JPS61110066A - Ground fault point location system for parallel multi-circuit - Google Patents

Ground fault point location system for parallel multi-circuit

Info

Publication number
JPS61110066A
JPS61110066A JP23176784A JP23176784A JPS61110066A JP S61110066 A JPS61110066 A JP S61110066A JP 23176784 A JP23176784 A JP 23176784A JP 23176784 A JP23176784 A JP 23176784A JP S61110066 A JPS61110066 A JP S61110066A
Authority
JP
Japan
Prior art keywords
zero
line
circuit
point
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23176784A
Other languages
Japanese (ja)
Other versions
JPH0634022B2 (en
Inventor
Tokuo Emura
徳男 江村
Masayasu Takeuchi
雅靖 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP23176784A priority Critical patent/JPH0634022B2/en
Publication of JPS61110066A publication Critical patent/JPS61110066A/en
Publication of JPH0634022B2 publication Critical patent/JPH0634022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To locate the distance to a fault point at a high accuracy by a specified formula from a zero-phase voltage of its own terminal electric point which will be generated at the ground-fault in one line and zero-phase current flowing through circuits in a system in which a transformer at the end of an opponent bus in a parallel multi-circuit power transmission line having a mid-point impedance. CONSTITUTION:In case a ground-fault occurs, computation is performed about circuit 1, 2, 3... and (n) by the formula [wherein (i) represent 1, 2, 3...(n), but (n) is number of circuit, I01: circuit zero-phase current, V0: own terminal current, Z: mid-point impedance of transformer at opponent bus terminal, l: circuit length] from the zero-phase voltage of its own and the zero-phase current per circuit flowing into an opponent terminal zero-phase impedance. When the computed value Xi reaches the maximum among those X1, C2, X3... and Xn, the (i) circuit is in trouble. The distance to the fault point is located by computed values X1, X2, X3... and Xn of all the circuits but the affected one.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高抵抗接地系における平行多回線地絡故障点
標定方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a parallel multi-circuit ground fault fault location method in a high resistance grounding system.

(従来の技術) 平行2回線送電線の地絡故障に対する故障点の標定には
一般的に零相電流分流比による故障点標定方式がある。
(Prior Art) A fault point location method using a zero-sequence current shunt ratio is generally used to locate a fault point for a ground fault in a parallel two-circuit power transmission line.

この零相電流分流比による方式の原理について第3図乃
至第4図に基きまず説明する。
The principle of this method based on the zero-sequence current shunt ratio will first be explained with reference to FIGS. 3 and 4.

第6図は平行2回線の系統図(単相表現)を示し、人、
Bは自端側(標定装置設置点側)、相手端側の各母線I
L、2Lは母線人、B間に設けられた平行する各回線で
ある。いま図では回111Lの個所Fで1線地絡故障が
発生したものとしている。
Figure 6 shows a system diagram (single-phase representation) of two parallel lines.
B is each bus line I on the own end side (location device installation point side) and the other end side
L and 2L are parallel lines provided between the bus line and B. In the figure, it is assumed that a one-wire ground fault has occurred at point F of circuit 111L.

そして上記故障に対する対称座標法から得られる零相等
価回路は第4図のように表わされる。ここでXは回線の
全長をjとしたときの自端から故障点Fまでの距離、2
0は各回線の単位長当りの零相インピーダンス、I”0
1.IO2は各回線の零相電流、iofは故障点零相電
流であり、 これらは下記の関係式で表現できる。
The zero-phase equivalent circuit obtained from the symmetric coordinate method for the above fault is expressed as shown in FIG. Here, X is the distance from the own end to the fault point F when the total length of the line is j, 2
0 is the zero-sequence impedance per unit length of each line, I”0
1. IO2 is the zero-sequence current of each line, and iof is the zero-sequence current at the fault point, and these can be expressed by the following relational expression.

Iof =Io1−4−Ioz           
filxZoio1=7ZoI”oz+(z−x)zo
ioz  t21ill、 +21式より 2工02 x −−1f31 i01+i02 工0l−)−IO2 が得られ、前記t31. +41式はそれぞれ回線IL
、 2Lの自端側から故障点までの距臨を与えろ。
Iof=Io1-4-Ioz
filxZoio1=7ZoI"oz+(z-x)zo
ioz t21ill, +21 equation gives 2<t31. +41 type is each line IL
, Give the distance from the own end of 2L to the failure point.

ところで、第3図で示す系統において相手端側(B端)
に零相インピーダンスをもつ機器例えば消弧リアクトル
を設置することがあるが、その場合零相インピーダンス
の影響が顕著に現われて前記+31. (41式を用い
ると標定誤差が生ずることになる。以下これを解明する
。第5図においてReは相手端側(B端)に設けられる
消弧リアクトルであり、前記同様回線1LのF点で1線
地絡故障が発生したときの零相等価回路を第6図で示す
By the way, in the system shown in Figure 3, the other end (B end)
In some cases, equipment with zero-sequence impedance, such as an arc extinguishing reactor, is installed, but in that case, the influence of zero-sequence impedance will be noticeable, and the above +31. (If formula 41 is used, a positioning error will occur. This will be explained below. In Fig. 5, Re is an arc-extinguishing reactor provided at the other end (end B), and as above, at point F of line 1L. FIG. 6 shows a zero-phase equivalent circuit when a one-wire ground fault occurs.

ここで i0′1:B端よりF点への零相電流?6 :
B端の零相電圧 λ :B端の零相インピーダンス ?Of:故障点の零相電圧 jof ;故障点の零相電流 とすると、 ?of =?o −XZQ iα1f51?or=?o
−JZOI”02−(J−x)ZoLn  (61i6
1= 1o2− ?o/北        (7)が成
立する。(51,+61式より xio1= 1ioz+(t−x) ]”61    
  f81f71. (8+式ニi01+fO′1=f
of即う161= iar −iolを用いるとjol
−ioz =’−5−”1.of        (g
l1o1−44oz = l’of +’lG/Z  
     QQ+91.(10式より ここで前記零相電流分流比の原理を適用すると、となり
、(2)式の右辺第2項即ち が誤差の要因となる。高抵抗接地系では一般に零相電圧
は高く(完全地絡で健全時の相電圧程度となる)、?し
乞の大きさはjofのそれと同程度になる場合もある。
Here, i0'1: Zero-sequence current from end B to point F? 6:
Zero-sequence voltage λ at B end: Zero-sequence impedance at B end? Of: Zero-sequence voltage at the fault point jof; Assuming zero-sequence current at the fault point, ? of=? o -XZQ iα1f51? or=? o
-JZOI”02-(J-x)ZoLn (61i6
1=1o2−? o/north (7) holds true. (From formula 51, +61, xio1= 1ioz+(t-x) ]”61
f81f71. (8+Equation di01+fO'1=f
If you use 161 = iar - iol, then jol
-ioz ='-5-"1.of (g
l1o1-44oz = l'of +'lG/Z
QQ+91. (From Equation 10, if we apply the principle of the zero-sequence current shunt ratio, we get: The second term on the right side of Equation (2), or the second term on the right side, is the cause of the error. In a high-resistance grounding system, the zero-sequence voltage is generally high (completely When there is a ground fault, the phase voltage is about the same as normal phase voltage), and the magnitude of the voltage drop may be about the same as that of a jof.

従って前記のような相手端に中性点インピーダンスつま
り零相インピーダンスをもつ系統では零相電流分流比に
よる故障点標定は適用できない。
Therefore, in a system having a neutral point impedance, that is, a zero-sequence impedance at the opposite end as described above, fault point location using the zero-sequence current shunt ratio cannot be applied.

(発明が解決しようとする問題点) この発明は前記のように相手端に零相インピーダンスを
もつ系統では(至)式の右辺第2項が誤差要因になる。
(Problems to be Solved by the Invention) In the present invention, as described above, in a system having zero-sequence impedance at the other end, the second term on the right side of equation (to) becomes an error factor.

本発明は零相インピーダンスの影響を受けず、その故障
点までの距離を高精度で標定することを目的とするう (問題点を解決するための手段) この発明による方式の原理についてまず説明する。第7
図は平行n回線の系統図(単相表現)を示し、A、Bは
自端側(標定装置設置点側)、相手側の各母線、IL−
nLは母線A、B間に設けられた平行する各回線である
。Reは前記同様相手端側(B端)に設けられる消弧リ
アクトルである。
The purpose of the present invention is to locate the distance to the failure point with high precision without being affected by zero-sequence impedance (Means for solving the problem) The principle of the method according to the present invention will first be explained. . 7th
The figure shows a system diagram (single-phase representation) of parallel n lines, where A and B are the self-end side (location device installation point side), each bus line on the other side, and IL-
nL is each parallel line provided between bus lines A and B. Re is an arc extinguishing reactor provided on the other end side (B end) as described above.

そして前記同様回線1LのF点で1線地絡故障が発生し
たときの零相等価回路を第8図で示すっここで、I61
:B端よl)F点への零相電流何 :B端の零相電圧 2 :B端の零相インピーダンス ?Of:故障点の零相電圧 jof :故障点の零相電流 とすると、前記同様に I[;1 = (IO2+IO5+−−−・=+l0n
) −V6/乞 aSQ4.(ト)式より xI”o1=、gioz+(z−x)i61(17)ま
たQ6式より、″”X O2= I 03−−−−−−
 = I onこれを00式に用いて I61 =(n−1)IO2−V6/Z       
 07969式より x(Io1+fa1)=J(I”
oz+161)この式に(至)式を用いると を得る。このα9式が拡張された零相電流分流比Iこよ
る標定演算式であり、ここでλ−ce(無限大)、n 
= 2 とすれば前記した(4)式と一致すること力;
わかる。
Similarly to the above, the zero-phase equivalent circuit when a one-wire ground fault occurs at point F of line 1L is shown in Figure 8. Here, I61
: B end l) What is the zero-sequence current to point F? : Zero-sequence voltage 2 at B end : Zero-sequence impedance at B end? Of: Zero-sequence voltage at the fault point jof: Zero-sequence current at the fault point, then I[;1 = (IO2+IO5+−−・=+l0n
) -V6/beggar aSQ4. From equation (g), xI"o1=, gioz+(z-x)i61 (17) Also, from equation Q6, ""X O2= I 03--------
= I onUsing this in formula 00, I61 = (n-1)IO2-V6/Z
From formula 07969, x(Io1+fa1)=J(I”
oz+161) Using the formula (to) in this formula, we obtain. This α9 formula is an expanded zero-sequence current division ratio I-based location calculation formula, where λ-ce (infinity), n
If = 2, it matches the equation (4) above;
Recognize.

(6)式には自端即ち人電気所で直接得られる零相電流
情報以外に相手端即ちB電気所の零相電流情報が必要で
ある。自端電気新人の電流電圧情報のみを用いて標定で
きることが理想ではあるが、高抵抗接地系においては、
変圧器中性点インピーダンスの大きさが線路インピーダ
ンスに比べて非常に大きく、?0′=?o −j Zo
 ta2における線路での電圧降下分7zoiozは?
0に比べて無視することができる。従ってvoyvoと
考えて支障はない。
Equation (6) requires zero-sequence current information at the opposite end, that is, the B electric station, in addition to the zero-sequence current information directly obtained at the own end, that is, the electric station B. Ideally, it would be possible to locate using only the current and voltage information of the own end electrician, but in a high-resistance grounding system,
Is the transformer neutral point impedance much larger than the line impedance? 0′=? o −j Zo
What is the voltage drop 7zoioz on the line at ta2?
It can be ignored compared to 0. Therefore, there is no problem in considering it as voyvo.

以上のことより相手端に中性点インピーダンスをもつ高
抵抗接地系平行n回線の1線地絡故障点標定式として を得る。
From the above, we obtain a one-wire ground fault fault location formula for a high-resistance grounded parallel n-line circuit with neutral point impedance at the other end.

ここで、Iol:故障回線零相電流 102:健全回線零相電流 ?a :自端零相電圧 乞 :相手端中性点インピーダンス として、前(2)式を適用する場合、n回線中から故障
回線と健全回線を選択する必要があるが、この故nIg
l線の選択とその故障点までの標定を以下に詳述する。
Here, Iol: Faulty line zero-sequence current 102: Healthy line zero-sequence current? a: Zero-sequence voltage at own end: When applying the previous formula (2) as the neutral point impedance at the other end, it is necessary to select a faulty line and a healthy line from n lines, but for this reason nIg
The selection of the l line and its orientation to the fault point will be detailed below.

前(至)式より1oz=ios=・・・・・・=Ion
であるから前(ホ)式の分母は となる。
From the previous equation, 1oz=ios=・・・・・・=Ion
Therefore, the denominator of the previous equation (e) becomes.

ここでi@線について次の(財)式で計算されるXi(
但し” =112131−・・・・・+”)前屹(至)
式及びio1+1o1=iof、 ?oαtOの関係を
用いると または が得られるから(2)式を(2)式に用いると、Xx=
nj−(n−1)x X2 :: X3 :・・・・・・=Xn =Xとなり
、X≦nj−(n−1)xであるから、故障回線の計算
値Xiが最大となることがわかり、更に故障点までの距
離は故障回線以外の計算値Xjにより与えられろ事がわ
かる。従って故障回線の選択と、その故障点の標定を次
の要領で行うことができる。
Here, Xi(
However, "=112131-...+") front (to)
Formula and io1+1o1=iof, ? Using the relationship oαtO, or is obtained, so using equation (2) in equation (2), Xx=
nj-(n-1)x It can be seen that the distance to the failure point is given by the calculated value Xj of lines other than the failure line. Therefore, selection of a faulty line and location of its fault point can be performed in the following manner.

まず、前c2℃式 但しi=1.2.5.・・・・・・
、n について を計算する。上式にしたがえば が計算される。このXI 、 X2 、・・・・・・、
Xa  O中から最大値を呈したiL回線を故障回線と
して選択する。
First, the previous c2°C formula, where i=1.2.5.・・・・・・
, n. is calculated according to the above formula. This XI, X2,...
The iL line exhibiting the maximum value from among the Xa O is selected as the faulty line.

更にxi以外のXjを故障点までの標定値と・して選択
する。
Furthermore, Xj other than xi is selected as the orientation value to the failure point.

第2図は上記処理要領手順を細分化して示すフローチャ
ートであり、ステップ(1)で地絡故障が発生したか否
かを判定する。零相電圧9口が予め設定    □され
た設定レベルLより大きいか等しいときステップ(2)
に進むっステップ(2)では相手端零相インピーダンス
之に流れ込む1回線当りの電流の計算を行う。ステップ
(3)では零相インピーダンスに流れる電流分を除去す
る。ステップ(4)では電流分流比による距離の計算を
行う。ステップ(5)で故障回線の選択を行なう。ステ
ップ(6)では故障点標定値の平均化(演算誤差の平均
化)を行う。ステップ(7)で上記の標定値を出力する
。最後にステップ(8)で地絡故障が消滅したか否かを
判定し、YBsのとき終了する。
FIG. 2 is a flowchart illustrating the above procedure in detail, and in step (1) it is determined whether a ground fault has occurred. Step (2) when the zero-phase voltage 9 is greater than or equal to the preset setting level L.
In step (2), the current per line flowing into the zero-sequence impedance of the other end is calculated. In step (3), the current flowing through the zero-sequence impedance is removed. In step (4), the distance is calculated based on the current shunt ratio. In step (5), a faulty line is selected. In step (6), the fault point location values are averaged (arithmetic errors are averaged). In step (7), the above orientation value is output. Finally, in step (8), it is determined whether the ground fault has disappeared, and if YBs, the process ends.

このように本発明方式の原理にしたがえば高抵抗接地系
平行多回線送電線で相手端に中性点インピーダンス(零
相インピーダンス)をもつ場合にも適用できるほか、原
理的に殆んど誤差がなく高精度の標定が可能である特徴
を有するものである。
In this way, according to the principle of the present invention method, it can be applied to high resistance grounded parallel multi-circuit transmission lines with neutral point impedance (zero-sequence impedance) at the other end, and in principle, almost no error occurs. It has the feature of being able to perform highly accurate orientation without any problems.

(実施例) 以下この発明の方式を用いた具体的実施例を第1図に示
す。回m1L−nLの自端側に設けた変流器ICT−n
c’rにより回線単位の零相電流io1〜Ionを得る
。IAXCT−nAXCTは前記零相電流io1〜Io
nを適当な値の11圧に変換する補助変流器、FTは計
器用変圧器で系統の零相電圧?0を得る。
(Example) A specific example using the method of the present invention is shown in FIG. 1 below. Current transformer ICT-n installed on the own end side of times m1L-nL
Zero-sequence currents io1 to Ion for each line are obtained by c'r. IAXCT-nAXCT is the zero-sequence current io1 to Io
An auxiliary current transformer that converts n to an appropriate value of 11 voltage, and FT is an instrument transformer that is the zero-sequence voltage of the system? Get 0.

AXPTは補助変圧器である。AFはそれぞれ前記系統
から得られろ零相電圧?0、零相電流io1〜Ion情
報に含まれる窩調波成分をカットし、折返し誤差を除去
するために設けられるアナログフィルタである。s7H
はそれぞれサンプルホールド回路であり、前記系統から
得られた情報を制御回路CONからの指令に基き例えば
1サイクル中に12回(6C3間隔)の同時刻サンプリ
ングを行いそのサンプル値を保持する。MPXは前記サ
ンプル値を順次切替えて出力するマルチプレクサ、A/
l)は前記アナログのサンプル値をデジタル量1こ変換
するAD変換器である。CPUは前記デジタル情報を記
憶すると同時に所定の演算を行うマイクロプロセッサ等
の演算装置、OUTは出力回路である。
AXPT is an auxiliary transformer. Is the zero-sequence voltage obtained from each of the above systems for AF? 0. This is an analog filter provided to cut off harmonic components included in the zero-phase current io1 to Ion information and remove aliasing errors. s7H
are sample and hold circuits, which sample the information obtained from the system at the same time, for example, 12 times (6C3 intervals) during one cycle based on a command from the control circuit CON, and hold the sampled values. MPX is a multiplexer that sequentially switches and outputs the sample values, and A/
1) is an AD converter that converts the analog sample value into one digital value. CPU is an arithmetic unit such as a microprocessor that stores the digital information and simultaneously performs predetermined arithmetic operations, and OUT is an output circuit.

なお、MPX、 A/D、 CPUはS/)(同様制御
(ロ)路CONからの指令に基き所定の動作を行う。
Note that the MPX, A/D, and CPU perform predetermined operations based on commands from the control path CON.

而して、任意の回線で地絡故障が発生したとすると、零
相電圧90が生じ同時に各回線に零相電流io1〜Io
nが流れるのでこれらがサンプリングデー夕としてCP
Uに記憶されろ。そしてCPUでサンプリングデータよ
り基本波成分が抽出されろとともに、零相電圧?0に対
する設定レベルL及び回線長jは既知であるから先の0
式にしたがって演算する。この演算出力は故障回線とそ
の故障点までの距+4xにほかならない。
Therefore, if a ground fault occurs in any line, a zero-sequence voltage 90 is generated and at the same time zero-sequence currents io1 to Io are generated in each line.
Since n flows, these are CP as sampling data.
Be remembered by U. Then, the fundamental wave component is extracted from the sampling data by the CPU, and the zero-phase voltage? Since the setting level L and line length j for 0 are known, the previous 0
Calculate according to the formula. The output of this calculation is nothing but the distance between the faulty line and its fault point +4x.

(発明の効果) ah詳述したようにこの発明によれば、高抵抗接地系平
行多回線送電線において相手端に中性点インピーダンス
をもつ系統に適用できるほか、原理的に殆んど誤差がな
く高精度の故障点標定が実現できる効果を奏する。
(Effects of the Invention) As described in detail, the present invention can be applied to a system having a neutral point impedance at the other end in a high-resistance grounded parallel multi-circuit transmission line, and in principle, there is almost no error. This has the effect of realizing highly accurate failure point location without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック線図、第2図は
本発明による処理手順を示すフローチャート図、第3図
は平行2回線送電線の単線系統図、第4図は故障時の零
相等価回路図、第5図は相手端に中性点インピーダンス
乏をもつ単線系統図、第6図は故障時の零相等価回路図
、第7図は本発明方式を説明するための平行n[gli
ll送電線の単線系統図、第8図は故障時の零相等価回
路図である。 IL −nL・・・回線 肋・・・中性点インピーダンス乏をもつ機器AP・・・
アナログフィルタ S/)(・・・サンプルホールド回路 MPX・・・マルチプレクサ CON・・・制御回路 A/D・・・アナログデジタル変換器 CPU・・・演算装置
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a flowchart showing the processing procedure according to the invention, Fig. 3 is a single-line system diagram of a parallel two-circuit power transmission line, and Fig. 4 is a diagram showing a failure state. Zero-phase equivalent circuit diagram, Figure 5 is a single-line system diagram with neutral impedance deficiency at the other end, Figure 6 is a zero-phase equivalent circuit diagram at the time of failure, and Figure 7 is a parallel diagram to explain the method of the present invention. n[gli
Figure 8 is a single-line system diagram of the power transmission line, and is a zero-phase equivalent circuit diagram at the time of failure. IL -nL...Line line...Equipment AP with poor neutral point impedance...
Analog filter S/) (...Sample hold circuit MPX...Multiplexer CON...Control circuit A/D...Analog-digital converter CPU...Arithmetic unit

Claims (1)

【特許請求の範囲】 1、高抵抗接地系平行多回線送電線であつて相手母線端
に設置される変圧器が中性点インピーダンスを有する系
統において、1線地絡時に生ずる自端電気所の零相電圧
と各回線に流れる零相電流を入力とし、Xiを ▲数式、化学式、表等があります▼ 但しi=1、2、3、・・・n n:回線数■_0_1
:回線零相電流 ■_0:自端零相電圧 ■:相手母線端変圧器中性点インピーダ ンス l:回線長 にて演算し、この演算出力X1、X2、・・・、Xaか
ら最大値を呈したXiよりi回線を故障回線と判断する
とともに、Xi以外の演算出力Xiを自端電気所から故
障点までの距離に標定してなる平行多回線地絡故障点標
定方式。
[Scope of Claims] 1. In a high-resistance grounded parallel multi-circuit transmission line in which the transformer installed at the end of the other bus has neutral point impedance, the power station at the own end that occurs when one wire is grounded is Input the zero-sequence voltage and the zero-sequence current flowing through each line, and define Xi as ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, i = 1, 2, 3,...n n: Number of lines■_0_1
:Line zero-sequence current ■_0: Self-end zero-sequence voltage■: Neutral point impedance of transformer at partner bus end l: Calculated based on line length, and the maximum value is obtained from the calculated outputs X1, X2, ..., Xa. A parallel multi-circuit ground fault fault location method in which line i is determined to be a faulty line based on Xi, and calculation outputs Xi other than Xi are located at the distance from the electrical station at its own end to the fault point.
JP23176784A 1984-11-02 1984-11-02 Parallel multi-line ground fault fault location method Expired - Lifetime JPH0634022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23176784A JPH0634022B2 (en) 1984-11-02 1984-11-02 Parallel multi-line ground fault fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23176784A JPH0634022B2 (en) 1984-11-02 1984-11-02 Parallel multi-line ground fault fault location method

Publications (2)

Publication Number Publication Date
JPS61110066A true JPS61110066A (en) 1986-05-28
JPH0634022B2 JPH0634022B2 (en) 1994-05-02

Family

ID=16928707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23176784A Expired - Lifetime JPH0634022B2 (en) 1984-11-02 1984-11-02 Parallel multi-line ground fault fault location method

Country Status (1)

Country Link
JP (1) JPH0634022B2 (en)

Also Published As

Publication number Publication date
JPH0634022B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4148087A (en) Distance relay for electric power transmission lines
US4996624A (en) Fault location method for radial transmission and distribution systems
US3626281A (en) Method for the selective detection of the defective conduit or or conductors in a three-phase system
JPS5889028A (en) Method and device for detecting 1-wire ground fault accident of 3-phase power system
EP0459522A2 (en) Fault location method for a parallel two-circuit transmission line with N terminals
CN110221115B (en) Method, device and equipment for determining single-phase grounding capacitance current
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JPS61110066A (en) Ground fault point location system for parallel multi-circuit
US3408564A (en) Electrical apparatus including a pair of replica impedances for measuring distances along a loaded electrical line
JPS6039571A (en) Marking device of parallel multi-circuit ground-fault point
JPH0373825B2 (en)
JP2984294B2 (en) Method of locating short-circuit fault point of three-terminal parallel two-circuit transmission line
JP3234913U (en) Selection of zero-phase current flowing through the ground wire of high-voltage cable
JPH0398418A (en) Monitor for digital protective relay
SU1358031A1 (en) Arrangement for protection from earthing in electric network with insulated neutral
JPS59194631A (en) High voltage distribution line ground-fault defect channel detecting system
JPS591985B2 (en) Fault point location method for power system
Arsoniadis et al. A software tool for impedance based fault location in power transmission lines
JPS61110067A (en) Ground-fault location system for parallel two-circuit
JPS59230176A (en) Spotting method of short-circuit point of high-voltage distribution line
JPH09304468A (en) Method for locating fault-point of parallel two line system
Escalante De Leon Protection and communication for a 230 kV transmission line using a pilot overreaching transfer tripping (POTT) scheme
SU655005A1 (en) Method of checking disappearance of short-circuiting in power transmission line phase disconnected in the cycle of single-phase automatic reconnection
JP2565958B2 (en) Directional relay
JPH049014B2 (en)