
れら一連の加工は単結晶側12を第1の基準面として実
施されるのが通常であるが。
Furthermore, as shown in FIG. 1, if the dielectric separation substrate is left with the support layer 3 formed thereon, it cannot be shaped into a shape that can be used in the device manufacturing process as shown in FIG. That is, the upper and lower surfaces of the product in the state shown in FIG.
It is necessary to finish the single crystal 12 and t into parallel planes with high precision, and to make the depth of the Si islands 1a uniform to about several μm. This series of processing is normally performed using the single crystal side 12 as the first reference plane.

この場合、周辺盛上シ4や点状付着物5を面12の平面
度を損うことなく行う必要がある。
In this case, it is necessary to perform the peripheral heaping 4 and dotted deposits 5 without impairing the flatness of the surface 12.

本発明にかかる誘電体分離St基板は、上記の製造方法
であるため、面12側に付着させることがないため、加
工工数が少くなるとともに高精度化の面で有利である。
Since the dielectric-separated St substrate according to the present invention is produced by the above-described manufacturing method, it is not attached to the surface 12 side, which is advantageous in terms of reducing the number of processing steps and increasing precision.

〈実施列〉 以下1本発明の誘電体分離シリコン基板の製造方法の実
施例全製造工程にしたがって説明するっ ■ 先ず、母材のSt単結晶の上下面を鏡面研磨して、
(100)面を上下二主面とする単結晶ウェハーit作
製する。
<Implementation sequence> The entire manufacturing process of an embodiment of the method for manufacturing a dielectrically isolated silicon substrate of the present invention will be explained below.
A single crystal wafer with the (100) plane as the upper and lower principal surfaces is fabricated.

O得られた単結晶ウェハー1の側面、底面およびデバイ
ス全形成すべき(100)上面の部分1a% la、l
a、la、la、laの上面を一定の間隔装置いて、そ
れぞれ第3図(a)に示すごとくポリメチルメタアクリ
レート(以下、rPMMAJという)などのレジスト膜
16で被覆する。
O The side surface, bottom surface and (100) top surface portion of the obtained single crystal wafer 1 where all devices are to be formed 1a% la, l
The upper surfaces of a, la, la, and la are each coated with a resist film 16 of polymethyl methacrylate (hereinafter referred to as rPMMAJ) at regular intervals, as shown in FIG. 3(a).

θ 上記工程にしたがってレジスト膜16で、被覆単結
晶ウェハー1を第3図(b) K示すごとく、KOH溶
液中に浸漬すると、ウェハー1は(100)面上のレジ
スト膜16を塗布しない露出部分からエツチングされV
字状の溝tbが形成される。
θ When the single crystal wafer 1 coated with the resist film 16 is immersed in the KOH solution as shown in FIG. Etched from V
A letter-shaped groove tb is formed.

■ 単結晶Siウニ/%−1に溝16が形成された後、
当該単結晶Siウェハーlt−水洗し、上面のレジスト
面を除去した後、第3図(clのごとく、当該単結晶ウ
ェハー1を炉20に入れ1100℃に加熱しつつ、炉2
0の一端から水蒸気を導入し、単結晶Siウェハー1の
溝1bおよびデバイス形成部分1a上面全然酸化し、S
 10t 層11t−形成させる。
■ After the groove 16 is formed in the single crystal Si sea urchin/%-1,
After washing the single crystal Si wafer 1 with water and removing the upper resist surface, the single crystal wafer 1 is placed in a furnace 20 while being heated to 1100°C, as shown in FIG. 3 (cl).
Water vapor is introduced from one end of the single crystal Si wafer 1 to completely oxidize the groove 1b and the top surface of the device forming portion 1a, and the S
10t layer 11t - formed.

■ かくして得られた単結晶ウエノ・−1の1aおよび
lb而に超微粒子Stt末全所定の厚さ分のせ第3図f
dlのごとく、このような状態で単結晶Siウェハー1
を耐熱板22に載せ、加熱炉21内に入れ、!内温度を
1,200℃に上げ、ウェハー1上に堆積したSt微微
粒含金焼結せ、第3図telに示すごとく第1図に示す
と同じ構造の誘電体分離シリコン基板の母材23を作製
する。
■ 1a and 1b of the single crystal Ueno-1 obtained in this way are divided into ultrafine particles Stt powder to a predetermined thickness (Fig. 3f).
As shown in dl, the single crystal Si wafer 1 is
Place it on the heat-resistant plate 22, put it into the heating furnace 21, and! The internal temperature was raised to 1,200° C., and the St fine particles deposited on the wafer 1 were sintered to form a base material 23 of a dielectrically isolated silicon substrate having the same structure as shown in FIG. Create.

■ 得られた誘電体分離シリコン基板の母材23の単結
晶3iウエハー1の底面12には周辺盛上り4や点状付
着物5が付着してい々いので、底面12t−基準面とし
て単結晶シリコン基板補強支持体/!13の上面13t
’。
■ The bottom surface 12 of the single-crystal 3i wafer 1 of the base material 23 of the obtained dielectric-separated silicon substrate has a lot of peripheral protuberances 4 and dot-like deposits 5 attached to it, so the bottom surface 12t is used as the reference surface for the single crystal. Silicon substrate reinforcement support/! 13 top surface 13t
'.

ウェハーlの底面と平行平面を形成するように鏡面研磨
し、第3図(f)のごとく、一定の間隔でSi島1a、
la、la、la、la、laが形成され走置電体分離
シリコン基板を製造することができた。
The wafer 1 is mirror-polished so as to form a plane parallel to the bottom surface, and Si islands 1a and 1a are formed at regular intervals as shown in FIG.
La, la, la, la, la were formed, and it was possible to manufacture a silicon substrate with electrical isolation.

上記実施例で作製された誘電体分離Si基板は、単結晶
81基板の補強支持体層1jts1粒子の焼結体で構成
しているため、従来のCVD法でSt を堆積させる方
法に比べて、その堆積時間はV5程度の時間で完結する
ことができ、電力消費量および人員、設備の稼動時間も
著るしく少くて済ますことができるので、生産コストヲ
著しく安価にすることができる。
Since the dielectric-separated Si substrate produced in the above example is composed of a sintered body of 1 particle of the reinforcing support layer 1jts of a single crystal 81 substrate, compared to the conventional method of depositing St 2 by CVD method, The deposition time can be completed in about V5, and the power consumption and operation time of personnel and equipment can be significantly reduced, so that the production cost can be significantly reduced.

なお、上記実施例の単結晶Si基板の補強支持体層の8
1は焼結体で構成した例を示したが、溶融体又は焼結体
および溶融体の両方で構成されたものであってもよい。
Note that 8 of the reinforcing support layer of the single crystal Si substrate in the above example
Although No. 1 shows an example constructed of a sintered body, it may be constructed of a molten body or both a sintered body and a molten body.

〈発明の効果〉 以上の説明から明らかなように1本発明Kかかる誘電体
分離S五基板はStt粒子を焼結、溶融又は焼結溶融体
で構成しているため、単結晶81基板との相性がよく、
かつ経済的にみて安価K、かつ迅速に製造できる利点を
有している。
<Effects of the Invention> As is clear from the above description, the dielectric-separated S5 substrate according to the present invention is composed of Stt particles sintered, melted, or sintered molten, so that it has no difference with the single crystal 81 substrate. Good compatibility,
In addition, it has the advantage of being inexpensive and being able to be manufactured quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の誘電体分離Si基板母材の構造を示す断
面図、第2図は第1図の誘電体弁1’faSi基材から
作製した従来の誘電体分離Sl基板の構造を示す断面図
、第3図fal乃至(flは本発明Kかかる誘電体分離
S1基板の製造工程を示す説明図である。 ■  面  中、 1・・単結晶St基板。 la・・Si島。 lb、11・・・溝、 2・・stow層、 3・・単結晶St基補強支持体層、 16・・・レジスト膜
Fig. 1 is a cross-sectional view showing the structure of a conventional dielectrically isolated Si substrate base material, and Fig. 2 shows the structure of a conventional dielectrically isolated Sl substrate fabricated from the dielectric valve 1'faSi substrate of Fig. 1. Cross-sectional views, Figures 3 fal to (fl are explanatory diagrams showing the manufacturing process of the dielectric isolation S1 substrate according to the present invention K. ■ Surface Middle, 1. Single crystal St substrate. la.. Si island. lb, 11...Groove, 2...Stow layer, 3...Single crystal St-based reinforcing support layer, 16...Resist film

Claims (2)

【特許請求の範囲】[Claims] (1)単結晶シリコン基板と、単結晶シリコン基板上面
側に形成され、分離溝で仕切されたデバイス形成領域と
、単結晶シリコン基板上の上記デバイス形成領域と分離
溝面との間に形成された二酸化シリコン誘電体分離層と
、二酸化シリコン誘電体分離層上に形成した単結晶シリ
コン基板補強支持体層とからなる誘電体分離シリコン基
板において、単結晶シリコン基板補強支持体層をシリコ
ン粒子の焼結体、溶融体およびこれら両のうちのいずれ
かで構成したことを特徴とする誘電体分離シリコン基板
(1) A single-crystal silicon substrate, a device formation region formed on the upper surface side of the single-crystal silicon substrate and partitioned by a separation trench, and a device formation region formed between the device formation region and the separation trench surface on the single-crystal silicon substrate. In a dielectric-separated silicon substrate consisting of a silicon dioxide dielectric separation layer and a single-crystal silicon substrate reinforcing support layer formed on the silicon dioxide dielectric separation layer, the single-crystal silicon substrate reinforcing support layer is sintered with silicon particles. A dielectrically isolated silicon substrate characterized by being composed of a solid, a molten material, or one of both.
(2)単結晶シリコン基板のデバイス形成領域形成側表
面を異方性エッチングにより各デバイス形成領域間に分
離溝を形成する第1の工程と、単結晶シリコン基板上の
上記デバイス形成領域および分離溝形成側上面に二酸化
シリコン誘電体膜を形成する第2の工程と、第2の工程
終了後、二酸化シリコン誘電体膜上にシリコン粉末を焼
結又は溶融して単結晶シリコン基板補強支持体層を形成
する第3の工程と、上記単結晶シリコン基板補強支持体
層上面と単結晶シリコン基板のデバイス形成領域と反対
側の面を鏡面研磨して上記単結晶シリコン基板補強支持
体層上に互いに孤立したデバイス形成領域のシリコン島
を形成する第4の工程とからなることを特徴とする誘電
体分離シリコン基板の製造方法。
(2) A first step of forming a separation trench between each device formation region by anisotropic etching on the device formation region formation side surface of the single crystal silicon substrate, and a first step of forming a separation groove between the device formation regions and the separation groove on the single crystal silicon substrate. A second step of forming a silicon dioxide dielectric film on the upper surface of the formation side, and after the second step, sintering or melting silicon powder on the silicon dioxide dielectric film to form a single crystal silicon substrate reinforcing support layer. A third step of forming the monocrystalline silicon substrate reinforcing support layer and mirror-polishing the upper surface of the single crystal silicon substrate reinforcing support layer and the surface of the single crystal silicon substrate opposite to the device formation region to isolate each other from each other on the single crystal silicon substrate reinforcing support layer. a fourth step of forming a silicon island in a device formation region.
JP23180884A 1984-11-02 1984-11-02 Dielectric isolation silicon substrate and manufacture thereof Pending JPS61110445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23180884A JPS61110445A (en) 1984-11-02 1984-11-02 Dielectric isolation silicon substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23180884A JPS61110445A (en) 1984-11-02 1984-11-02 Dielectric isolation silicon substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61110445A true JPS61110445A (en) 1986-05-28

Family

ID=16929338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23180884A Pending JPS61110445A (en) 1984-11-02 1984-11-02 Dielectric isolation silicon substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61110445A (en)

Similar Documents

Publication Publication Date Title
US3689357A (en) Glass-polysilicon dielectric isolation
KR100375335B1 (en) A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders
US3698947A (en) Process for forming monocrystalline and poly
TWI667700B (en) Making semiconductor bodies from molten material using a free-standing interposer sheet
JP2699359B2 (en) Semiconductor substrate manufacturing method
US3974006A (en) Method of obtaining high temperature resistant assemblies comprising isolated silicon islands bonded to a substrate
JPS61110445A (en) Dielectric isolation silicon substrate and manufacture thereof
JPS6155252B2 (en)
JPS6412543A (en) Manufacture of semiconductor device
US9466758B2 (en) Composite substrates of silicon and ceramic
US4411060A (en) Method of manufacturing dielectrically-isolated single-crystal semiconductor substrates
JPS5918654A (en) Manufacture of dielectric isolation substrate
JP2681420B2 (en) Method for manufacturing dielectric substrate
JPH056883A (en) Manufacture of semiconductor substrate
JPS6165422A (en) Method of producing silicon crystal for solar battery
JP2554336B2 (en) Method for manufacturing dielectric isolation substrate
JPS63215049A (en) Manufacture of dielectric isolation substrate
JP2532252B2 (en) Method for manufacturing SOI substrate
JPH0758197A (en) Composite semiconductor substrate and its manufacture
JP2559757B2 (en) Hybrid board
JPS5889840A (en) Manufacture of derivative isolating substrate
JPH0352250A (en) Manufacture of dielectric isolating substrate
JP2002097091A (en) Cvd-silicon carbide film coated member and method for producing the same
JP2562305B2 (en) Method for manufacturing SOI substrate
JPH0477391A (en) Heater for heating substrate for forming thin film