JPS61110329A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS61110329A
JPS61110329A JP23022784A JP23022784A JPS61110329A JP S61110329 A JPS61110329 A JP S61110329A JP 23022784 A JP23022784 A JP 23022784A JP 23022784 A JP23022784 A JP 23022784A JP S61110329 A JPS61110329 A JP S61110329A
Authority
JP
Japan
Prior art keywords
film
fexn
recording medium
magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23022784A
Other languages
Japanese (ja)
Inventor
Seiichi Asada
朝田 誠一
Hiroyuki Suzuki
博之 鈴木
Toshio Niihara
敏夫 新原
Kazuyoshi Yoshida
吉田 和悦
Kazuo Shiiki
椎木 一夫
Masaaki Futamoto
二本 正昭
Yukio Honda
幸雄 本多
Norikazu Tsumita
積田 則和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP23022784A priority Critical patent/JPS61110329A/en
Priority to GB8526756A priority patent/GB2167448B/en
Priority to DE19853538852 priority patent/DE3538852A1/en
Priority to US06/793,772 priority patent/US4743491A/en
Publication of JPS61110329A publication Critical patent/JPS61110329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the magnetic characteristic of a vertically magnetizable FexN film by depositing at least one intermediate film layer between a high permeability magnetic film and the FexN film. CONSTITUTION:A nonmagnetic substrate 1 is housed in an RF sputtering device and the high permeability film, intermediate film and FexN film are continuously sputtered by a sputter target 2. The material of which the average nearest inter-atom distance (DCA) is 2.5-3.5Angstrom , for example, elements such as V, Ru, Zn - etc. and the metallic nitride and metallic oxide thereof are used as the material for the intermediate film. The C-axis of the FexN film is oriented perpendicularly to the film plane when such intermediate film is intervened by which the upper limit value of Bs to be formed as the vertically magnetizable film is made as high as >=7,000G and the magnetic characteristic of the FexN film is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気ディスク、フロッピーなどの垂直磁気記
録に好適な、高透磁率磁性材料とFexN(x=2〜3
)膜とからなる磁気記録媒体に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention provides a magnetic material with high permeability suitable for perpendicular magnetic recording of magnetic disks, floppies, etc. and FexN (x=2 to 3
) film.

なお、本明細書ではFexNに10J7tl子%以下の
Crなどを添加したものも一括してFexNと呼ぶ。
In this specification, FexN to which 10J7tl% or less of Cr or the like is added is also collectively referred to as FexN.

〔発明の背景〕[Background of the invention]

磁気記録の分野における記録密度の向上は著しいものが
ある。特に、東北大の岩崎らにより提案された垂直磁気
記録方式は、現在実用化されている面内記録方式と異な
り、記録密度が高くなるほど、自己減磁作用が小さくな
るという特徴を有し。
There has been a remarkable improvement in recording density in the field of magnetic recording. In particular, the perpendicular magnetic recording method proposed by Iwasaki et al. of Tohoku University differs from the currently-practical in-plane recording method in that the higher the recording density, the smaller the self-demagnetizing effect.

将来の高密度磁気記録方式として注目を集め、精力的な
研究がなされている。
It is attracting attention as a future high-density magnetic recording method and is being actively researched.

この垂直磁気記録を実現するには、記録媒体として、磁
性膜面に対して垂直方向の磁化容易軸を有する垂直磁化
膜が必要である。また、この垂直磁化膜の下に高透率磁
率磁性膜を被着させた、いわゆる2層媒体は、垂直磁化
膜のみからなる。いわゆる単層媒体にくらべて、磁気ヘ
ッドを用いて記録再生した際の再生出力が2倍以上と高
いので実用性が高いと考えられている。
To realize this perpendicular magnetic recording, a perpendicularly magnetized film having an axis of easy magnetization perpendicular to the magnetic film surface is required as a recording medium. Furthermore, a so-called two-layer medium in which a high permeability magnetic film is deposited under the perpendicularly magnetized film is composed only of the perpendicularly magnetized film. It is considered to be highly practical because the reproduction output when recording and reproducing using a magnetic head is more than twice as high as that of a so-called single-layer medium.

高透磁率磁性膜としては、フェライト、 Fa工、N2
゜パーマロイ、センダスト、(Fe、Goo N1)−
(si、B、CI PT AQ−B)系非晶質合金。
High permeability magnetic films include ferrite, Fa, N2
゜Permalloy, Sendust, (Fe, Goo N1) -
(si, B, CI PT AQ-B) system amorphous alloy.

(Fa、Co、N1)−(Zr、Hf+ Y+ Tit
Nb、Ta、W+ V+ Mo、Cr)系非晶質合金。
(Fa, Co, N1)-(Zr, Hf+ Y+ Tit
Nb, Ta, W+ V+ Mo, Cr) based amorphous alloy.

FexC等の磁気ヘッド用などで公知の高透磁率磁性材
料を被着せしめたものが使用される。その膜厚は通常0
65〜2.0 μmのものが使用される。
A material coated with a known high permeability magnetic material for magnetic heads such as FexC is used. The film thickness is usually 0
Those with a diameter of 65 to 2.0 μm are used.

垂直磁化膜としては、物理蒸着法(スパッタ法。A physical vapor deposition method (sputtering method) is used for the perpendicular magnetization film.

真空蒸着法など)、めっき法または化学蒸着法(CVD
法)で作製したGo−Cr、Co−Cr−Rh、Go−
V+ Co−Ru、Go−Or CotG o −N 
i −M n −Pなどの合金膜が知られている。
(vacuum deposition method, etc.), plating method or chemical vapor deposition method (CVD, etc.)
Go-Cr, Co-Cr-Rh, Go-
V+ Co-Ru, Go-Or CotG o -N
Alloy films such as i-Mn-P are known.

しかし、このような垂直磁化膜は、いずれもCoをベー
スとしており、Coは資源が少ないことからコストなら
びに供給安定上の問題があった。
However, such perpendicular magnetization films are all based on Co, and since Co is a scarce resource, there have been problems with cost and stable supply.

また、Co系では加熱減磁、加圧減磁の心配があった。In addition, with Co-based materials, there is a concern about heating demagnetization and pressurization demagnetization.

これらの問題を解決しようとする方法の一つに。One of the ways to try to solve these problems.

coの代りにFeをベースとして用いたFexN垂直磁
化膜がある(特願昭58−102675) 、 L、か
じ、この方法で得られたF8XN膜の磁気特性は代表的
垂直磁化膜であるGo−Cr膜に比べて若干劣っている
There is a FexN perpendicularly magnetized film using Fe as a base instead of Co (Japanese Patent Application No. 102,675/1983). It is slightly inferior to the Cr film.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高透磁率磁性膜とFexN垂直磁垂直
磁化量に少なくとも1層の平均、!&近接原子間距離が
2.5〜3.2 人の金属、金属窒化物、金属酸化物な
どを中間膜を被着させた。特性のより垂直磁気記録媒体
を提供することにある。
The object of the present invention is to provide an average of at least one layer of high permeability magnetic film and FexN perpendicular magnetization amount! An intermediate film of metal, metal nitride, metal oxide, etc. having a distance between adjacent atoms of 2.5 to 3.2 was deposited. The object of the present invention is to provide a perpendicular magnetic recording medium with better characteristics.

2層膜媒体は、磁気ヘッドで記録再生した時の再生出力
が高いが、若干剛性が高いので主に磁気ディスクに用い
られるが、磁気テープ、フロッピーなどに用いることを
妨げるものではない。
A dual-layer film medium has a high reproduction output when recorded and reproduced with a magnetic head, and is somewhat rigid, so it is mainly used for magnetic disks, but this does not preclude its use for magnetic tapes, floppies, etc.

〔発明の概要〕[Summary of the invention]

F a xN (x=2〜3)膜が垂直磁化膜になる理
由についてはつぎのように考えられる。物理蒸着法で作
製したFexN膜の断面をSEMで観察すると、膜面に
垂直方向に結晶粒子が成長した柱状構造がWR察される
。FexN膜が垂直磁化膜になる原因の一つはこの柱状
晶による微視的形状異方性(個々の柱状晶の形状に基づ
く異方性)である、さらに、その垂直異方性の大きさく
Ku)が。
The reason why the F a xN (x=2 to 3) film becomes a perpendicular magnetization film is considered as follows. When a cross section of a FexN film fabricated by physical vapor deposition is observed using an SEM, a columnar structure in which crystal grains grow in a direction perpendicular to the film surface is observed. One of the reasons why the FexN film becomes a perpendicular magnetization film is the microscopic shape anisotropy due to the columnar crystals (anisotropy based on the shape of each columnar crystal).Furthermore, the size of the perpendicular anisotropy is Ku) is.

膜面に垂直方向に磁化が向いた時の静磁エネルギー2π
Mg”(Ms:飽和磁化)より大となるという下記(1
)式の関係が満たされていることが2番目の理由である
Magnetostatic energy 2π when magnetization is perpendicular to the film surface
The following (1
The second reason is that the relationship in the equation ) is satisfied.

Ku>2gM5”          −(1)普通、
Fe薄膜の場合、Feの柱状晶が理想的に膜面に垂直配
向したとしてもKu、Msにバルクの値を用いるとして
、(1)式の左辺、右辺の値はそれぞれ9 X 10@
erg/cc、 1.8  X 10’erg /cc
程度となり、(1)式の関係を満足することはできない
、また、理想的な柱状晶(長軸長/短軸長〜oo)が膜
面の垂直方向に完全に配向することはないので、(1)
式の左辺は9 X 10’erg /ccよりもかなり
小さくなると予想される。
Ku > 2gM5” - (1) Normal,
In the case of a Fe thin film, even if the Fe columnar crystals are ideally aligned perpendicular to the film surface, if bulk values are used for Ku and Ms, the values on the left and right sides of equation (1) are 9 x 10, respectively.
erg/cc, 1.8 x 10'erg/cc
The relationship in equation (1) cannot be satisfied, and the ideal columnar crystal (major axis length/minor axis length ~oo) is not perfectly oriented in the direction perpendicular to the film surface. (1)
The left side of the equation is expected to be significantly less than 9 x 10'erg/cc.

Nを添加することの効果は、柱状晶が膜面に垂直配向す
るのを促し、かつ、Msを(1)式が成立する程度にま
で低下させることにあると考えられる。柱状晶の粒界に
Nが偏析することもFexN膜が垂直磁化膜になる原因
の一つと考えられる。
It is thought that the effect of adding N is to promote alignment of columnar crystals perpendicular to the film surface and to lower Ms to such an extent that formula (1) holds. The segregation of N at the grain boundaries of columnar crystals is also considered to be one of the reasons why the FexN film becomes a perpendicularly magnetized film.

その際、FexNが六方晶系の結晶構造をもち、かつ、
そのC軸が膜面に垂直配向しておれば、六方晶系Fax
Nの結晶異方性が上述の微視的形状異方性に加算される
ので垂直磁気異方性(Ku。
At that time, FexN has a hexagonal crystal structure, and
If the C-axis is oriented perpendicular to the film surface, it is a hexagonal system Fax.
Since the crystal anisotropy of N is added to the above-mentioned microscopic shape anisotropy, the perpendicular magnetic anisotropy (Ku.

(1)式の左辺)が大きくなり、Msが大きくてもFe
xN膜は垂直磁化膜になる。しかし、特願昭58−10
2675で示された方法で得たFexN膜ではcmの配
向がみら九なかった。これが、 FexN膜が垂直磁化
膜になる飽和磁束密度(Bs=4πMs)の上限値(6
500G)が代表的垂直磁化膜であるGo−Cr膜のB
sの上限値にくらべて若干小さい原因と考えられる。
(left side of equation (1)) becomes large, and even if Ms is large, Fe
The xN film becomes a perpendicularly magnetized film. However, the special application
In the FexN film obtained by the method shown in No. 2675, there was no cm orientation. This is the upper limit value (6
500G) is a typical perpendicular magnetization film, which is a Go-Cr film.
This is considered to be the reason why the value is slightly smaller than the upper limit of s.

FexN膜の特性向上を目的にFexN膜と高透磁率磁
性膜との間の中間膜について検討した。
In order to improve the characteristics of the FexN film, we investigated an intermediate film between the FexN film and the high permeability magnetic film.

その結果、中間膜として、電気抵抗がI X 10−’
Ω口以下で、平均最近接原子間距離が2.5〜3.2 
人の金属、金属窒化物、金属酸化物などの膜を使用する
ことにより、六方晶系FexN膜のC軸が膜面に垂直配
向し、FexN膜が垂直磁化膜になるBsの上限値が高
くなることがあきらかになった。これは、上述の結晶異
方性が微視的形状異方性に加算されて垂直磁気異方性が
大きくなったためと考えられる。
As a result, the electrical resistance of the intermediate film is I x 10-'
Below Ω, the average distance between nearest atoms is 2.5 to 3.2
By using films made of metals, metal nitrides, metal oxides, etc., the C-axis of the hexagonal FexN film is oriented perpendicular to the film surface, and the upper limit of Bs is high, making the FexN film a perpendicularly magnetized film. It became clear that something was going to happen. This is considered to be because the above-mentioned crystal anisotropy is added to the microscopic shape anisotropy, resulting in an increase in perpendicular magnetic anisotropy.

第1図は、中間膜の最近接原子間距離とFexN膜が垂
直磁化膜になるBsの最大値との関係をプロットしたも
のである。第1図かられかるように、平均最近接原子間
距離(DCA)が2.5〜3.2人の中間膜を使用する
とFexN膜が垂直磁化膜になるBsの上限値が700
00以上と大きくなる。
FIG. 1 is a plot of the relationship between the distance between the nearest atoms of the intermediate film and the maximum value of Bs at which the FexN film becomes a perpendicularly magnetized film. As can be seen from Figure 1, when an intermediate film with an average nearest neighbor atomic distance (DCA) of 2.5 to 3.2 is used, the upper limit of Bs at which the FexN film becomes a perpendicularly magnetized film is 700.
It becomes larger than 00.

これをXJ!回折で調べた結果、FexN膜のC軸が膜
面の垂直方向に配向していることが明らかになった。こ
のC軸配向がFexN膜が垂直磁化膜になるBsの上限
値が大きくなった原因の一つと考えられる。
This is XJ! As a result of diffraction analysis, it was revealed that the C-axis of the FexN film was oriented in the direction perpendicular to the film surface. This C-axis orientation is considered to be one of the reasons why the upper limit of Bs at which the FexN film becomes a perpendicularly magnetized film is increased.

平均最近接原子間距離が2.6S〜2.85 人のもの
ではFexN膜が垂直磁化膜になるB8の上限値がさら
に大きくなり、最大で80000以上になる。
When the average nearest neighbor atomic distance is 2.6S to 2.85, the upper limit of B8 at which the FexN film becomes a perpendicularly magnetized film becomes even larger, reaching a maximum of 80,000 or more.

DCAが2.5〜3.2 人の膜とシテはV。The membrane and shite of people with DCA of 2.5 to 3.2 are V.

Ru、Zn、Os、Rh、I r、Mo、Wt Re。Ru, Zn, Os, Rh, Ir, Mo, WtRe.

Pt+  Nb+  Sn、Ta、An、Au、Ag5
Tiおよびこれらの元素の窒化物、酸化物などがある。
Pt+ Nb+ Sn, Ta, An, Au, Ag5
Examples include Ti and nitrides and oxides of these elements.

このうち、Zn、Mo、wl Nb+ TanAl、T
i、SnまたはSn酸化物は安価であるのでより好まし
い。
Among these, Zn, Mo, wl Nb+ TanAl, T
i, Sn or Sn oxide are more preferred because they are inexpensive.

2種以上の元素を混合して平均的最近接原子間距離を2
.5〜3.2人としても効果のあることはいうまでもな
い、この中間膜が高透磁率膜であればより好ましい、こ
れらの金属、金属酸化物。
By mixing two or more types of elements, the average nearest atomic distance is 2.
.. It goes without saying that these metals and metal oxides are also effective as 5 to 3.2 people, and it is more preferable if this intermediate film is a high magnetic permeability film.

金属窒化物などの結晶構造にはbcp、tcc。bcp and tcc for crystal structures such as metal nitrides.

bce、非晶質などがあるが、hcpと非晶質がより好
ましい。
bce, amorphous, etc., but hcp and amorphous are more preferred.

中間膜の膜厚としては0.01〜0.1 μmが好まし
く、0.01〜0.05 μmがより好ましい。0.0
1〜0.1 μmの膜厚がよいのは。
The thickness of the intermediate film is preferably 0.01 to 0.1 μm, more preferably 0.01 to 0.05 μm. 0.0
A film thickness of 1 to 0.1 μm is preferable.

0.01 μm未満では中間膜としての効果が小さく、
0.1 μmを越えると高透磁率磁性膜とFaxN垂直
磁化膜との磁気的相互作用が小さくなり、磁気ヘッドで
記録再生した際の再生出力が小さくなるためである。こ
の中間膜は1層でもよいが、全膜厚が0.01〜0.1
 μmとなる範囲で2層にすることを排除するものでは
ない。
If the thickness is less than 0.01 μm, the effect as an interlayer film is small;
This is because if the thickness exceeds 0.1 μm, the magnetic interaction between the high permeability magnetic film and the FaxN perpendicular magnetization film becomes small, and the reproduction output when recording and reproducing with a magnetic head becomes small. This intermediate film may be one layer, but the total film thickness is 0.01 to 0.1
This does not exclude the use of two layers within the range of μm.

中11JII膜の形成後には、物理蒸着法(スパッタ法
After forming the middle 11 JII film, a physical vapor deposition method (sputtering method) is used.

蒸着法など)、化学蒸着法(CVD法)、めっき法、無
電解メッキ法などの電着法などがあるが、全体のプロセ
スを考えて任意に選ぶことができる。
evaporation method, etc.), chemical vapor deposition method (CVD method), plating method, electrodeposition method such as electroless plating method, etc., and any method can be selected considering the overall process.

FexN膜としては、膜厚が0.1 μm以上で、Nの
含有量が20〜32原子%で、飽和磁束密度が2000
〜10000 Gのものであればいずれでもよいが、N
の含有量が22〜28原子%、Bsが6500〜100
00 Gのものは再生出力が大きくなるのでより好まし
い、また、FexN膜の耐食性向上を目的に、10原子
%以下のCr、Ni、Co+ Bit白金属元素、Zr
、Ta、Nb+ AA、Wの少なくとも一つを含有させ
ることもできる。これらの元素のうち、Cr、Ni、A
l、Wは安価であるので好ましい。
The FexN film has a thickness of 0.1 μm or more, an N content of 20 to 32 at%, and a saturation magnetic flux density of 2000
~10000G may be used, but N
The content of is 22 to 28 at%, Bs is 6500 to 100
00G is more preferable because it increases the reproduction output.Also, for the purpose of improving the corrosion resistance of the FexN film, Cr, Ni, Co+Bit platinum elements, Zr
, Ta, Nb+ AA, and W. Among these elements, Cr, Ni, A
L and W are preferable because they are inexpensive.

FexN膜の形成法としては、F e + F 84 
N *F e、N y F ex 〜3NI F a、
NのようなFeまたはその窒化物の中から選ばれた少な
くとも1つの粉末、粉末焼結体、バルクを原料としてA
rfi流中、Arと窒素の混合気流中、窒素気流中もし
くはこれらと水素の混合気流中で物理蒸着させる方法が
通常用いられるが、化学蒸着法などを排除するものでは
ない、また、Arの代用としてNe。
The method for forming the FexN film is F e + F 84
N*F e, N y F ex ~3NI Fa,
A using at least one powder, powder sintered body, or bulk selected from Fe such as N or its nitride as a raw material
A method of physical vapor deposition in an RFI stream, a mixed stream of Ar and nitrogen, a nitrogen stream, or a mixed stream of these and hydrogen is usually used, but this does not exclude chemical vapor deposition. As Ne.

Kr、Xθを用いることも可能である。It is also possible to use Kr and Xθ.

FexN膜中にCrなどの上述の元素を含ませる方法と
しては上述のFaまたは窒化鉄にCrなどを混合、熔融
したものを原料とするか、Feまたは窒化鉄上にOrな
どのチップを置いたものを原料とすればよい。
Methods for incorporating the above-mentioned elements such as Cr into the FexN film include mixing and melting Cr with the above-mentioned Fa or iron nitride as a raw material, or placing a chip of Or etc. on Fe or iron nitride. You can use things as raw materials.

F8XNまたはCrなどを含有するFexN膜の膜厚は
0.1〜1.0 μmのものがより好まれる。この範囲
のものがより好まれる理由は0.1μm以下の膜厚では
垂直磁化膜になりにくく、1.0 μm以上では磁気ヘ
ッドによる記録がむずかしくなるためである。
The thickness of the FexN film containing F8XN or Cr is more preferably 0.1 to 1.0 μm. The reason why a film in this range is preferred is that a film thickness of 0.1 μm or less is difficult to form a perpendicularly magnetized film, and a film thickness of 1.0 μm or more makes recording with a magnetic head difficult.

上述のFexNまたはCrなどを含有したFexN11
9!の形成時にアースを基準にして一500V〜−50
Vのバイアス電圧を基板に印加すれば゛ 磁性膜の特性
が向上するのでより好ましい。
FexN11 containing the above-mentioned FexN or Cr etc.
9! -500V to -50V with respect to earth when forming
It is more preferable to apply a bias voltage of V to the substrate because it improves the characteristics of the magnetic film.

FaxNiiが垂直磁化膜になっている否かは再生波形
を観察することによって判断される(電気通信学会磁気
記録研究会資料MR76−16゜p19)、fl易な判
別法としては、高透磁率磁性膜をつけたいわゆる2NN
膜体を作製する際に。
Whether or not FaxNii is a perpendicularly magnetized film can be determined by observing the reproduced waveform (IEICE Magnetic Recording Study Group Material MR76-16゜p19).An easy way to tell is if it has high permeability magnetism. So-called 2NN with a membrane attached
When making a membrane body.

高透磁率磁性膜を除いた中間膜上に形成したFexN@
モニタの垂直方向の残留磁束密度と面内方向の残留磁束
密度との比(Br□/Br、)が用いた(モニタ膜から
高透磁率磁性材を除いたのは、高透磁率材があると垂直
磁化膜の磁気特性が測定しにくかったためである)。通
常Brよ/Brzが0.8以上であれば垂直磁化膜にな
ると考えられ、実際に磁気ヘッドによる再生波形とBr
□/ B r zによる簡易な判別法ではほとんど差が
なかった(再生波形から判断された上記B’ sの上限
値の方がB r 、/ B r #から判断された上記
Bsより300G程度大きかったが本質的な差ではない
であろう)。
FexN@ formed on the intermediate film excluding the high permeability magnetic film
The ratio of the residual magnetic flux density in the perpendicular direction to the residual magnetic flux density in the in-plane direction of the monitor (Br (This is because the magnetic properties of perpendicularly magnetized films were difficult to measure.) Normally, if Br/Brz is 0.8 or more, it is considered to be a perpendicularly magnetized film, and in fact, the reproduced waveform by the magnetic head and Br
There was almost no difference in the simple discrimination method using □ / B r z (the upper limit of the above B' s judged from the reproduced waveform was about 300 G larger than the above Bs judged from B r , / B r #). However, it is probably not an essential difference).

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例によって説明するが、この実施例
は本発明になんらの制限を加えるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but these Examples do not impose any limitations on the present invention.

実施例1 第2図に示したRFスパッタ装置を用い、非磁性基板上
にパーマロイ(高透磁率磁性膜)を被着させ、この上に
いろいろな中間膜を介してFexNのスパッタリングを
行なった。なお、磁気特性測定用モニタ上にはシャッタ
をっけパーマロイのみを除いた膜をつけた。
Example 1 Using the RF sputtering apparatus shown in FIG. 2, permalloy (high permeability magnetic film) was deposited on a nonmagnetic substrate, and FexN was sputtered thereon through various intermediate films. Note that a shutter was placed on the monitor for measuring magnetic properties, and a film with only the permalloy removed was attached.

第2図において、1は非磁性基板で、この基板にはアー
スを基準にして、 −500〜Ovのバイアス電圧を印
加できる構造をもつ、また、基板上のモニタ部にはシャ
ッターがつけられており、モニタ部にパーマロイがつか
ないようにできる構造になっている。2はスパッタター
ゲットでターゲットには13.5MHzのRFがかけら
れる構造をもつ、また、3つのターゲットが同時に入れ
られる構造になっており、高透磁率膜、中間膜。
In Figure 2, numeral 1 is a non-magnetic substrate, which has a structure that can apply a bias voltage of -500 to Ov with respect to the ground, and a shutter is attached to the monitor section on the substrate. It has a structure that prevents permalloy from getting on the monitor. 2 is a sputter target, which has a structure that allows 13.5 MHz RF to be applied to the target, and also has a structure that allows three targets to be placed at the same time, including a high magnetic permeability film and an intermediate film.

FexN膜を連続的にスパッタできる。3はニードルバ
ルブでAr、N、、H□の混合比を調節できる構造にな
っている。
FexN film can be sputtered continuously. 3 has a structure in which the mixing ratio of Ar, N, and H□ can be adjusted using a needle valve.

上記の装置を使用し、100φのターゲットを用いて5
 X 10−”TorrのAr中で光学研摩したガラス
基板上に約1.0 μmのパーマロイを被着させ、つい
で、O,OS  μmの中間金属膜を被着させた。つぎ
に、100φのFe、N圧粉体ターゲットを用いて10
 X 10−’TorrのAr[微量のN8 (0〜5
voQ%)を含む〕中で上記中間膜上に約0.4  μ
mの窒化鉄を被着させた。窒化鉄を被着する際にはアー
スを基準にして一150vのバイアスを基板に印加した
Using the above device and using a 100φ target, 5
Permalloy of about 1.0 μm was deposited on a glass substrate optically polished in Ar at X 10-” Torr, and then an intermediate metal film of O,OS μm was deposited. Next, a 100φ Fe , 10 using N compact powder target
X 10-'Torr of Ar [trace amount of N8 (0-5
voQ%) on the above interlayer film.
m of iron nitride was deposited. When depositing iron nitride, a bias of -150 V with respect to ground was applied to the substrate.

なお、到達真空度は、パーマロイ、中間膜、窒化鉄のい
ずれの場合にもI X 10−’Torrとした。
The ultimate degree of vacuum was set to I x 10-'Torr in all cases of permalloy, intermediate film, and iron nitride.

中間膜には、M n (最近接原子間比ill : 2
.24人)。
The intermediate film has M n (nearest neighbor atomic ratio ill: 2
.. 24 people).

V(2,63人)、Ru (2,65人)、0s(2,
68人)、Rh (2,69人)、Ir(2,71人)
、Mo  (2,73人) 、 W (2,74人)、
Re  (2,74人)、Pd  (2,75人)。
V (2,63 people), Ru (2,65 people), 0s (2,
68 people), Rh (2,69 people), Ir (2,71 people)
, Mo (2,73 people), W (2,74 people),
Re (2,74 people), Pd (2,75 people).

Pt  (2,78人)、Nb  (2,86人)、T
a(2,86人) 、 Afl  (2,86人) 、
 Au(2,88人)、Ag (2,89人)+Ti(
2,89人)、Sn (3,01人)、Gd(3,56
人)を使用し、最近原子間比@ (OCA)とFexN
が垂直磁化膜になるBsの上限値との関係を図1に示し
た。Bsの上限値はFexN膜のXを2〜3(N:20
〜33原子%)の間で変化させ膜のBrよ/ B r 
zが0.8以上になるBsから求めた。
Pt (2,78 people), Nb (2,86 people), T
a (2,86 people), Afl (2,86 people),
Au (2,88 people), Ag (2,89 people) + Ti (
2,89 people), Sn (3,01 people), Gd (3,56 people)
human), recently interatomic ratio @ (OCA) and FexN
FIG. 1 shows the relationship between Bs and the upper limit value at which Bs becomes a perpendicularly magnetized film. The upper limit of Bs is 2 to 3 (N: 20
~33 at%)
It was determined from Bs where z is 0.8 or more.

第1図からあきらかなように、DCAが2.5〜3.2
 人の中間膜を使用するとFexN膜が垂直磁化膜にな
るBsは、急激に大きくなる。このようにBsの大きい
FexN膜は再生出力を大きくできるので垂直磁気記録
材料として有利であると考えられる。OCAが2.65
〜2.85 人の中間膜では上述のBsの値はさらに大
きくなる。
As is clear from Figure 1, DCA is 2.5 to 3.2.
When a human intermediate film is used, Bs, which makes the FexN film a perpendicularly magnetized film, increases rapidly. A FexN film with such a high Bs can provide a large reproduction output, and is therefore considered to be advantageous as a perpendicular magnetic recording material. OCA is 2.65
~2.85 In the human interlayer, the above-mentioned Bs value becomes even larger.

第1表には、中間膜なしくこの場合はパーマロイを非常
に薄< (0,05μm)被着し、パーマロイとFex
N膜の混合されたB−H特性からFexN膜のみの特性
を推定した)、Re、Wお第1表 第2表 よびTiを中間膜として作製したFaxNの磁気特性を
示す、第1表からあきらがなように、中間膜を被着した
FexN膜はBsが大きくてもBrよ/Br、((Br
、/Bs)/ (Br、/Bs))が0.8 以上であ
り、垂直磁化膜になっている。
Table 1 shows that without an interlayer, in this case Permalloy is deposited very thinly < (0.05 μm), and Permalloy and Fe
(The characteristics of only the FexN film were estimated from the mixed B-H characteristics of the N film), Re, W from Table 1, Table 2, and Table 1 showing the magnetic properties of FaxN prepared with Ti as an intermediate film. As shown by Akira, even if Bs is large, the FexN film coated with an interlayer film has Br/Br, ((Br
, /Bs)/(Br, /Bs)) is 0.8 or more, making it a perpendicularly magnetized film.

第1表では中間膜を被着させるとRe工の若干の増大が
It察されるが、これはFexNのC軸が膜面の垂直方
向に配向したことと関係があると考えられる。
In Table 1, it can be seen that there is a slight increase in Re after depositing the intermediate film, but this is thought to be related to the fact that the C-axis of FexN was oriented in the direction perpendicular to the film surface.

実施例2 中間膜としてSnO,(DCA3.19  人)、Ti
N (同3.03 人)を使用し、実施例1と同様にF
exN膜を形成した場合の結果を第2表に示す。
Example 2 SnO, (DCA 3.19 people), Ti as an intermediate film
F (3.03 people) in the same way as in Example 1.
Table 2 shows the results when an exN film was formed.

第2表からあきらかなように、OCAが2.5〜3.2
 人の酸化物、窒化物を使用した場合にもFexN膜が
垂直磁化膜になるBsの上限値は中間膜なしにくらべて
増大する。
As is clear from Table 2, OCA is 2.5 to 3.2.
Even when human oxide or nitride is used, the upper limit value of Bs at which the FexN film becomes a perpendicularly magnetized film is increased compared to the case without an intermediate film.

実施例3 膜厚が0〜0.18 μmのReを中間膜として、この
中間膜上に5原子%のCrを含むFexN膜を実施例1
と同様に形成し、この垂直記録媒体の再生出力を評価し
た。高透磁率磁性膜には1.0μmのCo@*Zrg 
、JOla 、s を使用した。第3図に中間膜厚と再
生出力との関係を示す(磁気ヘッドは単磁極型ヘッドで
、主磁極膜厚が0.3  μmのものを用い、相対速度
2.5m/sで測定した記録電流は記録密度I KPC
Iにおける出力が最大になるように選んだ)、第3図か
らあきらかなように、中間膜の膜厚をOから0.01 
μmに厚くすると再生出力は急激に増大し、膜厚が0.
03 μm付近で再生出力が最大になり、それ以上膜厚
を増大させると再生出力は徐々に減少し、膜厚が0.1
μm以上では膜厚の増加とともに再生出力が急激に減少
する。この結果から、中間膜の膜厚は0.01〜0.1
 μmがよいことがわかる。
Example 3 Using Re as an interlayer film with a thickness of 0 to 0.18 μm, Example 1 formed a FexN film containing 5 at% Cr on this interlayer film.
The reproduction output of this perpendicular recording medium was evaluated. 1.0μm Co@*Zrg for high permeability magnetic film
, JOla,s was used. Figure 3 shows the relationship between the intermediate film thickness and the reproduction output (the magnetic head was a single pole type head with a main pole film thickness of 0.3 μm, and the recording was measured at a relative speed of 2.5 m/s. Current is recording density I KPC
As is clear from Fig. 3, the thickness of the intermediate film was changed from O to 0.01.
When the thickness is increased to μm, the reproduction output increases rapidly, and when the film thickness is 0.
The reproduction output reaches its maximum at around 0.3 μm, and as the film thickness increases further, the reproduction output gradually decreases until the film thickness reaches 0.1 μm.
Above μm, the reproduction output sharply decreases as the film thickness increases. From this result, the thickness of the intermediate film is 0.01 to 0.1
It can be seen that μm is good.

実施例4 下地膜に0.05 μmのMoを使用し、磁性膜として
Ruをl0JX子%含有するFexN膜を実施例1と同
様に被着させた。FexN膜の被着時にアースを基準に
して一500〜Ovのバイアスを基板に印加した。結果
を第3表に示す、第3表からあきらかなように、−50
0〜−50Vのバイアスを基板に印加するとFexN膜
のHQ A rB r A / B sが増大し、Br
z/Bgは若干減少する。これらはFexN膜を垂直磁
気記録媒体にした時の周波数特性の向上に有利であると
考えられる。
Example 4 A FexN film containing 10JX% of Ru was deposited as a magnetic film in the same manner as in Example 1, using Mo with a thickness of 0.05 μm as the base film. When depositing the FexN film, a bias of 1,500 to 0 V with respect to ground was applied to the substrate. The results are shown in Table 3. As is clear from Table 3, -50
When a bias of 0 to −50 V is applied to the substrate, HQ A rB r A / B s of the FexN film increases, and Br
z/Bg decreases slightly. These are considered to be advantageous in improving frequency characteristics when the FexN film is used as a perpendicular magnetic recording medium.

第3表 以上述べた実施例から、平均最近接原子間距離が2.5
〜3.2人の金属、金属窒化物、金属酸化物を中間膜と
することにより中間膜上に形成されたFaxNllが垂
直酸化膜になるBsの上限値は高くなり、また、Bsを
一定の値にすると垂直磁化膜の特性が向上することがわ
かった。この中間膜の厚さは、再生出力から判断して0
.01〜0.1 μmがよいことがあきらかになった。
Table 3 From the examples described above, the average nearest neighbor atomic distance is 2.5
~3. By using two metals, metal nitrides, and metal oxides as the interlayer film, the upper limit of Bs becomes higher, and when Bs is kept at a certain level, the FaxNll formed on the interlayer film becomes a vertical oxide film. It was found that the characteristics of the perpendicularly magnetized film improve when the value is increased. The thickness of this intermediate film is 0, judging from the playback output.
.. It has become clear that 0.01 to 0.1 μm is good.

以上の実施例では、高周波スパッタ法で高透磁率磁性膜
、中間膜およびFexN膜を形成したが目的により蒸着
法、マグネトロンスパッタ、イオンビームスパッタ、C
VD法、電着法も使用できる。
In the above embodiments, the high permeability magnetic film, intermediate film, and FexN film were formed by high-frequency sputtering, but depending on the purpose, vapor deposition, magnetron sputtering, ion beam sputtering, carbon
VD method and electrodeposition method can also be used.

また、1層の中間膜を使用した場合についての実施例の
みを示したが、目的により中間膜を2層にすることもで
きる。
Moreover, although only examples have been shown in which one layer of intermediate film is used, two layers of intermediate films may be used depending on the purpose.

薄膜形成基板としては1本発明に使用したガラス基板以
外にも、ポリエステルフィルム、ポリイミドフィルムな
どの有機ポリマーあるいはAQなどの金属板、薄帯など
が用いられる。また、基板は長尺状もしくは円板上とす
る必要に応じて任意の形状としてもよい。
As the thin film forming substrate, in addition to the glass substrate used in the present invention, organic polymers such as polyester films and polyimide films, metal plates such as AQ, thin strips, etc. can be used. Further, the substrate may be of any shape as required, such as an elongated shape or a disk shape.

その他、本明細書に特に記載していない事項(膜と基板
、膜間の密着性向上のための中間膜。
Other matters not specifically described in this specification (intermediate film for improving adhesion between the film and the substrate, and between the films).

耐久性向上のための無機または有機保護膜、潤滑膜など
)については、既に知られている知見を適用しても差支
えない。
Regarding inorganic or organic protective films, lubricating films, etc. for improving durability, already known knowledge may be applied.

〔発明の効果〕〔Effect of the invention〕

以上説明したことからあきらかなように1本発明による
中間膜を用いることにより、FexN膜が垂直磁化膜に
なるBsの範囲(すなわち、FexNのXの範囲)が広
くなるので、実用上の利点が大きい。
As is clear from the above explanation, by using the intermediate film according to the present invention, the range of Bs in which the FexN film becomes a perpendicularly magnetized film (that is, the range of big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例における中間膜の最近接原
子間距離とFexN膜が垂直磁化膜になるBsの上限値
との関係を示した説明図、第2図は1本発明の一実施例
における高透磁率膜、中間膜、l!化鉄の作製に用いた
高周波スパッタ装置の概略図、第3図は、中間膜厚と再
生出力との関係を示した説明図である。
FIG. 1 is an explanatory diagram showing the relationship between the closest interatomic distance of the intermediate film and the upper limit value of Bs at which the FexN film becomes a perpendicular magnetization film in one embodiment of the present invention, and FIG. High magnetic permeability film in one embodiment, interlayer film, l! FIG. 3, which is a schematic diagram of the high frequency sputtering apparatus used for producing the iron oxide, is an explanatory diagram showing the relationship between the intermediate film thickness and the reproduction output.

Claims (1)

【特許請求の範囲】 1、非磁性基板と、高透磁率磁性材料と、少なくとも1
層の中間膜を介して被着された垂直磁気異方性を有する
窒化鉄を主体とする薄膜磁性体とからなることを特徴と
する垂直磁気記録媒体。 2、特許請求の範囲第1項に記載の垂直磁気記録媒体に
おいて、前記中間膜の最近接原子間距離が2.5〜3.
2Åで、中間膜の全厚が0.01〜0.1μmであるこ
とを特徴とする垂直磁気記録媒体。 3、特許請求の範囲第1項または第2項に記載の垂直磁
気記録媒体において、前記中間膜がV、Ru、Zn、O
s、Rh、Ir、Mo、W、Re、Pd、Pt、Nb、
Ta、Sn、Al、Au、Ag、Tiおよびこれらの元
素の窒化物、酸化物の中から選ばれた少なくとも一つを
含むことを特徴とする垂直記録媒体。 4、特許請求の範囲第1項または第2項に記載の垂直磁
気記録媒体において、薄膜磁性体の膜厚が0.1〜1.
0μm、窒素含有量が20〜32原子%、飽和磁化が2
000〜10000Gの窒化鉄を主体とする垂直磁化膜
であることを特徴とする垂直磁気記録媒体。 5、特許請求の範囲第1項または第2項に記載の垂直磁
気記録媒体において、薄膜磁性体が鉄とともにCr、N
i、Co、Bi、白金属元素、Zr、Ta、Nb、Al
、Wの少なくとも一つを10原子%以下含むことを特徴
とする垂直記録媒体。
[Claims] 1. A non-magnetic substrate, a high permeability magnetic material, and at least one
A perpendicular magnetic recording medium comprising a thin film magnetic material mainly composed of iron nitride having perpendicular magnetic anisotropy and deposited through an interlayer film. 2. In the perpendicular magnetic recording medium according to claim 1, the intermediate film has a distance between nearest atoms of 2.5 to 3.
2 Å, and a total thickness of the intermediate film is 0.01 to 0.1 μm. 3. In the perpendicular magnetic recording medium according to claim 1 or 2, the intermediate film is made of V, Ru, Zn, O.
s, Rh, Ir, Mo, W, Re, Pd, Pt, Nb,
A perpendicular recording medium comprising at least one selected from Ta, Sn, Al, Au, Ag, Ti, and nitrides and oxides of these elements. 4. In the perpendicular magnetic recording medium according to claim 1 or 2, the film thickness of the thin film magnetic material is 0.1 to 1.
0μm, nitrogen content 20-32 at%, saturation magnetization 2
1. A perpendicular magnetic recording medium comprising a perpendicularly magnetized film mainly made of iron nitride of 000 to 10,000 G. 5. In the perpendicular magnetic recording medium according to claim 1 or 2, the thin film magnetic material contains iron as well as Cr, N,
i, Co, Bi, platinum metal element, Zr, Ta, Nb, Al
, W, in an amount of 10 atomic % or less.
JP23022784A 1984-11-02 1984-11-02 Vertical magnetic recording medium Pending JPS61110329A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23022784A JPS61110329A (en) 1984-11-02 1984-11-02 Vertical magnetic recording medium
GB8526756A GB2167448B (en) 1984-11-02 1985-10-30 Perpendicular magnetic recording medium
DE19853538852 DE3538852A1 (en) 1984-11-02 1985-10-31 VERTICAL MAGNETIC RECORDING MEDIUM AND METHOD FOR PRODUCING THE SAME
US06/793,772 US4743491A (en) 1984-11-02 1985-11-01 Perpendicular magnetic recording medium and fabrication method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23022784A JPS61110329A (en) 1984-11-02 1984-11-02 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61110329A true JPS61110329A (en) 1986-05-28

Family

ID=16904535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23022784A Pending JPS61110329A (en) 1984-11-02 1984-11-02 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61110329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361410A (en) * 1986-08-29 1988-03-17 Sanyo Electric Co Ltd Magnetic recording medium
JPS63253524A (en) * 1987-04-10 1988-10-20 Fuji Photo Film Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361410A (en) * 1986-08-29 1988-03-17 Sanyo Electric Co Ltd Magnetic recording medium
JPS63253524A (en) * 1987-04-10 1988-10-20 Fuji Photo Film Co Ltd Magnetic recording medium

Similar Documents

Publication Publication Date Title
TW390998B (en) Magnetic recording media and magnetic recording system using the same
US7635498B2 (en) Fabrication method for perpendicular magnetic recording media
US20040043258A1 (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US5834085A (en) Grain isolated multilayer perpendicular recording medium
EP0140513A1 (en) Thin film magnetic recording structures
CA1315612C (en) Perpendicular magnetic storage medium
JP2005190538A (en) Magnetic recording medium, and its manufacturing method and apparatus
JPH08147665A (en) Magnetic recording medium and magnetic memory device using the medium
US20030133223A1 (en) Magnetic recording head with annealed multilayer, high moment structure
JPS59140629A (en) Vertical magnetic recording medium and its production
JPS61110329A (en) Vertical magnetic recording medium
JP2001134927A (en) Magnetic recording medium
JPS59228705A (en) Vertical magnetic recording medium and manufacture of the same
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP2001093139A (en) Magnetic recording medium and magnetic recording and reproducing device
JPS61110328A (en) Vertical magnetic recording medium and its production
JP2002230735A (en) Perpendicular magnetic recording medium and magnetic storage device
JPH0817032A (en) Magnetic recording medium and its production
JP2001283427A (en) Magnetic recording medium, its manufacture method, sputtering target and magnetic recording and reproducing device
Gavrila et al. Magnetic materials for advanced magnetic recording media
JPH0337724B2 (en)
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JPS63124213A (en) Perpendicular magnetic recording medium