JPS6177499A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS6177499A
JPS6177499A JP59198547A JP19854784A JPS6177499A JP S6177499 A JPS6177499 A JP S6177499A JP 59198547 A JP59198547 A JP 59198547A JP 19854784 A JP19854784 A JP 19854784A JP S6177499 A JPS6177499 A JP S6177499A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
divided
efficiency
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59198547A
Other languages
Japanese (ja)
Inventor
Shinichiro Umemura
晋一郎 梅村
Hiroyuki Takeuchi
裕之 竹内
Ryuichi Shinomura
隆一 篠村
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP59198547A priority Critical patent/JPS6177499A/en
Publication of JPS6177499A publication Critical patent/JPS6177499A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To increase efficiency of a transmitting wave and a receiving wave by polarizing with an electric field impressed between electrodes AB and between electrodes BC in the ultrasonic probe having plurally divided second electrodes. CONSTITUTION:In addition to electrodes B divided plurally so that it can electrically drive to the second surface of the plate-shaped piezoelectric body independently, electrodes C having a shape separating them mutually and electrically are provided, an electric field is impressed even in the thickness direction and polarizing is executed. An arrow mark in the drawing shows an electric force line in polarizing typically. An electric field is impressed not only between adjoining electrodes B-C on the second surface but also between an electrode on the second surface and an electrode on the first surface B-C and C-A, and electrode processing is executed. By the effect of the processing, when signal electric potential on the basis of an electric potential of the electrode A is given to the electrode B or C, a transmitting wave efficiency or a receiving efficiency is widely improve compared with a conventional efficiency.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波診断装置・超音波探傷装置・超音波治
療装置などに用いられる電子走査型おるいは電子フォー
カス型アレイ状探触子に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electronic scanning type or electronic focusing type array probe used in an ultrasonic diagnostic device, an ultrasonic flaw detection device, an ultrasonic treatment device, etc. .

〔発明の背景〕[Background of the invention]

従来のこの種の超音波探触子は、一様に厚み方向に分極
処理をした板状圧電体を短冊状の細い素片に切断して表
面と裏面に電極を取付け、各木片の厚み振動によシ超音
波−電気信号間の変換を行う構造となっている。しかし
、最近では超音波診断および計測において要求される空
間分解能がより高いものへと進んでおり、これに必要な
短冊加工技術は限界に近付いている。すなわち、高分解
能化のためには超音波周波数を高周波化するかまたは超
音波の送受信に用いる口径を大口径化しなくてはならな
いが、いずれの場合においても上記素片の幅を狭くしな
ければならず、この点が短冊の切断加工上大きな問題点
となる。
Conventional ultrasonic probes of this type cut a plate-shaped piezoelectric material uniformly polarized in the thickness direction into thin strips, attach electrodes to the front and back surfaces, and detect the thickness vibration of each piece of wood. It has a structure that converts between ultrasonic waves and electrical signals. However, in recent years, the spatial resolution required in ultrasonic diagnosis and measurement has progressed to higher levels, and the strip processing technology required for this is approaching its limit. In other words, in order to achieve high resolution, it is necessary to increase the ultrasonic frequency or increase the aperture used for transmitting and receiving ultrasonic waves, but in either case, the width of the element must be narrowed. This is a major problem when cutting strips.

切断加工工程なしに電子走査型あるいは電子フォーカス
型アレイ状探触子を提供しようとする試みとしては、公
開特許公報(昭5s−42968)あるいは(昭58−
156295  )に記載されてぃる様なVan  d
er  pauw型構造を有する探触子構造がすでに知
られている。このうち、後者は、板状圧電体の第1の面
には一様な電極人を、また、第2の面には複数の駆動電
極Bを具備し、隣接する電極B直下の分極の極性が互い
に逆極性となる構造であり、第1図にその断面の模式図
を示す。
Attempts to provide an electronic scanning type or an electronic focusing type array probe without a cutting process include published patent publications (1982-42968) and (1983-1989).
156295) Van d as described in
Probe structures with an er pauw type structure are already known. Of these, the latter has a uniform electrode on the first surface of the piezoelectric plate and a plurality of drive electrodes B on the second surface, and the polarity of the polarization directly under the adjacent electrode B is have a structure in which the polarities are opposite to each other, and a schematic cross-sectional view of the structure is shown in FIG.

ここで、図中の矢印は分極処理時の電気力線を示してい
る。
Here, the arrows in the figure indicate the lines of electric force during the polarization process.

しかし、この構造の探触子により、第2の面を介して被
計測媒体中へ音波を送波または受波しようとすると、以
下に示す様な問題が生ずる。いま、第2図のようK、電
極Bの1つの分割電極B3を駆動する場合を考える。ま
わシの電極Bl、B2゜B4.B5は電極Aと同じく接
地電位にあると考える。すると、板状圧電体の第2の面
には、第3図に模式的に示す様な変位が生じ、その変位
が表面波として図中の点線で示した矢印の方向に伝搬す
る。このため、第2の面を介して被計測媒体中へ音波を
送波すると、本来の厚み変位による音波に加えて表面波
(厳密には、第2の面に接する媒質との境界面を伝搬す
る境界波)による音波が被計測媒体中へ送波される。従
って、分割電極l素子の指向特性は第4図に示す様なも
のとなり、表面波の音速と被計測媒体の音速とできる角
度θS、の方位に不要応答を生ずる。素子指向性に2け
る不要応答は、しばしば、アレイの指向性における不要
応答の原因となり、この意味で問題である。
However, when trying to transmit or receive sound waves into the medium to be measured through the second surface using the probe having this structure, the following problems occur. Now, consider the case where one divided electrode B3 of electrodes K and B is driven as shown in FIG. Mawashi electrode Bl, B2°B4. Consider that B5 is at ground potential like electrode A. Then, a displacement as schematically shown in FIG. 3 occurs on the second surface of the piezoelectric plate, and the displacement propagates as a surface wave in the direction of the dotted arrow in the figure. Therefore, when a sound wave is transmitted into the medium to be measured through the second surface, in addition to the sound wave due to the original thickness displacement, a surface wave (strictly speaking, it propagates through the interface with the medium in contact with the second surface) A sound wave caused by a boundary wave (boundary wave) is transmitted into the measured medium. Therefore, the directivity characteristic of the split electrode l element becomes as shown in FIG. 4, and an unnecessary response occurs in the direction of the angle θS between the sound velocity of the surface wave and the sound velocity of the medium to be measured. Unwanted responses in element directivity often cause undesired responses in array directivity, and are problematic in this sense.

また、第2図のように電極を駆動しfc場合には、B電
極間だけでなく、図中に点線の矢印で示した様に駆動電
極B3と第1の面上の電極Aと間にも電気力線が生ずる
が、第1図のような分極処理法では、この電気力線と平
行な分極が形成されない。
In addition, when the electrodes are driven fc as shown in Figure 2, not only between the B electrodes but also between the drive electrode B3 and the electrode A on the first surface as shown by the dotted arrow in the figure. However, in the polarization treatment method shown in FIG. 1, polarization parallel to these lines of electric force is not formed.

従って、この電気力線によシ圧電体に生ずる変位はわず
かでラシ、これに対応する電力が大部分無効電力となる
と7いう第2の問題が存在する。
Therefore, the second problem occurs when the displacement caused in the piezoelectric body by the lines of electric force is only slight, and the corresponding power is mostly reactive power.

〔発明の目的〕[Purpose of the invention]

以上に述べた従来技術における問題点を鑑み、本発明の
第1の目的は表面波の発生に起因する不要応答が少ない
超音波探触子を提供するにある。
In view of the problems in the prior art described above, a first object of the present invention is to provide an ultrasonic probe with fewer unnecessary responses caused by the generation of surface waves.

また本発明の第2の目的は送波もしくは受波の効率の高
い超音波探触子を提供するにある。
A second object of the present invention is to provide an ultrasonic probe with high transmission or reception efficiency.

〔発明の概要〕[Summary of the invention]

本発明の特徴は上記した第1の目的を達成すべく、電極
Aのつく第1の面を介して被計測媒体中へ音波を送波ま
九は受波する探触子構造を提案する。また、本発明の別
の特徴は上記した第2の目的を達成すべく、B電極間だ
けでなく、電極AとBとの間にも電界を印加し分極を施
すことを提案する。
In order to achieve the first object described above, the present invention proposes a probe structure that transmits and receives sound waves into a medium to be measured via the first surface on which the electrode A is attached. Another feature of the present invention is to apply an electric field not only between the B electrodes but also between the electrodes A and B to achieve polarization, in order to achieve the second object described above.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

第1図の分極構造をもつ板状圧電体を用い、電極Aのつ
く第1の面を介して被計測媒体中へ音波を送波または受
波するときの分割電極1素子の指向性は、第5図のよう
になる。第2の面を介して音波を送波または受波する場
合の第4図と比らべて著しく異る点は、表面波に対応す
る応答がほとんど見られない点であシ、従来技術におけ
る第1の問題点が解決されている。
When using a piezoelectric plate having the polarization structure shown in FIG. 1 to transmit or receive sound waves into the medium to be measured via the first surface on which the electrode A is attached, the directivity of one divided electrode element is as follows: It will look like Figure 5. What is strikingly different from FIG. 4 in the case of transmitting or receiving sound waves through the second surface is that there is almost no response corresponding to surface waves. The first problem has been solved.

本発明の探触子に背面負荷材および整合層を付加した探
触子の実施例を第6図に示した。整合層2は、電極Aの
つく第1の面と被計測媒体との中間におかれ、背面負荷
材3は分割電極Bのつく第2の面に接着されている。
FIG. 6 shows an embodiment of a probe according to the present invention in which a back loading material and a matching layer are added. The matching layer 2 is placed between the first surface on which the electrode A is attached and the medium to be measured, and the back loading material 3 is adhered to the second surface on which the split electrode B is attached.

本発明の第2の提案の探触子は第7図に示すように、板
状圧電体の第2の面に、電気的に独立駆動可能である様
に複数に分割された電極Bに加えて、それらを互いに電
気的に隔離する形状をもつ電極Cを有し、厚み方向にも
電界を印加して分極処理を施したものであるう図中の矢
印は、分極処理における電気力線を模式的に示したもの
である。
As shown in FIG. 7, the second proposed probe of the present invention has an electrode B on the second surface of the piezoelectric plate, which is divided into a plurality of electrodes so that they can be electrically driven independently. The arrows in the figure indicate the lines of electric force in the polarization process. It is shown schematically.

分極処理は、第2の面上の隣接電極間(B−C間)だけ
でなく、第2の面上の電極と第1の面上の電極との間(
B−A問およびC−A間)にも電界が印加されて施され
ており、この点、第2の面上の電極間だけに分極処理を
施す第1図の場合と異っている。この処理の効果により
、電極BまたはCに電極Aの電位を基準とする信号電位
を与えるときの送波効率または受波効率が、第1図のよ
うな構造をもつ探触子に比らべ改善され、従来技術にお
ける前記第2の問題点が改善される。
Polarization treatment is performed not only between adjacent electrodes on the second surface (between B and C) but also between the electrodes on the second surface and the electrodes on the first surface (
An electric field is also applied between the electrodes B-A and C-A, which is different from the case of FIG. 1, in which polarization is applied only between the electrodes on the second surface. Due to the effect of this processing, the wave transmission efficiency or wave reception efficiency when applying a signal potential based on the potential of electrode A to electrode B or C is higher than that of a probe with the structure shown in Figure 1. This improves the second problem in the prior art.

さらに、類似の一実施例を第8図に示した。この場合、
分極処理時および動作時において電極Cには電他人と同
一の極性が与えられる。第7図の場合と異り、電極Aの
4位に対し独立な信号電位は、電極Bにのみ与えられる
。第7図の例における信号4位の処理において、電極B
の信号と電極Cの信号には異なる符号をつけて扱う必要
があったが、第8図の例では、電極Bのみを信号電極と
して用いるので、その必要がないことが特長である。
Further, a similar embodiment is shown in FIG. in this case,
During polarization processing and operation, the electrode C is given the same polarity as the electrode. Unlike the case in FIG. 7, a signal potential independent of the 4th position of electrode A is applied only to electrode B. In the processing of the 4th signal in the example of Fig. 7, electrode B
It was necessary to treat the signal of the electrode C and the signal of the electrode C with different codes, but the example shown in FIG. 8 is characterized in that this is not necessary because only the electrode B is used as the signal electrode.

さきKのべた本発明における第1の提案と第2の提案と
を共に実施した一例を第9図に示す。これは、第8図の
板状圧電体lを用い、電極へのつく第1の面と被計測媒
体の間に整合層2を設け、7X極BおよびCのつく第2
の面には背面負荷材3を接着し穴ものでめる。この構造
により、従来技術における前記第1および第2の問題点
が同時に解決される。
FIG. 9 shows an example in which both the first proposal and the second proposal of the present invention are implemented. This uses the plate-shaped piezoelectric material l shown in FIG.
Glue the back load material 3 to the surface and drill holes. This structure simultaneously solves the first and second problems in the prior art.

なお、以上の説明においては、説明の便宜上直線状1次
元アレイ型探触子の例を中心に述べたが、本発明の適用
範囲は、これにとどまらず、コンベクス型・コンケイプ
型の谷アレイならびに各種2次元アレイにも及ぶもので
ある。
In the above explanation, for convenience of explanation, the linear one-dimensional array type probe was mainly described, but the scope of application of the present invention is not limited to this. This also extends to various two-dimensional arrays.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、送波効率□もしく
は受波効率が高く、不要応答の小さい超音波探触子を切
断加工なしに板状圧電体によシ提供することが可能とな
り、本発明の工業的意義は重大である。
As explained above, according to the present invention, it is possible to provide an ultrasonic probe with high transmission efficiency or reception efficiency and small unnecessary response on a piezoelectric plate without cutting. , the industrial significance of the present invention is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による板状圧電体利用の超音波探触子
の構造、第2図は第1図の探触子の動作時の電気力線、
第3図は第1図の探触子の動作時における表面波の発生
、第4図は第1図の探触子における指向特性、第5図は
本発明筒1の提案の構造をもつ探触子の指向特性、第6
図、第7図。 第8図及び第9図はそれぞれ本発明の実施例を示す。 1・・・板状圧電体、2・・・整合層、3・・・背面負
荷材、A・・・板状圧電体箱1の面上の電極、B・・・
板状圧電体箱2の面上の分割電極、C・・・分割された
電極Bを互いに隔離する形状をもつ電極。 竿1図 ハ 第2目 第3図 糸)怜)・1 0               ひS算50 1贋・セ メ4E 竿9困
Figure 1 shows the structure of an ultrasonic probe using a plate-shaped piezoelectric material according to the prior art, and Figure 2 shows the lines of electric force during operation of the probe in Figure 1.
3 shows the generation of surface waves during operation of the probe shown in FIG. 1, FIG. 4 shows the directivity characteristics of the probe shown in FIG. 1, and FIG. Directional characteristics of tentacles, Part 6
Figure, Figure 7. FIGS. 8 and 9 each show an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Plate-shaped piezoelectric body, 2... Matching layer, 3... Back load material, A... Electrode on the surface of the plate-shaped piezoelectric body box 1, B...
Divided electrodes on the surface of the plate-shaped piezoelectric box 2, C... electrodes having a shape that isolates the divided electrodes B from each other. Rod 1 Figure C 2nd Eye 3 Figure Thread) Rei)・1 0 His S calculation 50 1 Fake・Seme 4E Rod 9 trouble

Claims (1)

【特許請求の範囲】 1、板状圧電体の第1の面には電気的に一様な第1の電
極を具備し、第2の面には電気的に独立駆動可能である
様に複数に分割された第2の電極を有する超音波探触子
において、第1の面を介して被計測媒体中へ音波を送波
または受波することを特徴とする超音波探触子。 2、板状圧電体の第1の面には通気的に一様な電極Aを
具備し、第2の面には電気的に独立駆動可能である様に
複数に分割された電極Bと、該電極Bの分割された間隙
にそれらを互いに電気的に隔離する形状に設けられた電
極Cを具備し、電極AB間および電極BC間に印加され
た電界により分極処理がなされていることを特徴とする
超音波探触子。
[Claims] 1. The first surface of the plate-shaped piezoelectric body is provided with an electrically uniform first electrode, and the second surface is provided with a plurality of electrically uniform first electrodes so that they can be electrically driven independently. An ultrasonic probe having a second electrode divided into two electrodes, the ultrasonic probe transmitting or receiving sound waves into a medium to be measured via the first surface. 2. The first surface of the piezoelectric plate is provided with an electrode A that is uniform in terms of ventilation, and the second surface is provided with an electrode B that is divided into a plurality of parts so that they can be electrically driven independently; It is characterized by comprising an electrode C provided in a shape that electrically isolates the divided electrodes from each other in the gap between the divided electrodes B, and polarization processing is performed by an electric field applied between the electrodes AB and between the electrodes BC. Ultrasonic probe.
JP59198547A 1984-09-25 1984-09-25 Ultrasonic probe Pending JPS6177499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198547A JPS6177499A (en) 1984-09-25 1984-09-25 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198547A JPS6177499A (en) 1984-09-25 1984-09-25 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS6177499A true JPS6177499A (en) 1986-04-21

Family

ID=16392978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198547A Pending JPS6177499A (en) 1984-09-25 1984-09-25 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS6177499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265595A (en) * 1985-09-17 1987-03-24 Furuno Electric Co Ltd Electrode division type vibrator using ceramic piezoelectric element
JPS62105600A (en) * 1985-11-01 1987-05-16 Nippon Dempa Kogyo Co Ltd Ultrasonic transducer
JPS63125244A (en) * 1986-11-13 1988-05-28 コ−リン電子株式会社 Biomedical transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265595A (en) * 1985-09-17 1987-03-24 Furuno Electric Co Ltd Electrode division type vibrator using ceramic piezoelectric element
JPS62105600A (en) * 1985-11-01 1987-05-16 Nippon Dempa Kogyo Co Ltd Ultrasonic transducer
JPS63125244A (en) * 1986-11-13 1988-05-28 コ−リン電子株式会社 Biomedical transducer

Similar Documents

Publication Publication Date Title
JPS61110050A (en) Ultrasonic probe
JPS5856320B2 (en) ultrasonic transducer
JPS5977800A (en) Apodictic supersonic transducer and method of producing same
JP2009517966A (en) Ultrasonic transducer module
US4635484A (en) Ultrasonic transducer system
JPH0335878B2 (en)
CN101364632B (en) Piezoelectric element applied in ultrasonic transducer and sensor and manufacturing method thereof
AU640067B2 (en) Ultrasonic electroacoustic transducer
US4644214A (en) Probe for electronic scanning type ultrasonic diagnostic apparatus
US7876027B2 (en) Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer
Zhou et al. An approach for reducing adjacent element crosstalk in ultrasound arrays
JPS6177499A (en) Ultrasonic probe
JPS61253873A (en) Piezoelectric ceramic material
JPH0349389B2 (en)
JPS61110051A (en) Ultrasonic probe
Allin et al. Design and construction of a low frequency wide band non-resonant transducer
JPS5824785Y2 (en) Array-shaped ultrasonic probe
JP2937359B2 (en) Ultrasonic probe
JP4915104B2 (en) Ultrasonic probe, ultrasonic diagnostic apparatus and ultrasonic flaw detector using the same, and method of manufacturing ultrasonic probe
JPS6234500A (en) Matrix like ultrasonic probe and its manufacture
JP3659780B2 (en) Ultrasonic diagnostic equipment
JPH0614032B2 (en) Ultrasonic probe
JP2935550B2 (en) Ultrasonic probe
JPS6176949A (en) Ultrasonic probe
JPH0323209Y2 (en)