JPS61107151A - Apparatus for releasing corrosive oxidation film - Google Patents

Apparatus for releasing corrosive oxidation film

Info

Publication number
JPS61107151A
JPS61107151A JP22802884A JP22802884A JPS61107151A JP S61107151 A JPS61107151 A JP S61107151A JP 22802884 A JP22802884 A JP 22802884A JP 22802884 A JP22802884 A JP 22802884A JP S61107151 A JPS61107151 A JP S61107151A
Authority
JP
Japan
Prior art keywords
metal
oxide film
anode
constant current
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22802884A
Other languages
Japanese (ja)
Other versions
JPH0511259B2 (en
Inventor
Yutaka Uruma
裕 閏間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomic Industry Group Co Ltd filed Critical Nippon Atomic Industry Group Co Ltd
Priority to JP22802884A priority Critical patent/JPS61107151A/en
Publication of JPS61107151A publication Critical patent/JPS61107151A/en
Publication of JPH0511259B2 publication Critical patent/JPH0511259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To simply and rapidly release a corrosive oxidation film, by providing a constant current generation apparatus using a metal having a corrosive oxidation film formed thereto as an anode and a cathode attached to said constant current generation apparatus so as to cover the above mentioned metal. CONSTITUTION:A corrosive oxidation film is formed on the surface of a metal specimen piece 5. The metal specimen piece 5 is connected to the anode terminal of a constant current generation apparatus 9 capable of generating a constant current through a lead wire 7 and functions as an anode. A cathode net 13 as a cathode is connected to the cathode terminal of the constant current generation apparatus through a lead wire 11. The metal specimen piece 5 and the metal net 13 are immersed in an electrolyte 15 and a current is supplied to both of them. When about 1min is elapsed after the current was supplied, the metal specimen piece 5 dissolves to simply and rapidly release the corrosive oxidation film formed to the surface of said metal specimen piece 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は腐食酸化皮膜の剥離装置に係り、特に、沸騰
水型原子炉の一次冷却系構造物の表面に生成された腐食
酸化皮膜、あるいはこの−次冷却系を模擬した試験装置
において試料表面に生成させた腐食酸化皮膜をそれぞれ
剥離させる腐食酸化皮膜の剥離装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a device for removing a corroded oxide film, and in particular, a device for removing a corroded oxide film formed on the surface of a primary cooling system structure of a boiling water nuclear reactor, or this invention. -Regarding a corrosive oxide film peeling device for peeling off corrosive oxide films formed on the surface of a sample in a test device simulating a secondary cooling system.

〔発明の技術的背景〕[Technical background of the invention]

一般に、沸騰水型原子炉の一次冷却系構造物にはステン
レス鋼が使用され、原子炉の運転とともに、このステン
レス鋼表面に鉄、クロムおよびニッケル等を主成分とす
る腐食酸化皮膜が生成される。この腐食酸化皮膜の成長
過程において、冷却材たる水中に溶解されたイオン状の
放射能が取り込まれる。したがって、−次冷却系構造物
に蓄積される放射能は、腐食酸化皮膜の成長とともに増
加するものと考えられる。そこで、腐食酸化皮膜量を測
定し、この腐食酸化皮膜の成長過程を認識することが、
原子炉−次冷却系構造物における放射能の蓄積挙動およ
び放射能蓄積に関する将来予測にとって非常に重要なも
のとなる。
Generally, stainless steel is used for the primary cooling system structure of boiling water nuclear reactors, and as the reactor operates, a corrosive oxide film containing iron, chromium, nickel, etc. as the main components is formed on the surface of this stainless steel. . During the growth process of this corrosive oxide film, ionic radioactivity dissolved in water, which is a coolant, is taken in. Therefore, it is thought that the radioactivity accumulated in the secondary cooling system structure increases as the corrosive oxide film grows. Therefore, it is important to measure the amount of corrosive oxide film and recognize the growth process of this corrosive oxide film.
This will be very important for the future prediction of radioactivity accumulation behavior and radioactivity accumulation in reactor sub-cooling system structures.

〔背景技術の問題点〕[Problems with background technology]

従来、この腐食酸化皮膜の定量は、まず実際の原子炉−
次冷却系配管を数α角に切断して試料片とすることから
始める。次に、この試料片を0、1wt%程度のシュウ
酸等の弱酸に浸漬させて、試料片に生成された腐食酸化
皮膜を溶解させ、溶解液を原子吸光光度計等で分析する
。その後、再び試料片を溶解液に浸漬させ、溶解液を同
様に分析する。試料片に金属光沢が出るまで上記操作を
繰返す。このようにして、腐食酸化皮膜量の測定が行な
われているが、この測定工程は非常に複雑であり、多大
な時間を要する。そのため、この測定においては作業具
に熟練が要求されることになる。
Conventionally, the quantity of this corroded oxide film was first measured in an actual nuclear reactor.
Next, start by cutting the cooling system piping into several α angles to obtain a sample piece. Next, this sample piece is immersed in a weak acid such as oxalic acid of about 0.1 wt% to dissolve the corrosive oxide film formed on the sample piece, and the dissolved solution is analyzed using an atomic absorption spectrophotometer or the like. Thereafter, the sample piece is immersed in the solution again, and the solution is analyzed in the same manner. Repeat the above operation until the sample piece has a metallic luster. In this way, the amount of corroded oxide film is measured, but this measurement process is very complicated and takes a lot of time. Therefore, this measurement requires skill with the working tools.

〔発明の目的〕[Purpose of the invention]

この発明は上記事実を考慮してなされたものであり、金
属表面に生成した腐食酸化皮膜を簡単かつ迅速に剥離さ
せることができる腐食酸化皮膜の剥離装置を提供するこ
とを目的とする。
The present invention has been made in consideration of the above facts, and an object of the present invention is to provide a corrosive oxide film stripping device that can easily and quickly peel off a corrosive oxide film formed on a metal surface.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、この発明に係る腐食酸化皮
膜の剥離装置は、定電流を発生可能とし、腐食酸化皮膜
が生成された金属を陽極とする定電流発生装置と、この
定電流発生装置に取付けられ、上記金属を覆うように設
けられた陰極と、上記陽極および陰極を浸漬可能とする
電解液とを有したものであり、陽極および陰極に通電さ
せることにより陽極としての金属試料片の地金を溶かし
、この金属試料片の表面に生成された腐食酸化皮膜を剥
離させるものである。
In order to achieve the above object, a corrosive oxide film peeling device according to the present invention includes a constant current generator capable of generating a constant current and using a metal on which a corrosive oxide film is formed as an anode, and this constant current generator. It has a cathode installed to cover the metal, and an electrolytic solution in which the anode and cathode can be immersed.By applying electricity to the anode and cathode, the metal sample piece used as the anode is heated. This method melts the base metal and peels off the corrosive oxide film that has formed on the surface of the metal specimen.

〔発明の実施例〕[Embodiments of the invention]

図はこの発明に係る腐食酸化皮膜の剥離装置の一実施例
を示す概略側面図である。
The figure is a schematic side view showing an embodiment of a corrosive oxide film peeling apparatus according to the present invention.

電解槽1には、表面に腐食酸化度Wi3が生成された金
属試料片5が収容される。この金属試料片5は、実際の
沸騰水型原子炉における一次冷却系配管の一部を数α角
に切断した試料片であるか、またはこの原子炉−次冷却
系を模擬した試験装置において、表面に腐食酸化皮膜を
生成させた試料片である。
The electrolytic bath 1 accommodates a metal sample piece 5 whose surface has a corrosion oxidation degree Wi3. This metal sample piece 5 is a sample piece obtained by cutting a part of the primary cooling system piping in an actual boiling water reactor into several α angles, or in a test device simulating this reactor-primary cooling system. This is a sample piece with a corrosive oxide film formed on its surface.

また、金属試料片5はリード117を介して、定電流を
発生可能とする定電流発生装置9の陽極端子に接続され
る。したがって、この金属試料片5は陽極として機能す
る。一方、定電流発生装置の陰極端子にはリード線11
を介し、陰極としての陰極ネット13が接続される。こ
の金属ネット13は例えば白金ネットであり、金属試料
片5を内部に収容する大きさに形成される。さらに、金
属ネット13はフレキシブルに構成され、陽極としての
金属試料片5の形状に対応して自在に曲げ可能に設けら
れる。
Further, the metal sample piece 5 is connected via a lead 117 to an anode terminal of a constant current generator 9 capable of generating a constant current. Therefore, this metal sample piece 5 functions as an anode. On the other hand, the lead wire 11 is connected to the cathode terminal of the constant current generator.
A cathode net 13 serving as a cathode is connected via. This metal net 13 is, for example, a platinum net, and is formed in a size that accommodates the metal sample piece 5 therein. Further, the metal net 13 is configured to be flexible and can be freely bent in accordance with the shape of the metal sample piece 5 serving as an anode.

また、電解槽1内には電解液15が満たされ、この電解
液15により金属試料片5および金属ネット13が浸漬
可能とされる。この電解液15は、腐11酸化皮膜3を
溶解させない程度の薄い強酸あるいは弱酸が用いられる
Further, the electrolytic bath 1 is filled with an electrolytic solution 15, and the metal sample piece 5 and the metal net 13 can be immersed in this electrolytic solution 15. As the electrolytic solution 15, a strong acid or a weak acid that is thin enough not to dissolve the oxidized film 3 is used.

次に作用を説明する。Next, the effect will be explained.

まず、電解槽1に電解液15を満たす。次に、金属試料
片5を金属ネット13内に配置させ、これら金属試料片
5、金属ネット13を定電流発生装置9の陽極端子、陰
極端子にそれぞれ接続させる。その後、金属試料片5お
よび金属ネット13を電解液15中に浸漬させ、これら
金属試料片5および金属ネット13に通電する。通電後
約1分間程すると金属試料片5が溶解し、この金属試料
片5の表面に生成された腐食酸化皮膜3が剥離する。
First, the electrolytic cell 1 is filled with an electrolytic solution 15. Next, the metal sample piece 5 is placed in the metal net 13, and the metal sample piece 5 and the metal net 13 are connected to the anode terminal and the cathode terminal of the constant current generator 9, respectively. Thereafter, the metal sample piece 5 and the metal net 13 are immersed in the electrolytic solution 15, and electricity is applied to the metal sample piece 5 and the metal net 13. Approximately 1 minute after electricity is applied, the metal sample piece 5 is dissolved, and the corrosive oxide film 3 formed on the surface of the metal sample piece 5 is peeled off.

このように、腐食酸化度lI3の剥離を短時間かつ簡単
に行なうことができる。したがって、この剥離した腐食
酸化皮膜を捕獲し、その重量を測定することにより、金
属試料片5の表面に生成された腐食酸化皮膜量を測定す
ることができる。
In this way, peeling with a corrosion oxidation degree of lI3 can be easily performed in a short time. Therefore, by capturing this peeled off corrosive oxide film and measuring its weight, the amount of the corrosive oxide film generated on the surface of the metal sample piece 5 can be measured.

そこで、原子炉−次冷却系の冷却材たる水または試験装
置の試験水への接液時間が異なり、その結果、腐食酸化
皮膜量が異なる多数の試料片について各試料片毎にその
皮glffiを測定すれば、腐食酸化皮膜回と接液時間
との関係、すなわち腐食酸化皮膜の生成速度が判明する
。それ故、この腐食酸化皮膜の生成速度からその皮膜に
取り込まれる放射能の蓄積過程が認識でき、原子炉−次
冷却系構造物における放射能の蓄積挙動およびその予測
が可能となる。
Therefore, the skin glffi was calculated for each sample piece for a large number of sample pieces with different amounts of corroded oxide film due to different exposure times to the coolant water in the reactor sub-cooling system or the test water in the test equipment. If measured, the relationship between the times of corrosion oxide film and the time of contact with the liquid, that is, the rate of formation of the corrosion oxide film, can be determined. Therefore, from the rate of formation of this corrosive oxide film, it is possible to recognize the accumulation process of radioactivity taken into the film, and it becomes possible to predict the accumulation behavior of radioactivity in the reactor-subcooling system structure.

また、この実施例では、金属ネット13がフレキシブル
に構成され、金属試料片5の形状に対応して曲げられる
ことから、金属試料片5にかかる電場が均一となり、金
属試料片5から腐食酸化皮膜をむらなく剥離させること
ができる。
In addition, in this embodiment, the metal net 13 is configured to be flexible and can be bent in accordance with the shape of the metal sample piece 5, so that the electric field applied to the metal sample piece 5 becomes uniform, and the corrosion oxide film is removed from the metal sample piece 5. can be peeled off evenly.

なお、この実施例では金属ネット13が白金製の場合に
つき述べたが、金属試験片の組成元素を含まず導電性の
ある金または銀またはカーボンファイバーであってもよ
い。
In this embodiment, the metal net 13 is made of platinum, but it may be made of gold, silver, or carbon fiber, which does not contain the constituent elements of the metal test piece and is conductive.

また、この実施例では、陽極としての金属試料片5がス
テンレス類であるものにつき述べたが、炭素鋼の場合に
も同様に適用することができる。
Further, in this embodiment, the metal sample piece 5 serving as the anode is made of stainless steel, but the present invention can be similarly applied to the case of carbon steel.

さらに、上記実施例では、陽極が金属試料片5である場
合につき説明したが、この陽極を原子炉−次冷却系の機
器等とすることができる。この場合には、原子炉−次冷
却系の機器から腐食酸化皮膜を剥離させて、これらの機
器等の除染を好適に行なうことができる。
Further, in the above embodiments, the case where the anode is the metal sample piece 5 has been described, but this anode can be used as equipment for a nuclear reactor-subcooling system or the like. In this case, the corroded oxide film can be peeled off from the equipment of the reactor-subcooling system, and these equipment can be suitably decontaminated.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る腐食酸化皮膜の剥離装置
によれば、定電流発生装置の陽極が腐食酸化皮膜の生成
された金属であり、陰極がこの金属を覆うように設けら
れ、さらにこれらの陽極および陰極が電解液に浸漬可能
とされることがら、溶解液に浸漬された陽極および陰極
に通電することにより、陽極の全屈表面に生成された腐
食酸化皮膜を簡単かつ迅速に剥離させることができると
いう効果を奏する。
As described above, according to the corrosive oxide film peeling device of the present invention, the anode of the constant current generator is a metal on which a corroded oxide film is formed, the cathode is provided to cover this metal, and Since the anode and cathode of the anode can be immersed in the electrolytic solution, the corrosive oxide film formed on the fully curved surface of the anode can be easily and quickly removed by energizing the anode and cathode immersed in the solution. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明に係る腐食酸化皮膜の剥離装置の一実施例
を示す概略側面図である。 1・・・腐食酸化皮膜、5・・・金属試料片、9・・・
定電流発生装置、13・・・金属ネット、15・・・電
解液。
The figure is a schematic side view showing an embodiment of a corrosive oxide film peeling apparatus according to the present invention. 1... Corrosion oxide film, 5... Metal sample piece, 9...
Constant current generator, 13... Metal net, 15... Electrolyte solution.

Claims (1)

【特許請求の範囲】 1、定電流を発生可能とし、腐食酸化皮膜が生成された
金属を陽極とする定電流発生装置と、この定電流発生装
置に取付けられ、上記金属を覆うように設けられた陰極
と、上記陽極および陰極を浸漬可能とする電解液とを有
することを特徴とする腐食酸化皮膜の剥離装置。 2、電解液は腐食酸化皮膜を溶解させない溶液により構
成された特許請求の範囲第1項記載の腐食酸化皮膜の剥
離装置。 3、陽極が腐食酸化皮膜の生成された金属試料片である
特許請求の範囲第1項または第2項記載の腐食酸化皮膜
の剥離装置。 4、陰極は、その形状が陽極形状に対応して曲げ得るよ
うフレキシブルに構成された特許請求の範囲第1項ない
し第3項にいずれか記載の腐食酸化皮膜の剥離装置。
[Scope of Claims] 1. A constant current generator capable of generating a constant current and having a metal as an anode on which a corroded oxide film has been formed; 1. An apparatus for stripping a corroded oxide film, comprising a cathode and an electrolytic solution in which the anode and cathode can be immersed. 2. The corrosive oxide film stripping apparatus according to claim 1, wherein the electrolytic solution is a solution that does not dissolve the corrosive oxide film. 3. The apparatus for removing a corrosive oxide film according to claim 1 or 2, wherein the anode is a metal sample piece on which a corrosive oxide film has been formed. 4. The apparatus for stripping a corroded oxide film according to any one of claims 1 to 3, wherein the cathode is configured to be flexible so that its shape can be bent to correspond to the shape of the anode.
JP22802884A 1984-10-31 1984-10-31 Apparatus for releasing corrosive oxidation film Granted JPS61107151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22802884A JPS61107151A (en) 1984-10-31 1984-10-31 Apparatus for releasing corrosive oxidation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22802884A JPS61107151A (en) 1984-10-31 1984-10-31 Apparatus for releasing corrosive oxidation film

Publications (2)

Publication Number Publication Date
JPS61107151A true JPS61107151A (en) 1986-05-26
JPH0511259B2 JPH0511259B2 (en) 1993-02-15

Family

ID=16870063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22802884A Granted JPS61107151A (en) 1984-10-31 1984-10-31 Apparatus for releasing corrosive oxidation film

Country Status (1)

Country Link
JP (1) JPS61107151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630874A (en) * 2015-01-20 2015-05-20 北方工业大学 Method for completely separating film from film composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630874A (en) * 2015-01-20 2015-05-20 北方工业大学 Method for completely separating film from film composite material

Also Published As

Publication number Publication date
JPH0511259B2 (en) 1993-02-15

Similar Documents

Publication Publication Date Title
TWI226439B (en) Plating bath analysis
US5519330A (en) Method and apparatus for measuring degree of corrosion of metal materials
CA1166187A (en) Method for determining current efficiency in galvanic baths
JP2759322B2 (en) Control method of electroless plating bath
JPS61107151A (en) Apparatus for releasing corrosive oxidation film
Oriani et al. Generation of nuclear tracks during electrolysis
Wolff Determination of foil thickness and void size from electron micrographs of irradiated austenitic alloys
JP2004117149A (en) Method and device for electrolytic decontamination for waste material from reprocessing facility
Shoesmith et al. The dissolution of cupric hydroxide films from copper surfaces
JP2594369Y2 (en) Tin plated layer rapid electroless melting test piece holder
Urbanic et al. Investigation of variables that influence corrosion of zirconium alloys during irradiation
Fujita et al. Radiation-induced preferential dissolution of specific planes of carbon steel in high-temperature water
US3413200A (en) A.c. etching of plutonium
JPH0518918B2 (en)
JPS5461982A (en) Evaluation method of sensitization by electrochemical techniques of steel materials
US2901408A (en) Coating method
Carvajal-Ortiz et al. Hydrogen permeation in zirconium using a molten salt devanathan-stachurski electrochemical cell
JPH079479B2 (en) Chemical decontamination method for stainless steel
Fujita et al. Redox decontamination technique development,(I) selection for dissolutive and regenerative conditions
JPH06331782A (en) Method and system for monitoring service life of nuclear power plant
Wenger et al. Tribocorrosion of stellite 6 alloy: mechanism of electrochemical reactions
JPH07248305A (en) Metal material sensitization detecting method and device
US5478461A (en) Method of regenerating nickel-plating baths containing nickel sulfamate
RU2036465C1 (en) Process of determination of tendency of zirconium alloys to nodule corrosion
JP3010943B2 (en) Reduction chemical decontamination method for radioactive metal waste