JPS61110051A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS61110051A
JPS61110051A JP59230225A JP23022584A JPS61110051A JP S61110051 A JPS61110051 A JP S61110051A JP 59230225 A JP59230225 A JP 59230225A JP 23022584 A JP23022584 A JP 23022584A JP S61110051 A JPS61110051 A JP S61110051A
Authority
JP
Japan
Prior art keywords
probe
plate
electrode
receiving
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230225A
Other languages
Japanese (ja)
Inventor
Shinichiro Umemura
晋一郎 梅村
Hiroyuki Takeuchi
裕之 竹内
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP59230225A priority Critical patent/JPS61110051A/en
Publication of JPS61110051A publication Critical patent/JPS61110051A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable a probe with a better transmitting/receiving sensitivity in an array type ultrasonic probe using a piezo-electric body, by sandwiching a plurality of split electrodes electrically drivable independently with planar piezo-electric bodies from both sides. CONSTITUTION:Split electrodes A1-A5 are sandwiched with planar piezo-electric bodies 1 from both sides so that the layer of the split electrodes A1-A5 will be positioned between the planar piezo-electric bodies 1. Adjacent ones of the split electrodes A1-A5 are driven by a transmission signal of opposite polarity to each other and received signals are amplified with amplifier opposite in the polarity thereto (the polarity of receiving amplifier RA2, RA4... is opposite to that of receiving amplifiers RA1, RA3...), delayed with delay circuit DL1, DL2... to form a received beam and added up with an addition circuit SIGMAto make an output signal RS of a receiving section. As in the sensitivity to the center frequency component of the probe thus arranged, the positions of the thickness-wise distortional vibration coincide, a probe with better transmitting sensitivity and receiving sensitivity is possible despite a structure requiring no cutting process.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波診断装置・超音波探傷装置・超音波治
療装置などに用いられる電子走査型または電子フォーカ
ス型アレイ状超音波探触子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electronic scanning type or electronic focusing type arrayed ultrasonic probe used in an ultrasonic diagnostic device, an ultrasonic flaw detection device, an ultrasonic treatment device, etc. .

〔発明の背景〕[Background of the invention]

従来、この種の超音波探触子は、一様に厚み方向に分極
処理をした板状圧電体を短冊状の細い素“片に切断して
表面と裏面に電極を取付け、各素片の厚み振動により超
音波−電気信号間の変換を行なう構造となっている。し
かし、最近では超音波診断および計測において要求され
る空間分解能がより高いものへと進んでおり、これに必
要な短冊加工技術は限界に近付いている。すなわち、高
分解能化のためには超音波周波数を高周波化するかまた
は超音波の送受信に用いる口径を大口径化しなくてはな
らないが、いずれの場合においても上記素片の幅を狭く
しなければならず、この点が短冊の切断加工上大きな問
題点となる。
Conventionally, this type of ultrasonic probe involves cutting a plate-shaped piezoelectric material uniformly polarized in the thickness direction into thin strips and attaching electrodes to the front and back surfaces of each piece. It has a structure that converts between ultrasound and electrical signals using thickness vibration.However, in recent years, the spatial resolution required in ultrasound diagnosis and measurement has progressed to higher levels, and the strip processing required for this has progressed. The technology is approaching its limits.In other words, in order to achieve high resolution, it is necessary to increase the ultrasonic frequency or increase the diameter of the aperture used for transmitting and receiving ultrasonic waves, but in either case, the above elements cannot be used. The width of the piece must be narrowed, which poses a major problem when cutting strips.

切断加工工程なしに電子走査型あるいは電子フォーカス
型アレイ状探触子を提供しようとする試みとしては、特
開昭58−42968号公報あるいは特開昭58−15
6295号公報に記載されている様なVan derp
auw型構造を有する探触子構造がすでに知られている
。このうち、後者(参考文献I)は、板状圧電体の一方
の面に独立駆動可能なように複数に分割された電極Aを
配し、隣接する分割電極A直下の分極の極性が互いに逆
極性となる構造であり、第1図に模式的に示す様な断面
構造を持つ、ここで、図中の矢印は1分極処理時の電気
力線を示している。なお、詳細には、参考文献Iの例で
は。
Attempts to provide an electronic scanning type or electronic focusing type array probe without a cutting process include JP-A-58-42968 and JP-A-58-15.
Van derp as described in Publication No. 6295
Probe structures having an auw type structure are already known. Of these, the latter (Reference I) has a plurality of divided electrodes A disposed on one surface of a piezoelectric plate so that they can be driven independently, and the polarities of the polarization directly under the adjacent divided electrodes A are opposite to each other. It has a polar structure and has a cross-sectional structure as schematically shown in FIG. 1, where the arrows in the figure indicate the lines of electric force during one polarization process. In addition, in detail, in the example of Reference I.

板状圧電体のもう一方の面に一様な電極Cが付加されて
いる。
A uniform electrode C is added to the other surface of the piezoelectric plate.

しかし、この構造の探触子には、板状圧電体より低い音
響インピーダンスの背面負荷材を用い。
However, a probe with this structure uses a back-loading material that has a lower acoustic impedance than the piezoelectric plate.

やはり板状圧電体より低い音響インピーダンスの被計測
媒体に対し超音波を送受波する場合に、送受波感度にお
いて問題を生ずる場合がある。
After all, when transmitting and receiving ultrasonic waves to a medium to be measured whose acoustic impedance is lower than that of a plate-shaped piezoelectric material, a problem may arise in the transmitting and receiving sensitivity.

すなわち、第1図に示す様に厚さ方向にX軸をとると、
圧電体中の分極ベクトルのX成分の大きさは、X=Oか
らx=x、(ここで、板厚をxoとする。)にかけて単
調減少となり、また1分極時と同じ極性の電界により駆
動したときの電界ベクトルのX成分の大きさも、同じく
単調減少となる。
In other words, if the X-axis is taken in the thickness direction as shown in Figure 1,
The magnitude of the X component of the polarization vector in the piezoelectric body decreases monotonically from X=O to x=x (here, the plate thickness is xo), and is driven by an electric field with the same polarity as during one polarization. When this happens, the magnitude of the X component of the electric field vector also monotonically decreases.

従って、分極軸方向の電気−機械結果(結合係数lCa
5に由来する結合)により圧電体中に生ずる厚み方向の
ひずみの大きさSも、同じ<、x=Oからx=x、にか
けて単調減少となり、第2図のようなものとなる。ここ
で、第2図においては、ffff単のために、X=X、
においてS=Oとし、Sの分布を直線により近似した。
Therefore, the electro-mechanical result in the polarization axis direction (coupling coefficient lCa
The magnitude of the strain S in the thickness direction caused in the piezoelectric body by the bond originating from 5) also monotonically decreases from the same <, x=O to x=x, as shown in FIG. Here, in FIG. 2, due to simple ffff, X=X,
, S=O, and the distribution of S was approximated by a straight line.

なお5図中の点線は、板状圧電体を両側からはさむ材料
の音響インピーダンスが小さい場合に関して、境界面に
おける音波の反射を考慮したときの等価音源のひずみ分
布である。このひずみ分布のうち、中心周波数成分、す
なわち、第3図に示した様な、境界面においてS=oと
なり、板の厚みの中央部が腹となる正弦被成分の振I[
Aiは1次式で与えられる。
Note that the dotted line in FIG. 5 is the strain distribution of the equivalent sound source when the acoustic impedance of the materials sandwiching the piezoelectric plate from both sides is small, taking into account the reflection of sound waves at the interface. Of this strain distribution, the center frequency component, that is, the vibration of the sinusoidal component I[
Ai is given by a linear expression.

A、=−・So          ・・・(1)π これに対し、一様に厚み方向に分極処理をした圧電体に
、厚み方向に電界を印加して駆動する。
A, =-.So... (1) π On the other hand, an electric field is applied in the thickness direction to drive the piezoelectric material which has been uniformly polarized in the thickness direction.

従来実用となっている型の探触子に関しては、駆動時の
厚み方向ひずみの大きさSの厚み方向の分布は第4図に
示す様なものであり、その中心周波数成分の振幅A0は
1次式で与えられる。
Regarding the type of probe that has been in practical use in the past, the distribution in the thickness direction of the magnitude of strain S in the thickness direction during driving is as shown in Fig. 4, and the amplitude A0 of the center frequency component is 1. It is given by the following formula.

A、=−・So         ・・・(2)π ここで、ひずみSの最大値は、簡単のために、第2図の
場合と等しくSoとおいた。
A, =-.So (2) π Here, for simplicity, the maximum value of the strain S is set as So, which is the same as in the case of FIG.

(1)式・ (2)式を比較すると、 A、=−・Ao          ・・・(3)であ
り、第1図のような構造の探触子の厚み共振周波数の正
弦波に関する送波感度または受波感度は、従来実用とな
っている型の探触子の50%程度にすぎないことがわか
る。従って、第1図のような構造の探触子には、送波感
度または受波感度において問題がある。
Comparing equations (1) and (2), A, = - Ao ... (3), and the transmission sensitivity for the sine wave of the thickness resonance frequency of the probe with the structure shown in Figure 1. It can also be seen that the wave reception sensitivity is only about 50% of the conventional type of probe that has been put into practical use. Therefore, the probe having the structure shown in FIG. 1 has a problem in transmitting sensitivity or receiving sensitivity.

〔発明の目的〕 本発明の目的は、従来技術である第1図のような探触子
構成の、以上に述べた問題点を解決し、切断加工工程を
必要とせず、かつ、送波感度・受波感度の良好な超音波
探触子を提供することにある。
[Object of the Invention] The object of the present invention is to solve the above-mentioned problems of the prior art probe configuration as shown in FIG. - To provide an ultrasonic probe with good reception sensitivity.

〔発明の概要〕[Summary of the invention]

かかる目的のために、本発明においては、電気的に独立
駆動可能である様に複数に分割された電極Aを両側から
板状圧電体が挾む構造、すなわち。
For this purpose, the present invention adopts a structure in which a plurality of divided electrodes A are sandwiched between plate-shaped piezoelectric bodies from both sides so that they can be electrically driven independently.

第5図に示す様な断面形状を持つ探触子構造を提案する
0図中の矢印は1分極処理時の電気力線を示している。
The arrows in Figure 0, which proposes a probe structure having a cross-sectional shape as shown in Figure 5, indicate lines of electric force during one polarization process.

また1図は、中心周波数成分の送波感度および受波感度
の最も高くなる場合、すなわち1分割電極Aの層が板状
圧電体の外側の両面のほぼ中間に位置する場合を表わし
たものである。
Furthermore, Figure 1 shows the case where the transmitting sensitivity and receiving sensitivity of the center frequency component are the highest, that is, when the layer of the single-segment electrode A is located approximately in the middle of both outer surfaces of the piezoelectric plate. be.

このような構造の探触子における、駆動時の厚み方向ひ
ずみの大きさSの厚み方向の分布は第6図に示す様なも
のであり、その厚み共振周波数の正弦波成分の振幅A3
は1次式で与えられる。
In a probe with such a structure, the distribution in the thickness direction of the magnitude S of the strain in the thickness direction during driving is as shown in Fig. 6, and the amplitude A3 of the sine wave component of the thickness resonance frequency is as shown in Fig. 6.
is given by a linear equation.

従って、このような構造の探触子の中心周波数成分に関
する送波感度または受波感度は、従来実用となっている
型の探触子(第4図のひずみ分布に対応する探触子)の
82%程度であり、厚み方向ひずみ振動の位置が一致し
ているために感度が良好であることがわかる。すなわち
、本発明の構造により、切断加工工程を要しない構造で
ありながら、送波感度や受波感度が良好である探触子が
実現されることがわかる。
Therefore, the transmitting sensitivity or receiving sensitivity regarding the center frequency component of a probe with such a structure is the same as that of a conventionally used type of probe (a probe corresponding to the strain distribution shown in Figure 4). The sensitivity is about 82%, and it can be seen that the sensitivity is good because the positions of the strain vibrations in the thickness direction match. That is, it can be seen that the structure of the present invention realizes a probe that does not require a cutting process and yet has good wave transmitting sensitivity and wave receiving sensitivity.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を参照し、本発明をさらに詳細に説明する
Hereinafter, the present invention will be described in further detail with reference to Examples.

第5図に示した探触子を用い、分割電極Aの隣接電極を
互いに逆極性の送信信号により駆動し。
Using the probe shown in FIG. 5, electrodes adjacent to divided electrode A are driven by transmission signals of opposite polarity.

また、受信信号を互いに逆極性のアンプにより受けるこ
とにより、超音波送波装置および受波装置を構成するこ
とができる。第7図に、その受波装置の一実施例を示し
た0分割iE 極A l 、・・・により受信された信
号はRAI  、・・・により増幅され。
Moreover, an ultrasonic wave transmitting device and a wave receiving device can be configured by receiving received signals by amplifiers having opposite polarities. FIG. 7 shows an embodiment of the wave receiving device. Signals received by the 0-division iE poles A l , . . . are amplified by the RAI , .

受信ビーム形成のため、遅延回路DLI、・・・により
遅延のうち加算回路Σにより互いに加算されて、受信部
出力信号RSとなる。ここで、RA2゜RA4.・・・
の極性はRAI、RA3.RA5.・・と逆の極性とな
っている。
For reception beam formation, the delays caused by the delay circuits DLI, . Here, RA2°RA4. ...
The polarity of RAI, RA3. RA5. ...and has the opposite polarity.

第8図には、第5図に示した圧電体の外側の両面に、一
様な接地電極Cを付加した圧電体の断面構造図を、本発
明の一実施例として示す、接地電極Cにより圧電体が外
部の電界を乱すことが防止されることが、この構造の特
長である。
FIG. 8 is a cross-sectional structural diagram of a piezoelectric body shown in FIG. 5, with uniform ground electrodes C added to both outer surfaces of the piezoelectric body, as an embodiment of the present invention. A feature of this structure is that the piezoelectric body is prevented from disturbing the external electric field.

第9図には、さらに他の実施例として、第8図に示した
電極構造をもつ圧電体において、分割電極Aと接地電極
Cとの間にも分極処理を施した圧電体の断面構造を示し
たものである1図中の矢印は、他の図と同様1分極処理
時の電気力線を模式的に表わしたものである。この構造
の特長は、駆動時の厚み方向ひずみの大きさSの厚み方
向の分布が、第5図・第8図で示した探触子より、さら
に第4図に近いものとなり、送波感度や受波感度がさら
に改善されることである。
FIG. 9 shows, as still another example, a cross-sectional structure of a piezoelectric material having the electrode structure shown in FIG. The arrows in Figure 1 shown schematically represent the lines of electric force during one polarization process, as in the other figures. The feature of this structure is that the thickness distribution of the magnitude of strain S in the thickness direction during driving is closer to that shown in Figure 4 than the probes shown in Figures 5 and 8, and the transmission sensitivity is This will further improve reception sensitivity.

第10図には、第9図の構造の圧電体との比較のために
、板状圧電体の第1の面に分割電極A。
In FIG. 10, for comparison with the piezoelectric material having the structure shown in FIG. 9, a divided electrode A is shown on the first surface of the plate-shaped piezoelectric material.

第2の面に接地電極Cを有する構造の圧電体に、第9図
の場合と同様1分割電極Aと接地電極Cとの間にも分極
処理を施した圧電体の断面構造を示した1分割電極のピ
ッチPが圧電体の厚さxoを基準として比較的大である
場合には、第9図の場合にも第10図の場合も、AC間
の電気力線の音源に対する寄与が支配的となり、共に感
度は良好であるが、pが比較的小さい場合には、第9図
の場合の感度が第10図の場合の2倍程度となり。
1 shows a cross-sectional structure of a piezoelectric body having a structure having a ground electrode C on the second surface, and polarization treatment also applied between the one-segment electrode A and the ground electrode C, as in the case of FIG. 9. When the pitch P of the divided electrodes is relatively large with respect to the thickness xo of the piezoelectric body, in both the cases of Fig. 9 and Fig. 10, the contribution of the electric lines of force between AC to the sound source is dominant. However, when p is relatively small, the sensitivity in the case of FIG. 9 is about twice that of the case in FIG. 10.

この点本発明の探触子が有利である。また、板状圧電体
を切断加工なしに探触子として用いる場合。
In this respect, the probe of the present invention is advantageous. Also, when using a plate-shaped piezoelectric material as a probe without cutting it.

板の中を板の長手方向に伝搬するモードが生じ、その波
が被計測媒体中に漏れることによる不要応答が問題とな
ることがあるが、この点においても。
A mode propagating inside the plate in the longitudinal direction of the plate is generated, and unnecessary responses due to the waves leaking into the measured medium may become a problem, but this is also a problem.

第9図の探触子は有利である。すなわち、第10図の圧
電体中には、板の厚みの中央部をひずみ振動の腹とする
モードも、節とするモードも共に励起されるのに対し、
第9図の圧電体中には、板の厚みの中央部を腹とするモ
ードしか励起されないからである。
The probe of FIG. 9 is advantageous. That is, in the piezoelectric body shown in FIG. 10, both the mode in which the antinode of strain vibration is at the center of the thickness of the plate and the mode in which the strain vibration is at the node are excited;
This is because in the piezoelectric material shown in FIG. 9, only a mode having an antinode at the center of the thickness of the plate is excited.

一方、分割電極Aと、Aを互いに電気的に隔雛する形状
をもつ接地電極Bとを両側から板状圧電体が挾む構造を
もつ探触子の一実施例を、第11図に断面構造により示
した。この構造の探触子は。
On the other hand, FIG. 11 shows a cross section of an embodiment of a probe having a structure in which a split electrode A and a ground electrode B having a shape that electrically separates A from each other are sandwiched between plate-shaped piezoelectric materials from both sides. Shown by structure. A probe with this structure.

第5図で示されるような探触子とは異なり、各分割電極
Aの周辺の分極極性が等しいので、送信回路・受信回路
も各分割電極とも等価なものを使うことができる、その
受信回路の一実施例を第12図に示す、第7図の受信回
路との相異点は。
Unlike the probe shown in Fig. 5, the polarization around each segmented electrode A is the same, so it is possible to use equivalent transmitter and receiver circuits for each segmented electrode. An example of this is shown in FIG. 12, which differs from the receiving circuit shown in FIG. 7.

RAI、RA2.・・・にすべで同じ極性の受信アンプ
を用いている点であり、各受信アンプの特性をそろえる
ことがより容易であるという特長を持つ。
RAI, RA2. . . . uses receiving amplifiers with the same polarity, and has the advantage that it is easier to match the characteristics of each receiving amplifier.

第13図には、第11図に示した圧電体の外側の両面に
、電極Bと電気的に接続されている一様な接地電piC
を付加し、また、第9図の圧電体と同様に、分割電極A
と接地電極Cとの間にも分極処理を施した圧電体の断面
構造を示した。この構造をもつ探触子は、第11図に示
した探触子と第9図に示した探触子の双方の特長を兼ね
備える。
FIG. 13 shows a uniform grounding voltage piC electrically connected to electrode B on both outer sides of the piezoelectric body shown in FIG.
Also, like the piezoelectric body in FIG. 9, a divided electrode A is added.
The cross-sectional structure of a piezoelectric body in which polarization treatment is also applied between the ground electrode C and the ground electrode C is shown. A probe with this structure has the features of both the probe shown in FIG. 11 and the probe shown in FIG.

また、第14図には1本発明の探触子の製法の一例を示
した。圧電体中に電極を形成することは一般に困難であ
るので1図の方法では、厚みのほぼ等しい板状圧電体の
一方に電極を蒸着し、両者を接着し、その後、分極処理
を施す1分極処理後接触する場合に比較し、接着におけ
る位置精度により圧電体の性能が左右されないことが特
長であるが、接着層の絶縁耐圧は分極処理に耐え得るも
のでなくてはならない、また、接着層の音響インピーダ
ンスは圧電体と同程度であるが、または、その差が大で
あるときには接着層の厚みは充分に薄いものである必要
がある。
Furthermore, FIG. 14 shows an example of a method for manufacturing a probe according to the present invention. Since it is generally difficult to form electrodes in a piezoelectric material, the method shown in Figure 1 involves depositing an electrode on one side of a plate-shaped piezoelectric material of approximately equal thickness, bonding the two, and then subjecting it to polarization. Compared to when contact is made after treatment, the performance of the piezoelectric body is not affected by positional accuracy during bonding, but the dielectric strength of the adhesive layer must be able to withstand polarization treatment. The acoustic impedance of the material is comparable to that of the piezoelectric material, or if the difference is large, the thickness of the adhesive layer needs to be sufficiently thin.

以上説明した様に、本発明によれば、送波感度および受
波感度が高いアレイ型超音波探触子を切断加工なしに提
供することが可能となり、本発明の工業的意義はきわめ
て大である。
As explained above, according to the present invention, it is possible to provide an array-type ultrasonic probe with high transmitting and receiving sensitivity without cutting, and the industrial significance of the present invention is extremely large. be.

なお、以上の説明においては、説明の便宜上直線状1次
元アレイ型探触子の例を中心に述べたが。
In addition, in the above description, for convenience of explanation, an example of a linear one-dimensional array type probe has been mainly described.

本発明の適用範囲は、これにとどまらず、コンベクス型
・コンケイプ型の各アレイならびに各種2次元アレイに
も及ぶものである。
The scope of application of the present invention is not limited to this, but also extends to convex type and concape type arrays as well as various two-dimensional arrays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に最も近い従来技術による超音波探触子
用板状圧電体の断面構造、第2図は第1図の接触子駆動
時に圧電体中に生ずる厚み方向ひずみの大きさの厚みの
方向分布、第3図は板状圧電体の厚み方向ひずみの厚み
共振周波数成分の厚み方向分布、第4図は一様に厚み方
向に分極処理をした圧電体に、厚み方向に電界を印加し
て駆動する型の探触子(従来実用となっている型の探触
子)に関する、駆動時の厚み方向ひずみの大きさの厚み
方向分布、第5図は本発明による超音波探触子用板状圧
電体の断面構造、第6図は第5図の探触子駆動時に圧電
体中に生ずる厚み方向ひずみの大きさの厚み方向分布、
第7図は第5図の探触子からの受信信号をもとに受信ビ
ームを形成する受信回路の例、第8図は第5図の板状圧
電体の外側の両面に一様な接地電極を付加した本発明の
一実施例、第9図は第8図と同じ電極構造を持つ板状圧
電体において1両側の接地電極と中層の分割電極との間
にも電界を印加して分極処理をした本発明の一実施例、
第10図は分割電極Aを板状圧電体の片面に持ち、第9
図の場合と同様な分極処理をした圧電体、第11図は分
割電極Aと、Aを互いに電気的に隔離する形状をもつ接
地電極Bとを両側から板状圧電体が挾む構造をもつ本発
明の一実施例、第12図は第10図の探触子からの受信
信号をもとに受信ビームを形成する受信回路の例、第1
3図は第10図の電極構造をもつ板状圧電体に第9図の
圧電体と同様な分極処理を行なった本発明の一実施例、
第14図は本発明による超音波探触子用板状圧電体の製
法の一例である。 1.2・・・板状圧電体、3・・・接着層、X・・・厚
み方向座標、xo・・・板厚、Al〜A5・・・電気的
に独立駆動可能である様に分割された電極、圧電体中の
矢印・・・分極処理における電気力線、S・・・板状圧
電体中に駆動時に生ずる厚み方向ひずみ、So・・・S
の最大値、RAI〜RA5・・・受信アンプ、I)Ll
〜DL5・・・受信ビーム形成のための遅延回路、Σ・
・・受信ビーム形成のための信号加算fi、Rs・・・
受信部出力信号、C・・・板状圧電体の外側両面の接地
電極、B・・・分割電極Aを互いに隔離する形状の接地
第 3 図 S 第 4 図 S。 第 9 記 第 70 11 第 ll  国 第 12  図 第 73 図
Fig. 1 shows the cross-sectional structure of a plate-shaped piezoelectric material for an ultrasonic probe according to the prior art closest to the present invention, and Fig. 2 shows the magnitude of the strain in the thickness direction that occurs in the piezoelectric material when the contactor of Fig. 1 is driven. The distribution of the thickness in the thickness direction. Figure 3 shows the distribution of the thickness resonance frequency component of the strain in the thickness direction of a plate-shaped piezoelectric material in the thickness direction. Figure 4 shows the distribution of the electric field in the thickness direction of a piezoelectric material that has been uniformly polarized in the thickness direction. The thickness direction distribution of the magnitude of thickness direction strain during driving for a type of probe that is driven by applying an electric current (a type of probe that has been in practical use in the past), Fig. 5 shows the ultrasonic probe according to the present invention. The cross-sectional structure of the child plate-shaped piezoelectric material, FIG. 6 shows the thickness distribution of the magnitude of the strain in the thickness direction that occurs in the piezoelectric material when the probe shown in FIG. 5 is driven,
Figure 7 is an example of a receiving circuit that forms a receiving beam based on the received signal from the probe in Figure 5, and Figure 8 shows a uniform grounding on both sides of the outside of the piezoelectric plate shown in Figure 5. An embodiment of the present invention in which electrodes are added, as shown in FIG. 9, is a plate piezoelectric material having the same electrode structure as in FIG. An embodiment of the present invention treated with
In Figure 10, the divided electrode A is held on one side of the piezoelectric plate, and the 9th
A piezoelectric body that has been polarized in the same way as in the case shown in the figure, Figure 11 has a structure in which a split electrode A and a ground electrode B, which has a shape that electrically isolates A from each other, are sandwiched between plate-shaped piezoelectric bodies from both sides. One embodiment of the present invention, FIG. 12 is an example of a receiving circuit that forms a receiving beam based on the received signal from the probe shown in FIG.
FIG. 3 shows an embodiment of the present invention in which a plate-shaped piezoelectric material having the electrode structure shown in FIG. 10 is subjected to polarization treatment similar to that of the piezoelectric material shown in FIG.
FIG. 14 is an example of a method for manufacturing a plate-shaped piezoelectric material for an ultrasonic probe according to the present invention. 1.2... Plate piezoelectric material, 3... Adhesive layer, X... Thickness direction coordinate, xo... Plate thickness, Al~A5... Divided so that it can be electrically driven independently. arrow in the piezoelectric body... lines of electric force in polarization process, S... strain in the thickness direction that occurs in the plate-shaped piezoelectric body during driving, So... S
Maximum value of RAI to RA5... receiving amplifier, I) Ll
~DL5...Delay circuit for receiving beam formation, Σ・
... Signal addition fi, Rs for receiving beam formation...
Receiver output signal, C...Grounding electrode on both outer sides of the piezoelectric plate, B...Grounding shaped to isolate the divided electrodes A from each other. Fig. 3S Fig. 4S. No. 9 No. 70 No. 11 No. ll No. 12 No. 73 No. 9

Claims (1)

【特許請求の範囲】 1、板状圧電体を用いるアレイ型超音波探触子において
、電気的に独立駆動可能である様に複数に分割された電
極Aを両側から板状圧電体が挾む構造をもつことを特徴
とする超音波探触子。 2、特許請求の範囲第1項記載の探触子において、分割
電極Aの層が板状圧電体の外側の両面のほぼ中間に位置
する構造をもつことを特徴とする超音波探触子。 3、特許請求の範囲第1項記載の探触子において、分割
電極Aと、Aを互いに電気的に隔離する形状をもつ電極
Bとを両側から板状圧電体が挾む構造をもつことを特徴
とする超音波探触子。 4、特許請求の範囲第1項記載の探触子において、板状
圧電体の外側の両面に一様な電極Cが取付けられている
ことを特徴とする超音波探触子。 5、特許請求の範囲第1項記載の探触子において、隣接
する分割電極間に電位差を与えることにより圧電体の分
極処理を行なつたことを特徴とする超音波探触子。 6、特許請求の範囲第3項記載の探触子において、分割
電極Aとそれに隣接する電極Bとの間に電位差を与える
ことにより圧電体の分極処理を行なつたことを特徴とす
る超音波探触子。 7、特許請求の範囲第4項記載の探触子において、分割
電極Aと外側の一様電極Cとの間に電位差を与えること
により圧電体の分極処理を行なつたことを特徴とする超
音波探触子。
[Claims] 1. In an array-type ultrasonic probe using plate-shaped piezoelectric bodies, the plate-shaped piezoelectric bodies sandwich electrode A, which is divided into a plurality of parts, from both sides so that it can be electrically driven independently. An ultrasonic probe characterized by having a structure. 2. The ultrasonic probe according to claim 1, wherein the layer of the divided electrode A is located approximately midway between the outer surfaces of the piezoelectric plate. 3. The probe according to claim 1 has a structure in which the divided electrode A and the electrode B having a shape that electrically isolates A from each other are sandwiched between plate-shaped piezoelectric bodies from both sides. Features of ultrasonic probe. 4. An ultrasonic probe according to claim 1, characterized in that uniform electrodes C are attached to both outer surfaces of the piezoelectric plate. 5. An ultrasonic probe according to claim 1, characterized in that the piezoelectric material is polarized by applying a potential difference between adjacent divided electrodes. 6. The ultrasonic probe according to claim 3, characterized in that the piezoelectric material is polarized by applying a potential difference between the divided electrode A and the adjacent electrode B. probe. 7. The probe according to claim 4, characterized in that the piezoelectric material is polarized by applying a potential difference between the divided electrode A and the outer uniform electrode C. Sonic probe.
JP59230225A 1984-11-02 1984-11-02 Ultrasonic probe Pending JPS61110051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230225A JPS61110051A (en) 1984-11-02 1984-11-02 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230225A JPS61110051A (en) 1984-11-02 1984-11-02 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS61110051A true JPS61110051A (en) 1986-05-28

Family

ID=16904507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230225A Pending JPS61110051A (en) 1984-11-02 1984-11-02 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS61110051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017775A2 (en) * 2005-08-08 2007-02-15 Koninklijke Philips Electronics, N.V. Ultrasound transducer arrays
CN110743769A (en) * 2019-09-29 2020-02-04 杭州电子科技大学 Multiband MEMS ultrasonic transducer array based on triangular grid layout

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017775A2 (en) * 2005-08-08 2007-02-15 Koninklijke Philips Electronics, N.V. Ultrasound transducer arrays
WO2007017775A3 (en) * 2005-08-08 2007-08-30 Koninkl Philips Electronics Nv Ultrasound transducer arrays
JP2009505467A (en) * 2005-08-08 2009-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultrasonic transducer array
US9000653B2 (en) 2005-08-08 2015-04-07 Koninklijke Philips N.V. Ultrasound transducer arrays
CN110743769A (en) * 2019-09-29 2020-02-04 杭州电子科技大学 Multiband MEMS ultrasonic transducer array based on triangular grid layout

Similar Documents

Publication Publication Date Title
JPS61110050A (en) Ultrasonic probe
JP3478874B2 (en) Ultrasonic phased array converter and method of manufacturing the same
Gottlieb et al. Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer
JPH0640676B2 (en) Ultrasonic transducer
US4635484A (en) Ultrasonic transducer system
CN101364632B (en) Piezoelectric element applied in ultrasonic transducer and sensor and manufacturing method thereof
AU640067B2 (en) Ultrasonic electroacoustic transducer
US7382082B2 (en) Piezoelectric transducer with gas matrix
US7876027B2 (en) Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer
JPS61110051A (en) Ultrasonic probe
JPH03133300A (en) Composite piezoelectric ultrasonic wave probe
US6333590B1 (en) Ultrasonic transducer having laminate structure, ultrasonic probe and production method thereof
CN100399596C (en) Phased array probe for scanning imager
JPH0349389B2 (en)
JPS6177499A (en) Ultrasonic probe
JP2937359B2 (en) Ultrasonic probe
Akhnak et al. Development of a segmented annular array transducer for acoustic imaging
SU1530983A1 (en) Wide-band piezoelectric transducer
JP2935551B2 (en) Ultrasonic probe
JP3507715B2 (en) Ultrasonic probe
JPH0448039B2 (en)
JPH0511479B2 (en)
JPS6236399Y2 (en)
JPS60251798A (en) Piezoelectric vibrator
JPS60102098A (en) Ultrasonic wave probe