JPS61110034A - Measuring apparatus - Google Patents

Measuring apparatus

Info

Publication number
JPS61110034A
JPS61110034A JP59231531A JP23153184A JPS61110034A JP S61110034 A JPS61110034 A JP S61110034A JP 59231531 A JP59231531 A JP 59231531A JP 23153184 A JP23153184 A JP 23153184A JP S61110034 A JPS61110034 A JP S61110034A
Authority
JP
Japan
Prior art keywords
light
element body
main body
flow path
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59231531A
Other languages
Japanese (ja)
Inventor
Koichi Wakatake
孝一 若竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tectron Instruments Corp
Original Assignee
Japan Tectron Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tectron Instruments Corp filed Critical Japan Tectron Instruments Corp
Priority to JP59231531A priority Critical patent/JPS61110034A/en
Publication of JPS61110034A publication Critical patent/JPS61110034A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To achieve a higher accuracy along with saving labor, by providing a light emitting element body and a light receiving element body on both sides of a body. CONSTITUTION:A measuring apparatus A is made up of a body section 1 made of transparent material such as quartz glass, a pipe-shaped passage 2 opened in the center of the body section 1 and a light emitting element body (a) and light receiving body (b) so arranged to face each other sandwiching the passage 2. A light with the wavelength converted into about 455nm, for instance, is supplied to the element body (a) of the apparatus A while an amplifier 10 is connected to the element body (b) and data amplified with the amplifier 10 is sent to a data processor (CPU). In this manner, when the wavelength is set at about 455nm, the absorption peak of serum is about 455nm whereas with respect to air (bubble), a greater absorbance is given because the measuring light will not focus scattering. Thus, it is possible to determine whether bubbles flow through a fluid passage B or not by comparing the photoelectric conversion voltage with a CPU corresponding to the absorbance.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は液体流路を有する各種装置において、同流路
内を液体が流れたか否かを確認したり、流量を測定し、
或いは気泡の混入確認等を光学手段で行う測定用器具に
係り、特に生化学的・免疫学的測定を行う一良勤一公L
ULLに好適な測定用器具に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) This invention relates to various devices having a liquid flow path, for checking whether or not a liquid has flowed through the flow path, and for measuring the flow rate.
Or related to measuring instruments that use optical means to check for air bubbles, etc., especially for biochemical and immunological measurements.
This invention relates to a measuring instrument suitable for ULL.

(発明の技術的背景) 周知のように、自動分析装置等、液体を取シ扱う各種装
置においては、液体量を計量したり、気泡等の混入状態
を確認することが精度管理上必要でちゃ、かかる目的か
ら種々の装置が開発されている。
(Technical Background of the Invention) As is well known, in various devices that handle liquids, such as automatic analyzers, it is necessary for accuracy control to measure the amount of liquid and check the state of inclusion of air bubbles, etc. Various devices have been developed for this purpose.

しかしながら、かかる従来の各種装置にあっては、自動
分析装置等の装置本体内に一体的に組み込まれているも
のが殆んどであシ、この結果、装置が複雑化し取扱いも
煩雑化するとともにコスト高となるという問題を有して
いた。
However, most of these conventional devices are integrated into the main body of the device, such as an automatic analyzer, and as a result, the devices become complicated and difficult to handle. This has the problem of high cost.

(発明の目的) この発明は、かかる現状に鑑み創案されたものであって
、その目的とするところは、液体量を計量したシ、気泡
等を確認する小型で取扱いも至便な測定用器具を提供し
ようとするものである。
(Object of the Invention) This invention was devised in view of the current situation, and its purpose is to provide a small and easy-to-handle measuring instrument for measuring the amount of liquid, checking air bubbles, etc. This is what we are trying to provide.

(発明の構成) かかる目的を達成するため、この発明にあっては、液体
流路に介設され、当該液体の流量や気泡の存在等を光学
的に測定する測定用器具を、透明材質で形成された本体
部と、該本体部に形成された流路と、上記本体部の両側
部に流路を挾んで対設された発光素子体及び受光素子体
とで一体的に構成し、該流路を通過する液体又は気泡の
光電変換電圧差をコンピュータ等のデータ処理装置で処
理することで流体量や気泡の確認を行うように構成した
ものである。
(Structure of the Invention) In order to achieve the above object, in the present invention, a measuring instrument that is interposed in a liquid flow path and optically measures the flow rate of the liquid, the presence of bubbles, etc. is made of a transparent material. The main body is formed integrally with a flow path formed in the main body, and a light emitting element body and a light receiving element body are disposed opposite to each other on both sides of the main body part with the flow passage interposed therebetween. It is configured to check the amount of fluid and bubbles by processing the photoelectric conversion voltage difference of the liquid or bubbles passing through the flow path with a data processing device such as a computer.

(発明の実施例) 以下添付図面に示す一実施例にもとづきこの発明の詳細
な説明する。
(Embodiment of the Invention) The present invention will be described in detail below based on an embodiment shown in the accompanying drawings.

第1図に示すように、この実施例に係る測定用器具Aは
、石英ガラスや硬質ガラス、セラミック等の透明材質で
形成された本体部1と、この本体部lの中央部に開設さ
れたパイプ状の流路2と、この流路2を挾むように対設
された発光素子体a及び受光素子体すとから構成されて
おり、これら冬休は各ホルダ3,4に装着されている。
As shown in FIG. 1, the measuring instrument A according to this embodiment includes a main body part 1 made of a transparent material such as quartz glass, hard glass, or ceramic, and a main body part 1 formed in the center of the main body part l. It is composed of a pipe-shaped flow path 2, and a light emitting element body a and a light receiving element body arranged opposite to each other so as to sandwich the flow path 2, and these elements are attached to respective holders 3 and 4.

勿論このホルダ3,4は透明材質のみならず所定波長以
外の光が侵入しないような材質又は色彩その他の手段が
施こされていることが望ましい。
Of course, it is desirable that the holders 3 and 4 are not only made of a transparent material, but also made of a material, color, or other means that prevents light of wavelengths other than a predetermined wavelength from entering.

発光素子体aと受光素子体すとは所要複数個が各光軸線
上に配置されるべく上記本体部工に適宜の取付手段、例
えば嵌合的手段又は止具等で一体的に対応して取り付け
られ、又は予じめ本体部1と一体形成されている。
The light-emitting element body a and the light-receiving element body A are integrally connected to the main body part using appropriate mounting means, such as fitting means or fasteners, so that a plurality of light-emitting element bodies a and light-receiving element bodies are arranged on each optical axis. It is attached or is formed integrally with the main body part 1 in advance.

すなわち、今、発光素子体aと受光素子体すが各6個づ
つ所定間隔毎に対設されていたとすると発光素子体al
から発せられた所要波長の測定光は第2図に示すように
本体部工と流路2を横断して対応受光素子bxに、同じ
く発光素子体a2は対応受光素子体b2に、以下同様に
a3はb3に、a4はb4に、a5はb5に、及びa6
はb6にと受光されるよう本体部1に配設されている。
That is, if six light-emitting element bodies a and six light-receiving element bodies are placed opposite each other at predetermined intervals, the light-emitting element bodies a
As shown in Fig. 2, the measurement light of the required wavelength emitted from the main unit crosses the main body part and the flow path 2 to the corresponding light-receiving element bx, and the light-emitting element body a2 is transmitted to the corresponding light-receiving element body b2, and so on. a3 to b3, a4 to b4, a5 to b5, and a6
is arranged in the main body part 1 so that the light is received by b6.

また、前記本体部Iに形成された流路2の上・下端部に
は、接続口端5.6が突設されておシ、同各口端5,6
には液体の流路体接続端部が接続される。
In addition, connection ports 5 and 6 are protruded from the upper and lower ends of the flow path 2 formed in the main body portion I.
A liquid channel body connection end is connected to the liquid channel body.

このように構成されてなる測定用器具Aの使用例を以下
に示す。
An example of how the measuring instrument A configured as described above is used will be shown below.

第2図は、この測定用器具Aを自動分析装置における気
泡確認用の測定器具として使用する場合を示すものであ
って、液体流路B(例えば血清吸引流路)中に該測定用
器具Aを介装している。
FIG. 2 shows a case where this measuring instrument A is used as a measuring instrument for checking air bubbles in an automatic analyzer, and the measuring instrument A is placed in a liquid flow path B (for example, a serum suction flow path). is interposed.

この測定用器具Aの発光素子体aには例えば455nm
前後に変換された波長光感が供給され、一方前記受光素
子体すにはアンプIOが接続されており、このアンプI
Oで増巾されたデータは公知のデータ処理装置(CPU
)へと送られる。
For example, the light emitting element a of this measuring instrument A has a wavelength of 455 nm.
The wavelength light sensitivity converted back and forth is supplied, and an amplifier IO is connected to the light receiving element body, and this amplifier I
The data amplified by O is processed by a known data processing device (CPU
) will be sent to.

このように波長光ぶを455 nm前後に設定した場合
、血清の吸収ピークが455 nmであるのに対し、空
気(気泡)の場合には測定光が乱反射して集光しないた
め吸光度が犬きくなる。
When the wavelength light beam is set to around 455 nm in this way, the absorption peak of serum is 455 nm, whereas in the case of air (bubbles), the measurement light is diffusely reflected and cannot be focused, so the absorbance is very low. Become.

従って、この吸光度に対応する光電変換電圧をデータ処
理装置(CPU)で比較し処理することで液体流路B中
に気泡が流れたか否かを判別することができる。
Therefore, by comparing and processing the photoelectric conversion voltages corresponding to this absorbance using a data processing unit (CPU), it is possible to determine whether or not bubbles have flowed into the liquid flow path B.

第3図はこの発明の他の実施例を示すものであって、こ
の実施例では測定用器具Aの流路2の下端を栓Cで閉塞
し、かつ前記接続口端5゜6を切断して本体部工を矩形
状に形成し、セルとして構成したものである。この場合
各ホルダ3.4及び本体部1には、反応測定光りが透過
する測定用横孔7が貫設されている他は他の構成及び作
用は前記実施例と全く同様なので図面には同一の符号を
付してその詳細な説明をここでは省略する。
FIG. 3 shows another embodiment of the present invention, in which the lower end of the flow path 2 of the measuring instrument A is closed with a stopper C, and the connection port end 5°6 is cut off. The main body part is formed into a rectangular shape and configured as a cell. In this case, each holder 3.4 and the main body 1 are provided with a measurement horizontal hole 7 through which the reaction measurement light passes, and other structures and functions are the same as in the previous embodiment, so the drawings are the same. The detailed explanation thereof will be omitted here.

このように測定用器具Aをセルとして使用した場合、液
体の収容高さを発光素子体aと受光素子体すとの高さ位
置でその収容量を相対的に求めることができる。
When measuring instrument A is used as a cell in this way, the amount of liquid contained can be determined relative to the height of the light emitting element body a and the light receiving element body A.

(発明の効果) この発明は、以上の構成を含むので、液体の計量や気泡
の混入状態を簡易かつ小型の測定用器具で容易かつ高精
度に確認することができるため、特に自動分析分野にお
ける省力化及び精度管理上極めて優れた効果を奏するこ
とが可能となる。
(Effects of the Invention) Since the present invention includes the above-described configuration, it is possible to easily and accurately check the measurement of liquid and the state of air bubbles with a simple and small measuring instrument, and is particularly useful in the field of automatic analysis. It is possible to achieve extremely excellent effects in terms of labor saving and quality control.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示すものであって、第1図
は測定用器具の構成を示す断面図、第2図はその使用例
を示す説明図、第3図は測定用器具の他側の構成を示す
断面図である。 A・・・測定用器具   B・・・液体流路■・・・本
体部     2・・・流路a・・・発光素子体   
b・・・受光素子体重・・・測定光 特許出願人 日本テクトロン株式会社 [」         11 笥21諷
The drawings show one embodiment of the present invention, in which Fig. 1 is a sectional view showing the configuration of the measuring instrument, Fig. 2 is an explanatory diagram showing an example of its use, and Fig. 3 is a sectional view showing the configuration of the measuring instrument. It is a sectional view showing a side composition. A...Measuring instrument B...Liquid flow path■...Main body 2...Flow path a...Light emitting element body
b... Light-receiving element weight... Measuring light patent applicant Nippon Tektron Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 液体流路に介設され、当該液体の流量や気泡の存在等を
光学的に測定する測定用器具であつて、該器具は透明材
質で形成された本体部と、該本体部に形成された流路と
、上記本体部の両側部に一体的に配置され上記流路をは
さんで対設される発光素子体と受光素子体と、から構成
されていることを特徴とする測定用器具。
A measuring instrument that is installed in a liquid flow path and optically measures the flow rate of the liquid, the presence of bubbles, etc., and the instrument includes a main body made of a transparent material and a main body formed on the main body. A measurement instrument comprising a flow path, and a light emitting element body and a light receiving element body which are integrally arranged on both sides of the main body part and are opposed to each other across the flow path.
JP59231531A 1984-11-02 1984-11-02 Measuring apparatus Pending JPS61110034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231531A JPS61110034A (en) 1984-11-02 1984-11-02 Measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231531A JPS61110034A (en) 1984-11-02 1984-11-02 Measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61110034A true JPS61110034A (en) 1986-05-28

Family

ID=16924947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231531A Pending JPS61110034A (en) 1984-11-02 1984-11-02 Measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61110034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500541A (en) * 1986-08-11 1989-02-23 クールター・エレクトロニクス・インコーポレーテッド Method and apparatus for detecting foreign objects in fluid materials such as air bubbles
CN105784600A (en) * 2014-12-17 2016-07-20 浙江微兰环境科技有限公司 Spectral absorption water quality monitoring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630943B2 (en) * 1975-04-30 1981-07-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630943B2 (en) * 1975-04-30 1981-07-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500541A (en) * 1986-08-11 1989-02-23 クールター・エレクトロニクス・インコーポレーテッド Method and apparatus for detecting foreign objects in fluid materials such as air bubbles
CN105784600A (en) * 2014-12-17 2016-07-20 浙江微兰环境科技有限公司 Spectral absorption water quality monitoring apparatus

Similar Documents

Publication Publication Date Title
EP0901620B1 (en) Optical detection apparatus for chemical analyses of small volumes of samples
JP2879141B2 (en) Concentration measuring device and method
US8502969B2 (en) Miniature flow-through cuvette and spectrophotometer containing the same
JPH1096695A (en) Method for measuring scattering light
JPH0583141B2 (en)
US20100182606A1 (en) Apparatus and method for multi-parameter optical measurements
JPH0346541A (en) Micro-pipet adapter for spectrometer simultaneously functioning as temperature control
Zhu et al. Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA
US5500536A (en) Spectrofluorometer
Maestre et al. A circular dichroism microspectrophotometer
US3733130A (en) Slotted probe for spectroscopic measurements
US7619723B2 (en) Refractometer
JPS61110034A (en) Measuring apparatus
JPS63111446A (en) Analyzing device
US7227642B2 (en) Absorbance monitor
JPS639610B2 (en)
US2915938A (en) Electronic colorimeter
JPH08313429A (en) Cell for spectrophotometer
JPH02249955A (en) Multiple times reflected light type absorptiometry
Neeley et al. High-performance colorimeter with an electronic bubble gate for use in miniaturized continuous-flow analyzers.
JPH1194730A (en) Transparent lid for micro-plate with recessed surface
JPS61226639A (en) Throw type component analyzer
JP2007155674A (en) Microcell
JPS63205546A (en) Automatic analysis instrument
US3499712A (en) Refractive index analyzer using several liquid-solid interfaces